Шифрование диска полное. Как создать зашифрованный диск. Создание шифрованного диска

Исследователи из Принстонского Университета обнаружили способ обхода шифрования жестких дисков, использующий свойство модулей оперативной памяти хранить информацию на протяжении короткого промежутка времени даже после прекращения подачи питания.

Предисловие

Так как для доступа к зашифрованному жесткому диску необходимо иметь ключ, а он, разумеется, хранится в RAM – все, что нужно, это получить физический доступ к ПК на несколько минут. После перезагрузки с внешнего жесткого диска или с USB Flash делается полный дамп памяти и в течение считанных минут из него извлекается ключ доступа.

Таким способом удается получить ключи шифрования (и полный доступ к жесткому диску), используемые программами BitLocker, FileVault и dm-crypt в операционных системах Windows Vista, Mac OS X и Linux, а также популярной свободно распространяемой системой шифрования жестких дисков TrueCrypt.

Важность данной работы заключается в том, что не существует ни одной простой методики защиты от данного способа взлома, кроме как отключение питания на достаточное для полного стирания данных время.

Наглядная демонстрация процесса представлена в видеоролике .

Аннотация

Вопреки устоявшемуся мнению, память DRAM, использующаяся в большинстве современных компьютеров, хранит в себе данные даже после отключения питания в течение нескольких секунд или минут, причём, это происходит при комнатной температуре и даже, в случае извлечения микросхемы из материнской платы. Этого времени оказывается вполне достаточно для снятия полного дампа оперативной памяти. Мы покажем, что данное явление позволяет злоумышленнику, имеющему физический доступ к системе, обойти функции ОС по защите данных о криптографических ключах. Мы покажем, как перезагрузка может использоваться для того, чтобы совершать успешные атаки на известные системы шифрования жёстких дисков, не используя каких-либо специализированных устройств или материалов. Мы экспериментально определим степень и вероятность сохранения остаточной намагниченности и покажем что время, за которое можно снять данные, может быть существенно увеличено при помощи простых приёмов. Так же будут предложены новые методы для поиска криптографических ключей в дампах памяти и исправления ошибок, связанных с потерей битов. Будет также рассказано о несколько способах уменьшения данных рисков, однако простого решения нам не известно.

Введение

Большинство экспертов исходят из того, что данные из оперативной памяти компьютера стираются практически мгновенно после отключения питания, или считают, что остаточные данные крайне сложно извлечь без использования специального оборудования. Мы покажем, что эти предположения некорректны. Обычная DRAM память теряет данные постепенно в течение нескольких секунд, даже при обычных температурах, а если даже микросхема памяти будет извлечена из материнской платы, данные сохранятся в ней на протяжении минут или даже часов, при условии хранения этой микросхемы при низких температурах. Остаточные данные могут быть восстановлены при помощи простых методов, которые требуют кратковременного физического доступа к компьютеру.

Мы покажем ряд атак, которые, используя эффекты остаточной намагниченности DRAM, позволят нам восстановить хранимые в памяти ключи шифрования. Это представляет собой реальную угрозу для пользователей ноутбуков, которые полагаются на системы шифрования жёсткого диска. Ведь в случае, если злоумышленник похитит ноутбук, в тот момент, когда зашифрованный диск подключён, он сможет провести одну из наших атак для доступа к содержимому, даже если сам ноутбук заблокирован или находится в спящем режиме. Мы это продемонстрируем, успешно атакуя несколько популярных систем шифрования, таких как – BitLocker, TrueCrypt и FileVault. Эти атаки должны быть успешны и в отношении других систем шифрования.

Хотя мы сосредоточили наши усилия на системах шифрования жёстких дисков, в случае физического доступа к компьютеру злоумышленника, любая важная информация хранящаяся в оперативной памяти может стать объектом для атаки. Вероятно, и многие другие системы безопасности уязвимы. Например, мы обнаружили, что Mac OS X оставляет пароли от учётных записей в памяти, откуда мы смоги их извлечь, так же мы совершили атаки на получение закрытых RSA ключей веб-сервера Apache.

Некоторые представители сообществ по информационной безопасности и физике полупроводников уже знали об эффекте остаточной намагниченности DRAM, об этом было очень мало информации. В итоге, многие, кто проектирует, разрабатывает или использует системы безопасности, просто незнакомы с этим явлением и как легко оно может быть использовано злоумышленником. Насколько нам известно, это первая подробная работа изучающие последствия данных явлений для информационной безопасности.

Атаки на зашифрованные диски

Шифрование жёстких дисков это известный способ защиты против хищения данных. Многие полагают, что системы шифрования жёстких дисков позволят защитить их данные, даже в том случае, если злоумышленник получил физических доступ к компьютеру (собственно для этого они и нужны, прим. ред.). Закон штата Калифорния, принятый в 2002 году, обязывает сообщать о возможных случаях раскрытия персональных данных, только в том случае, если данные не были зашифрованы, т.к. считается, что шифрование данных - это достаточная защитная мера. Хотя закон не описывает никаких конкретных технических решений, многие эксперты рекомендуют использовать системы шифрования жёстких дисков или разделов, что будет считаться достаточными мерами для защиты. Результаты нашего исследования показали, что вера в шифрование дисков необоснованна. Атакующий, далеко не самой высокой квалификации, может обойти многие широко используемые системы шифрования, в случае если ноутбук с данными похищен, в то время когда он был включён или находился в спящем режиме. И данные на ноутбуке могут быть прочитаны даже в том случае, когда они находятся на зашифрованном диске, поэтому использование систем шифрования жёстких дисков не является достаточной мерой.

Мы использовали несколько видов атак на известные системы шифрования жёстких дисков. Больше всего времени заняла установка зашифрованных дисков и проверка корректности обнаруженных ключей шифрования. Получение образа оперативной памяти и поиск ключей занимали всего несколько минут и были полностью автоматизированы. Есть основания полагать, что большинство систем шифрования жёстких дисков подвержены подобным атакам.

BitLocker

BitLocker – система, входящая в состав некоторых версий ОС Windows Vista. Она функционирует как драйвер работающий между файловой системой и драйвером жёсткого диска, шифруя и расшифровывая по требованию выбранные секторы. Используемые для шифрования ключи находятся в оперативной памяти до тех пор, пока зашифрованный диск подмантирован.

Для шифрования каждого сектора жёсткого диска BitLocker использует одну и ту же пару ключей созданных алгоритмом AES: ключ шифрования сектора и ключ шифрования, работающий в режиме сцепления зашифрованных блоков (CBC). Эти два ключа в свою очередь зашифрованы мастер ключом. Чтобы зашифровать сектор, проводится процедура двоичного сложения открытого текста с сеансовым ключом, созданным шифрованием байта смещения сектора ключом шифрования сектора. Потом, полученные данные обрабатываются двумя смешивающими функциями, которые используют разработанный Microsoft алгоритм Elephant. Эти безключевые функции используются с целью увеличения количества изменений всех битов шифра и, соответственно, увеличения неопределённости зашифрованных данных сектора. На последнем этапе, данные шифруются алгоритмом AES в режиме CBC, с использованием соответствующего ключа шифрования. Вектор инициализации определяется путём шифрования байта смещения сектора ключом шифрования, используемом в режиме CBC.

Нами была реализована полностью автоматизированная демонстрационная атака названная BitUnlocker. При этом используется внешний USB диск с ОС Linux и модифицированным загрузчиком на основе SYSLINUX и драйвер FUSE позволяющий подключить зашифрованные BitLocker диски в ОС Linux. На тестовом компьютере с работающей Windows Vista отключалось питание, подключался USB жёсткий диск, и с него происходила загрузка. После этого BitUnlocker автоматически делал дамп оперативной памяти на внешний диск, при помощи программы keyfind осуществлял поиск возможных ключей, опробовал все подходящие варианты (пары ключа шифрования сектора и ключа режима CBC), и в случае удачи подключал зашифрованный диск. Как только диск подключался, появлялась возможность с ним работать как с любым другим диском. На современном ноутбуке с 2 гигабайтами оперативной памяти процесс занимал около 25 минут.

Примечательно, что данную атаку стало возможным провести без реверс-инжиниринга какого-либо ПО. В документации Microsoft система BitLocker описана в достаточной степени, для понимания роли ключа шифрования сектора и ключа режима CBC и создания своей программы реализующей весь процесс.

Основное отличие BitLocker от других программ этого класса – это способ хранения ключей при отключённом зашифрованном диске. По умолчанию, в базовом режиме, BitLocker защищает мастер ключ только при помощи TPM модуля, который существует на многих современных ПК. Данный способ, который, по всей видимости, широко используется, особенно уязвим к нашей атаке, поскольку он позволяет получить ключи шифрования, даже если компьютер был выключен в течение долгого времени, поскольку, когда ПК загружается, ключи автоматически подгружаются в оперативную память (до появления окна входа в систему) без ввода каких-либо аутентификационных данных.

По всей видимости, специалисты Microsoft знакомы с данной проблемой и поэтому рекомендуют настроить BitLocker в улучшенный режим, где защита ключей осуществляется, не только при помощи TPM, но и паролем или ключом на внешнем USB носителе. Но, даже в таком режиме, система уязвима, если злоумышленник получит физический доступ к ПК в тот момент, когда он работает (он даже может быть заблокирован или находиться в спящем режиме, (состояния - просто выключен или hibernate в это случае считаются не подверженными данной атаке).

FileVault

Система FileVault от Apple была частично исследована и проведён реверс-инжиниринг. В Mac OS X 10.4 FileVault использует 128-битный ключ AES в режиме CBC. При введении пароля пользователя, расшифровывается заголовок, содержащий ключ AES и второй ключ K2, используемый для расчёта векторов инициализации. Вектор инициализации для I-того блока диска рассчитывается как HMAC-SHA1 K2(I).

Мы использовали нашу программу EFI для получения образов оперативной памяти для получения данных с компьютера Макинтош (базирующимся на процессоре Intel) с подключённым диском, зашифрованным FileVault. После этого программа keyfind безошибочно автоматически находила AES ключи FileVault.

Без вектора инициализации, но с полученным AES ключом появляется возможность расшифровать 4080 из 4096 байт каждого блока диска (всё кроме первого AES блока). Мы убедились, что инициализационный вектор так же находится в дампе. Предполагая, что данные не успели исказиться, атакующий может определить вектор, поочерёдно пробуя все 160-битовые строки в дампе и проверяя, могут ли они образовать возможный открытый текст, при их бинарном сложении с расшифрованной первой частью блока. Вместе, используя программы типа vilefault, AES ключи и инициализационный вектор позволяют полностью расшифровывать зашифрованный диск.

В процессе исследования FileVault, мы обнаружили, что Mac OS X 10.4 и 10.5 оставляют множественные копии пароля пользователя в памяти, где они уязвимы к данной атаке. Пароли учётных записей часто используются для защиты ключей, которые в свою очередь, могу использоваться для защиты ключевых фраз зашифрованных FileVault дисков.

TrueCrypt

TrueCrypt – популярная система шифрования с открытым кодом, работающая на ОС Windows, MacOS и Linux. Она поддерживает множество алгоритмов, включая AES, Serpent и Twofish. В 4-ой версии, все алгоритмы работали в режиме LRW; в текущей 5-ой версии, они используют режим XTS. TrueCrypt хранит ключ шифрования и tweak ключ в заголовке раздела на каждом диске, который зашифрован другим ключом получающимся из вводимого пользователем пароля.

Мы тестировали TrueCrypt 4.3a и 5.0a работающие под ОС Linux. Мы подключили диск, зашифрованный при помощи 256-битного AES ключа, потом отключили питание и использовали для загрузки собственное ПО для дампа памяти. В обоих случаях, keyfind обнаружила 256-битный неповреждённый ключ шифрования. Так же, в случае TrueCrypt 5.0.a, keyfind смогла восстановить tweak ключ режима XTS.

Чтобы расшифровать диски созданные TrueCrypt 4, необходим tweak ключ режима LRW. Мы обнаружили, что система хранит его в четырёх словах перед ключевым расписанием ключа AES. В нашем дампе, LRW ключ не был искажён. (В случае появления ошибок, мы все равно смогли бы восстановить ключ).

Dm-crypt

Ядро Linux, начиная с версии 2.6, включает в себя встроенную поддержку dm-crypt – подсистемы шифрования дисков. Dm-crypt использует множество алгоритмов и режимов, но, по умолчанию, она использует 128-битный шифр AES в режиме CBC с инициализационными векторами создаваемыми не на основе ключевой информации.

Мы тестировали созданный dm-crypt раздел, используя LUKS (Linux Unified Key Setup) ветку утилиты cryptsetup и ядро 2.6.20. Диск был зашифрован при помощи AES в режиме CBC. Мы ненадолго отключили питание и, используя модифицированный PXE загрузчик, сделали дамп памяти. Программа keyfind обнаружила корректный 128-битный AES ключ, который и был восстановлен без каких-либо ошибок. После его восстановления, злоумышленник может расшифровать и подключить раздел зашифрованный dm-crypt, модифицируя утилиту cryptsetup таким образом, чтобы она воспринимала ключи в необходимом формате.

Способы защиты и их ограничения

Реализация защиты от атак на оперативную память нетривиальна, поскольку используемые криптографические ключи необходимо где-либо хранить. Мы предлагаем сфокусировать усилия на уничтожении или скрытии ключей до того, как злоумышленник сможет получить физический доступ к ПК, предотвращая запуск ПО для дампа оперативной памяти, физически защищая микросхемы ОЗУ и по возможности снижая срок хранения данных в ОЗУ.

Перезапись памяти

Прежде всего, надо по-возможности избегать хранения ключей в ОЗУ. Необходимо перезаписывать ключевую информацию, если она больше не используется, и предотвращать копирование данных в файлы подкачки. Память должна очищаться заблаговременно средствами ОС или дополнительных библиотек. Естественно, эти меры не защитят используемые в данный момент ключи, поскольку они должны храниться в памяти, например такие ключи как, используемые для шифрованных дисков или на защищённых веб серверах.

Так же, ОЗУ должна очищаться в процессе загрузки. Некоторые ПК могут быть настроены таким образом, чтобы очищать ОЗУ при загрузке при помощи очищающего POST запроса (Power-on Self-Test) до того как загружать ОС. Если злоумышленник не сможет предотвратить выполнение данного запроса, то на данном ПК у него не будет возможности сделать дамп памяти с важной информацией. Но, у него всё ещё остаётся возможность вытащить микросхемы ОЗУ и вставить их в другой ПК с необходимыми ему настройками BIOS.

Ограничение загрузки из сети или со съёмных носителей

Многие наши атаки были реализованы с использованием загрузки по сети или со съёмного носителя. ПК должен быть настроен так, чтобы требовать пароль администратора для загрузки с этих источников. Но, необходимо отметить, что даже если система настроена на загрузку только с основного жёсткого диска, атакующий может сменить сам жёсткий диск, или во многих случаях, сбросить NVRAM компьютера для отката на первоначальные настройки BIOS.

Безопасный спящий режим

Результаты исследования показали, что простое блокирование рабочего стола ПК (т.е ОС продолжает работать, но, для того, чтобы с ней начать взаимодействие необходим ввод пароля) не защищает содержимое ОЗУ. Спящий режим не эффективен и в том случае, если ПК блокируется при возврате из спящего режима, поскольку злоумышленник может активировать возврат из спящего режима, после чего перезагрузить ноутбук и сделать дамп памяти. Режим hibernate (содержимое ОЗУ копируется на жёсткий диск) так же не поможет, кроме случаев использования ключевой информации на отчуждаемых носителях для восстановления нормального функционирования.

В большинстве систем шифрования жёстких дисков, пользователи могут защититься выключением ПК. (Система Bitlocker в базовом режиме работы TPM модуля остаётся уязвимой, поскольку диск будет подключен автоматически, когда ПК будет включён). Содержимое памяти может сохраняться в течение короткого периода после отключения, поэтому рекомендуется понаблюдать за своей рабочей станцией ещё в течение пары минут. Несмотря на свою эффективность, данная мера крайне неудобна в связи с долгой загрузкой рабочих станций.

Переход в спящий режим можно обезопасить следующими способами: требовать пароль или иной другой секрет чтобы «разбудить» рабочую станцию и шифровать содержимое памяти ключом производным от этого пароля. Пароль должен быть стойким, так как злоумышленник может сделать дамп памяти и после чего попробовать подобрать пароль перебором. Если же шифрование всей памяти невозможно, необходимо шифровать только те области, которые содержат ключевую информацию. Некоторые системы могут быть настроены таким образом, чтобы переходить в такой тип защищённого спящего режима, хотя это обычно и не является настройкой по умолчанию.

Отказ от предварительных вычислений

Наши исследования показали, что использование предварительных вычислений для того, чтобы ускорить криптографические операции делает ключевую информацию более уязвимой. Предварительные вычисления приводят к тому, что в памяти появляется избыточная информации о ключевых данных, что позволяет злоумышленнику восстановить ключи даже в случае наличия ошибок. Например, как описано в разделе 5, информация об итерационных ключах алгоритмов AES и DES крайне избыточна и полезна для атакующего.

Отказ от предварительных вычислений снизит производительность, поскольку потенциально сложные вычисления придётся повторять. Но, например, можно кэшировать предварительно высчитанные значения на определённый промежуток времени и стирать полученные данные, если они не используются в течение этого интервала. Такой подход представляет собой компромисс между безопасностью и производительностью системы.

Расширение ключей

Другой способ предотвратить восстановление ключей – это изменение ключевой информации, хранящейся в памяти, таким образом, чтобы усложнить восстановление ключа из-за различных ошибок. Этот метод был рассмотрен в теории, где была показана функция, стойкая к раскрытию, чьи входные данные остаются сокрытыми, даже если практически все выходные данные были обнаружены, что очень похоже на работу однонаправленных функций.

На практике, представьте, что у нас есть 256-битный AES ключ K, который в данный момент не используется, но понадобится позднее. Мы не можем перезаписать его, но мы хотим сделать его стойким к попыткам восстановления. Один из способов добиться этого – это выделить большую B-битную область данных, заполнить её случайными данными R, после чего хранить в памяти результат следующего преобразования K+H(R) (суммирование двоичное, прим. ред.), где H – это хэш функция, например SHA-256.

Теперь представьте, что электричество было отключено, это приведёт к тому, что d бит в данной области будут изменены. Если хэш функция стойкая, при попытке восстановления ключа K, злоумышленник может рассчитывать только на то, что он сможет угадать какие биты области B были изменены из приблизительно половины, которые могли изменится. Если d бит были изменены, злоумышленнику придётся провести поиск области размером (B/2+d)/d чтобы найти корректные значения R и уже после этого восстановить ключ K. Если область B велика, такой поиск может быть очень долог, даже если d относительно мала.

Теоретически, таким способом можно хранить все ключи, рассчитывая каждый ключ, только когда это нам необходимо, и удаляя его, когда он нам не нужен. Таким образом, применяя вышеописанный метод, мы может хранить ключи в памяти.

Физическая защита

Некоторые из наших атак основывались на наличии физического доступа к микросхемам памяти. Такие атаки могут быть предотвращены физической защитой памяти. Например, модули памяти находиться в закрытом корпусе ПК, или залиты эпоксидным клеем, чтобы предотвратить попытки их извлечения или доступа к ним. Так же, можно реализовать затирание памяти как ответную реакцию на низкие температуры или попытки открыть корпус. Такой способ потребует установки датчиков с независимой системой питания. Многие из таких способов связаны с аппаратурой, защищённой от несанкционированного вмешательства (например, сопроцессор IBM 4758) и могут сильно повысить стоимость рабочей станции. С другой стороны, использование памяти, припаянной к материнской плате, обойдётся гораздо дешевле.

Изменение архитектуры

Можно изменить архитектуру ПК. Что невозможно для уже используемых ПК, зато позволит обезопасить новые.

Первый подход заключается в том, чтобы спроектировать DRAM модули таким образом, чтобы они быстрее стирали все данные. Это может быть непросто, поскольку цель как можно более быстрого стирания данных, противоречит другой цели, чтобы данные не пропадали между периодами обновления памяти.

Другой подход заключается в добавлении аппаратуры хранения ключевой информации, которая бы гарантированно стирала всю информацию со своих хранилищ при запуске, перезапуске и выключении. Таким образом, мы получим надёжное место для хранения нескольких ключей, хотя уязвимость, связанная с их предварительными вычислениями останется.

Другие эксперты предложили архитектуру, в рамках которой содержимое памяти будет постоянно шифроваться. Если, вдобавок к этому, реализовать стирание ключей при перезагрузке и отключении электричества, то данный способ обеспечит достаточную защищённость от описанных нами атак.

Доверенные вычисления

Аппаратура, соответствующая концепции «доверенных вычислений», например, в виде TPM модулей уже используется в некоторых ПК. Несмотря на свою полезность в защите от некоторых атак, в своей нынешней форме такое оборудование не помогает предотвратить описанные нами атаки.

Используемые TPM модули не реализуют полное шифрование. Вместо этого, они наблюдают за процессом загрузки для принятия решения о том, безопасно ли загружать ключ в ОЗУ или нет. Если ПО необходимо использовать ключ, то можно реализовать следующую технологию: ключ, в пригодной для использования форме не будет храниться в ОЗУ, до тех пор пока процесс загрузки не пройдёт по ожидаемому сценарию. Но, как только ключ оказывается в оперативной памяти – он сразу становиться мишенью для наших атак. TPM модули могут предотвратить загрузку ключа в память, но они не предотвращают его считывание из памяти.

Выводы

Вопреки популярному мнению, модули DRAM в отключённом состоянии хранят данные в течение относительно долгого времени. Наши эксперименты показали, что данное явление позволяет реализовать целый класс атак, которые позволяют получить важные данные, такие как ключи шифрования из оперативной памяти, несмотря на попытки ОС защитить её содержимое. Описанные нами атаки реализуемы на практике, и наши примеры атак на популярные системы шифрования доказывают это.

Но и другие виды ПО также уязвимы. Системы управления цифровыми правами (DRM) часто используют симметричные ключи, хранящиеся в памяти, и их так же можно получить, используя описанные методы. Как мы показали, веб-сервера с поддержкой SSL тоже уязвимы, поскольку они хранят в памяти закрытые ключи необходимые для создания SSL сеансов. Наши способы поиска ключевой информации, скорее всего, будут эффективны для поиска паролей, номеров счетов и любой другой важной информации, хранящейся в ОЗУ.

Похоже что нет простого способа устранить найденные уязвимости. Изменение ПО скорее всего не будет эффективным; аппаратные изменения помогут, но временные и ресурсные затраты будут велики; технология «доверенных вычислений» в её сегодняшней форме так же мало эффективна, поскольку она не может защитить ключи находящиеся в памяти.

По нашему мнению, больше всего данному риску подвержены ноутбуки, которые часто находятся в общественных местах и функционируют в режимах уязвимых для данных атак. Наличие таких рисков, показывает, что шифрование дисков осуществляет защиту важных данных в меньшей степени, чем принято считать.

В итоге, возможно, придётся рассматривать DRAM память как не доверенную компоненту современного ПК, и избегать обработки важной конфиденциальной информации в ней. Но на данный момент это нецелесообразно, до тех пор, пока архитектура современных ПК не изменится, чтобы позволить ПО хранить ключи в безопасном месте.

Существует масса причин зашифровать данные на своем жестком диске, но расплатой за безопасность данных будет снижение скорости работы системы. Цель этой статьи - сравнить производительность при работе с диском, зашифрованным разными средствами.

Чтобы разница была более драматичной, мы выбрали не суперсовременную, а среднестатистическую машину. Обычный механический хард на 500 Гбайт, двухъядерный AMD на 2,2 ГГц, 4 гига оперативки, 64-битная Windows 7 SP 1. Никаких антивирусов и прочих программ во время теста запущено не будет, чтобы ничто не смогло повлиять на результаты.

Для оценки производительности я выбрал CrystalDiskMark. Что до тестируемых средств шифрования, то я остановился на таком списке: BitLocker, TrueCrypt, VeraCrypt, CipherShed, Symantec Endpoint Encryption и CyberSafe Top Secret.

BitLocker

Это стандартное средство шифрования дисков, встроенное в Microsoft Windows. Многие просто используют его, не устанавливая сторонних программ. Действительно, зачем, если все уже есть в системе? С одной стороны, правильно. С другой стороны, код закрыт, и нет уверенности, что в нем не оставили бэкдоров для ФБР и прочих интересующихся.

Шифрование диска осуществляется по алгоритму AES с длиной ключа 128 или 256 бит. Ключ при этом может храниться в Trusted Platform Module, на самом компьютере или на флешке.

Если используется TPM, то при загрузке компьютера ключ может быть получен сразу из него или после аутентификации. Авторизоваться можно при помощи ключа на флешке или введя PIN-код с клавиатуры. Комбинации этих методов дают множество вариантов для ограничения доступа: просто TPM, TPM и USB, TPM и PIN или все три сразу.

У BitLocker есть два неоспоримых преимущества: во-первых, им можно управлять через групповые политики; во-вторых, он шифрует тома, а не физические диски. Это позволяет зашифровать массив из нескольких дисков, чего не умеют делать некоторые другие средства шифрования. Также BitLocker поддерживает GUID Partition Table (GPT), чем не может похвастаться даже наиболее продвинутый форк «Трукрипта» VeraCrypt. Чтобы зашифровать с его помощью системный GPT-диск, придется сначала конвертировать в формат MBR. В случае с BitLocker это не требуется.

В целом, недостаток один - закрытые исходники. Если ты хранишь секреты от домочадцев, BitLocker отлично подойдет. Если же твой диск забит документами государственной важности, лучше подыскать что-то другое.

Можно ли расшифровать BitLocker и TrueCrypt

Если попросить Google, то он найдет интересную программу Elcomsoft Forensic Disk Decryptor, пригодную для расшифровки дисков BitLocker, TrueCrypt и PGP. В рамках этой статьи испытывать ее не стану, но поделюсь впечатлениями о другой утилите от Elcomsoft, а именно Advanced EFS Data Recovery. Она превосходно расшифровывала EFS-папки, но при условии, что пароль пользователя не был задан. Если задать пароль хоть 1234, программа оказывалась бессильной. Во всяком случае, расшифровать зашифрованную EFS-папку, принадлежащую пользователю с паролем 111, у меня не получилось. Думаю, с продуктом Forensic Disk Decryptor ситуация будет такой же.

TrueCrypt

Это легендарная программа шифрования дисков, разработка которой была прекращена в 2012 году. История, которая приключилась с TrueCrypt, до сих пор покрыта мраком, и толком никто не знает, почему разработчик решил отказаться от поддержки своего детища.

Есть лишь крупицы информации, не позволяющие сложить пазл воедино. Так, в 2013 году начался сбор средств для проведения независимого аудита TrueCrypt. Причиной прослужила полученная от Эдварда Сноудена информация о намеренном ослаблении средств шифрования TrueCrypt. На аудит было собрано свыше 60 тысяч долларов. В начале апреля 2015 года работы были завершены, но никаких серьезных ошибок, уязвимостей или других существенных недостатков в архитектуре приложения выявлено не было.

Как только закончился аудит, TrueCrypt снова оказался в центре скандала. Специалисты компании ESET опубликовали отчет о том, что русскоязычная версия TrueCrypt 7.1a, загруженная с сайта truecrypt.ru, содержала малварь. Более того, сам сайт truecrypt.ru использовался как командный центр - с него отправлялись команды инфицированным компьютерам. В общем, будь бдителен и не скачивай программы откуда попало.

К преимуществам TrueCrypt можно отнести открытые исходники, надежность которых теперь подкреплена независимым аудитом, и поддержку динамических томов Windows. Недостатки: программа больше не развивается, и разработчики не успели реализовать поддержку UEFI/GPT. Но если цель - зашифровать один несистемный диск, то это неважно.

В отличие от BitLocker, где поддерживается только AES, в TrueCrypt есть еще Serpent и Twofish. Для генерации ключей шифрования, соли и ключа заголовка программа позволяет выбрать одну из трех хеш-функций: HMAC-RIPEMD-160, HMAC-Whirlpool, HMAC-SHA-512. Однако о TrueCrypt уже много чего было написано, так что не будем повторяться.

VeraCrypt

Наиболее продвинутый клон TrueCrypt. У него собственный формат, хотя есть возможность работы в режиме TrueCrypt, в котором поддерживаются зашифрованные и виртуальные диски в формате «Трукрипта». В отличие от CipherShed, VeraCrypt может быть установлена на один и тот же компьютер одновременно с TrueCrypt.

INFO

Самоустранившись, TrueCrypt оставил богатое наследие: у него множество форков, начиная с VeraCrypt, CipherShed и DiskCryptor.

В TrueCrypt используется 1000 итераций при генерации ключа, которым будет зашифрован системный раздел, а VeraCrypt использует 327 661 итерацию. Для стандартных (не системных) разделов VeraCrypt использует 655 331 итерацию для хеш-функции RIPEMD-160 и 500 000 итераций для SHA-2 и Whirlpool. Это делает зашифрованные разделы существенно более устойчивыми к атаке прямым перебором, но и значительно снижает производительность работы с таким разделом. Насколько значительно, мы скоро выясним.

Среди преимуществ VeraCrypt - открытый исходный код, а также собственный и более защищенный по сравнению с TrueCrypt формат виртуальных и зашифрованных дисков. Недостатки те же, что и в случае с прародителем, - отсутствие поддержки UEFI/GPT. Зашифровать системный GPT-диск по-прежнему нельзя, но разработчики уверяют, что работают над этой проблемой и скоро такое шифрование будет доступно. Вот только работают они над этим уже два года (с 2014-го), и когда будет релиз с поддержкой GPT и будет ли он вообще, пока не известно.

CipherShed

Еще один клон TrueCrypt. В отличие от VeraCrypt, он использует исходный формат TrueCrypt, поэтому можно ожидать, что его производительность будет близка к производительности TrueCrypt.

Преимущества и недостатки все те же, хотя к недостаткам можно еще добавить невозможность установки TrueCrypt и CipherShed на одном компьютере. Мало того, если попытаться установить CipherShed на машину с уже установленным TrueCrypt, то инсталлятор предлагает удалить предыдущую программу, но не справляется с задачей.

Symantec Endpoint Encryption

В 2010 году компания Symantec выкупила права на программу PGPdisk. В результате появились такие продукты, как PGP Desktop и, впоследствии, Endpoint Encryption. Именно ее мы и рассмотрим. Программа, конечно же, проприетарная, исходники закрыты, и одна лицензия стоит 64 евро. Зато тут есть поддержка GPT, но только начиная с Windows 8.

Другими словами, если нужна поддержка GPT и есть желание зашифровать системный раздел, то придется выбирать между двумя проприетарными решениями: BitLocker и Endpoint Encryption. Вряд ли, конечно, домашний пользователь будет устанавливать Endpoint Encryption. Проблема в том, что для этого требуется Symantec Drive Encryption, для установки которого нужны агент и сервер управления Symantec Endpoint Encryption (SEE), а сервер хочет поставить еще и IIS 6.0. Не многовато ли всякого добра ради одной программы для шифрования диска? Мы прошли через все это только ради того, чтобы замерить производительность.

Момент истины

Итак, приступаем к самому интересному, а именно к тестированию. Первым делом нужно проверить производительность диска без шифрования. Нашей «жертвой» будет раздел жесткого диска (обычного, не SSD) размером 28 Гбайт, отформатированный как NTFS.

Открываем CrystalDiskMark, выбираем количество проходов, размер временного файла (во всех тестах будем использовать 1 Гбпйт) и сам диск. Стоит отметить, что количество проходов практически не влияет на результаты. На первом скриншоте показаны результаты измерения производительности диска без шифрования с числом проходов 5, на втором - с числом проходов 3. Как видишь, результаты практически идентичны, поэтому остановимся на трех проходах.



Результаты CrystalDiskMark нужно трактовать так:

  • Seq Q32T1 - тест последовательной записи / последовательного чтения, количество очередей - 32, потоков - 1;
  • 4K Q32T1 - тест случайной записи / случайного чтения (размер блока 4 Кбайт, количество очередей - 32, потоков - 1);
  • Seq - тест последовательной записи / последовательного чтения;
  • 4K - тест случайной записи / случайного чтения (размер блока 4 Кбайт);

Начнем с BitLocker. На шифрование раздела размером 28 Гбайт было потрачено 19 минут.

Продолжение доступно только подписчикам

Вариант 1. Оформи подписку на «Хакер», чтобы читать все материалы на сайте

Подписка позволит тебе в течение указанного срока читать ВСЕ платные материалы сайта. Мы принимаем оплату банковскими картами, электронными деньгами и переводами со счетов мобильных операторов.

Запустите инструмент шифрования в Windows, введя в строке поиска «Bit­Locker» и выбрав пункт «Управление BitLocker». В следующем окне вы можете активировать шифрование, нажав на «Включить BitLocker» рядом с обозначением жесткого диска (если появится сообщение об ошибке, прочитайте раздел «Использование BitLocker без TPM»).

Теперь вы можете выбрать, хотите ли вы при деблокировании зашифрованного диска использовать USB-флеш-на­копитель или пароль. Вне зависимости от выбранной опции, в процессе настройки вам нужно будет сохранить или распечатать ключ восстановления. Он вам понадобится, если вы забудете пароль или потеряете флешку.

Использование BitLocker без TPM

Настройка BitLocker.
BitLocker также функционирует без чипа TPM - правда, для этого нужно произвести некоторые настройки в редакторе локальной групповой политики.

Если на вашем компьютере не используется чип TPM (Trusted Platform Mo­dule), вам, возможно, необходимо будет произвести кое-какие настройки, чтобы активировать BitLocker. В строке поиска Windows наберите «Изменение групповой политики» и откройте раздел «Редактор локальной групповой политики». Теперь откройте в левой колонке редактора «Конфигурация компьютера | Административные шаблоны | Компоненты Windows | Шифрование диска BitLocker | Диски операционной системы», а в правой колонке отметьте запись «Обязательная дополнительная проверка подлинности при запуске».

Затем в средней колонке нажмите на ссылку «Изменить параметр политики». Поставьте кружочек напротив «Включить» и галочку напротив пункта «Разрешить использование BitLocker без совместимого TPM» ниже. После нажатия на «Применить» и «ОК» вы можете использовать BitLocker, как описано выше.

Альтернатива в виде VeraCrypt

Чтобы зашифровать системный раздел или весь жесткий диск с помощью преемника программы TrueCrypt под названием VeraCrypt, выберите в главном меню VeraCrypt пункт «Create Volume», а затем - «Encrypt the system partition or entire system drive». Чтобы зашифровать весь жесткий диск вместе с разделом Windows, выберите «Encrypt the whole drive», после чего следуйте пошаговой инструкции по настройке. Внимание: VeraCrypt создает диск аварийного восстановления на случай, если вы забудете пароль. Так что вам потребуется пустая CD-болванка.

После того как вы зашифровали свой диск, при начальной загрузке вам нужно будет после пароля указать PIM (Personal Iterations Multiplier). Если при настройке вы не установили PIM, то просто нажмите Enter.

В Windows Vista, Windows 7 и Windows 8 версий Pro и выше разработчики создали специальную технологию для шифрования содержимого логических разделов на всех видов, внешних дисках и USB-флешках - BitLocker .
Для чего она нужна? Если запустить BitLocker, то все файлы, находящиеся на диске, будут шифроваться. Шифрование происходит прозрачно, то есть вам не нужно каждый раз вводить пароль при сохранении файла - система все делает автоматически и незаметно. Однако как только вы отключите этот диск, то при следующем его включении потребуется специальный ключ (специальная смарт-карта, флешка или пароль) для доступа к нему. То есть если вы случайно потеряете ноутбук, то прочитать содержимое зашифрованного диска на нем не получится, даже если вы вытащите этот жесткий диск из этого ноутбука и попробуете его прочитать на другом компьютере. Ключ шифрования имеет такую длину, что время на перебор всех возможных комбинаций для подбора правильного варианта на самых мощных компьютерах будет исчисляться десятилетиями. Конечно, пароль можно выведать под пытками либо украсть заранее, но если флешка была потеряна случайно, либо ее украли, не зная, что она зашифрована, то прочесть ее будет невозможно.

Настройка шифрования BitLocker на примере Windows 8: шифрование системного диск и шифрование флешек и внешних USB-дисков.
Шифрование системного диска
Требованием для работы BitLocker для шифрования логического диска, на котором установлена операционная система Windows, является наличие незашифрованного загрузочного раздела: система должна все же откуда-то запускаться. Если правильно устанавливать Windows 8/7, то при установке создаются два раздела - невидимый раздел для загрузочного сектора и файлов инициализации и основной раздел, на котором хранятся все файлы. Первый как раз и является таким разделом, который шифровать не нужно. А вот второй раздел, в котором находятся все файлы, подвергается шифрованию.

Чтобы проверить, есть ли у вас эти разделы, откройте Управление компьютером

перейдите в раздел Запоминающие устройства - Управление дисками .


На скриншоте раздел, созданный для загрузки системы, помечен как SYSTEM RESERVED . Если он есть, то вы смело можете использовать систему BitLocker для шифрования логического диска, на котором установлена Windows.
Для этого зайдите в Windows с правами администратора, откройте Панель управления

перейдите в раздел Система и безопасность


и войдите в раздел Шифрование диска BitLocker .
Вы увидите в нем все диски, которые можно зашифровать. Кликните по ссылке Включить BitLocker .


Настройка шаблонов политики безопасности
В этом месте вы можете получить сообщение о том, что шифрование диска невозможно до тех пор, пока будут настроены шаблоны политики безопасности.


Дело в том, что для запуска BitLocker нужно системе разрешить эту операцию - это может сделать только администратор и только собственными руками. Сделать это намного проще, чем кажется после прочтения непонятных сообщений.

Откройте Проводник , нажмите Win + R - откроется строка ввода.


Введите в нее и выполните:

gpedit.msc

Откроется Редактор локальной групповой политики . Перейдите в раздел

Административные шаблоны
- Компоненты Windows
-- Этот параметр политики позволяет выбрать шифрование диска BitLocker
--- Диски операционной системы
---- Этот параметр политики позволяет настроить требование дополнительной проверки подлинности при запуске.



Установите значение параметра Включено .


После этого сохраните все значения и вернитесь в Панель управления - можете запускать шифрование диска BitLocker.

Создание ключа и его сохранение

Вам на выбор система предложит два варианта ключа: пароль и флешка.


При использовании флешки вы сможете воспользоваться жестким диском только в том случае, если вставите эту флешку - на ней будет записан в зашифрованном виде ключ. При использовании пароля вам нужно будет его вводить каждый раз, когда будет происходить обращение к зашифрованному разделу на этом диске. В случае с системным логическим диском компьютера пароль будет нужен при холодной (с нуля) загрузке или полном рестарте, либо при попытке прочитать содержимое логического диска на другом компьютере. Во избежание каких-то подводных камней пароль придумывать, используя английские буквы и цифры.

После создания ключа вам будет предложено сохранить информацию для восстановления доступа в случае его утери: вы можете сохранить специальный код в текстовом файле, сохранить его на флешке, сохранить его в учетной записи Microsoft, или распечатать.


Обратите внимание, что сохраняется не сам ключ, а специальный код, необходимый для процедуры восстановления доступа.


Шифрование USB-дисков и флешек
Вы так же можете шифровать и внешние USB-диски и флешки - эта возможность впервые появилась в Windows 7 под названием BitLocker To Go . Процедура такая же: вы придумываете пароль и сохраняет код восстановления.


Когда вы будете монтировать USB-диск (присоединять к компьютеру), либо попробуете его разблокировать, система запросит у вас пароль.


Если вы не хотите каждый раз вводить пароль, так как уверены в безопасности при работе на этом компьютере, то можете в дополнительных параметрах при разблокировке указать, что доверяете этому компьютеру - в этом случае пароль будет вводиться всегда автоматически, до тех пор, пока вы не отмените настройку доверия. Обратите внимание, что на другом компьютере система у вас попросит ввести пароль, так как настройка доверия на каждом компьютере действует независимо.


После того, как вы поработали с USB-диском, размонтируйте его, либо просто просто отсоединив, либо через меню безопасного извлечения, и зашифрованный диск будет защищен от несанкционированного доступа.

Два способа шифрования

BitLocker при шифровании предлагает два способа, имеющих одинаковый результат, но разное время выполнения: вы можете зашифровать только занятое информацией место, пропустив обработку пустого пространства, либо пройтись по диску полностью, защифровав все пространство логического раздела, включая и не занятое. Первое происходит быстрее, однако остается возможность восстановления информации с пустого места. Дело в том, что с помощью специальных программ можно восстанавливать информацию, даже если она была удалена из Корзины, и даже если диск был отформатирован. Конечно, практически это выполнить трудно, но теоретическая возможность все равно есть, если вы не используете для удаления специальные утилиты, удаляющие информацию безвозвратно. При шифровании всего логического диска будет шифроваться и место, помеченное как пустое, и возможности восстановления информации с него даже с помощью специальных утилит уже не будет. Этот способ абсолютно надежный, но более медленный.

При шифровании диска желательно не выключать компьютер. На шифрование 300 гигабайт у меня ушло примерно 40 минут. Что будет, если внезапно отключилось питание? Не знаю, не проверял, но в интернете пишут, что ничего страшного не произойдет - нужно будет просто начать шифрование заново.

Вывод

Таким образом, если вы постоянно пользуетесь флешкой, на которой храните важную информацию, то с помощью BitLocker можете защитить себя от попадания важной информации в чужие руки. Так же можно защитить информацию и на жестких дисках компьютера, включая и системные - достаточно полностью выключить компьютер, и информация на дисках станет недоступной для посторонних. Использование BitLocker после настройки шаблонов политики безопасности не вызывает никаких затруднений даже у неподготовленных пользователей, какого либо торможения при работе с зашифрованными дисками я не заметил.

Электронные подписи

Защита персональных данных

Построение защищенных сетей

Семинар по электронным торгам

Шифрование диска

Одной из главных задач, решаемых в рамках обеспечения безопасности, является шифрование дисков .

Шифрование диска – надёжный способ защиты файлов и папок, хранящихся на диске компьютера или на съёмном внешнем диске, от несанкционированного доступа. Шифрование диска осуществляется, как правило, посекторно, благодаря чему технология не зависит от файловой системы. Тем не менее, вопрос о размере шифруемого сектора остается открытым и требует компромиссного решения. Большое количество специалистов в этой области склоняются в сторону большого размера, т. к.такие секторы криптографическиболее стойкие к атакам, но вместе с тем требуют больших вычислительных мощностей для их обработки.

Выбор программного продукта в конкретном случае зависит от ряда факторов и требует участия специалиста.

Выделяются несколько способов шифрования дисков, наиболее надежными из которых являются:

  • создание виртуального жесткого диска (криптоконтейнера). Удобное средство для работы с зашифрованной информацией на компьютере. На жестком диске или flash-носителе создается файл или область диска, которая зашифровывается. Перед началом работы диск монтируется в систему, и вся дальнейшая работа с ним происходит как с обычным носителем. Информация шифруется на лету, незаметно для пользователя. Для монтирования диска необходимо ввести пароль или предоставить электронный ключ и пин-код доступа к нему. Как правило, подавляющее большинство программных продуктов этого типа предлагает на выбор несколько алгоритмов шифрования или их комбинаторику;
  • шифрование жестких дисков с системной областью. Это один из самых надежных методов защиты информации на ПК. Перед загрузкой операционной системы необходимо ввести пароль или предоставить электронный ключ и пин-код доступа к нему. Только после этого произойдет загрузка компьютера. Важно отметить, что шифрованию подвергается вся информация, размещенная на диске.

Таким образом, лучше всего вовремя воспользоваться средствами для шифрования Ваших дисков ,т. к. это устраняет ряд возможных уязвимостей в безопасности операционной системы.

Существует множество средств для шифрования дисков , среди которых выделяются:

BitLocker – надежное средство для шифрования диска целиком. Зашифрованные диски (несъемные или съемные) можно разблокировать с помощью пароля или смарт-карты или настроить автоматическую разблокировку дисков при входе в систему. У данного средства есть замечательная особенность: его всегда можно отключить либо временно (приостановив его), либо на постоянной основе (расшифровав диск).

DriveCryptPlusPack – эффективное средство, с помощью которого можно зашифровать любой жесткий диск или сменный накопитель (за исключением CD и DVD) и использовать его для обмена данными между пользователями. Несомненным плюсом обмена данными на полностью зашифрованном носителе является невозможность обнаружения на нём каких-либо файлов. Даже располагая информацией о том, что носитель зашифрован, при отсутствии ключа данные прочитать будет невозможно.

BestCrypt – это пакет программ для создания на жестком диске компьютера виртуального зашифрованного диска. С зашифрованным контейнером можно работать как с обычным жестким диском – размещать на нем файлы и производить с ними любые операции, инсталлировать программы и т.д. BestCrypt создает и поддерживает зашифрованные виртуальные диски, причем эти диски видимы, как обычные диски с соответствующими литерами дисков. Любой тип физических носителей данных можно использовать для хранения данных и доступа к ним в контейнерах BestCrypt: жесткие диски, сменные носители, магнито-оптические устройства и т.д.