Сила взаимодействия между обкладками. Формулы для конденсаторов

Одними из наиболее часто используемых электронных компонентов являются конденсаторы . И в этой статье нам предстоит разобраться, из чего они состоят, как работают и для чего применяются 🙂

Давайте, в первую очередь, рассмотрим устройство конденсаторов , а затем уже плавно перейдем к их основным видам и характеристикам, а также к процессам зарядки/разрядки. Как видите, нам сегодня предстоит изучить много интересных моментов 😉

Итак, простейший конденсатор представляет из себя две плоские проводящие пластины, расположенные параллельно друг другу и разделенные слоем диэлектрика. Причем расстояние между пластинами должно быть намного меньше, чем, собственно, размеры пластин:

Такое устройство называется плоским конденсатором , а пластины – обкладками конденсатора . Стоит уточнить, что здесь мы рассматриваем уже заряженный конденсатор (сам процесс зарядки мы изучим чуть позже), то есть на обкладках сосредоточен определенный заряд. Причем наибольший интерес представляет тот случай, когда заряды пластин конденсатора одинаковы по модулю и противоположны по знаку (как на рисунке).

А поскольку на обкладках сосредоточен заряд, между ними возникает электрическое поле, изображенное стрелками на нашей схеме. Поле плоского конденсатора, в основном, сосредоточено между пластинами, однако, в окружающем пространстве также возникает электрическое поле, которое называют полем рассеяния. Очень часто его влиянием в задачах пренебрегают, но забывать о нем не стоит 🙂

Для определения величины этого поля рассмотрим еще одно схематическое изображение плоского конденсатора:

Каждая из обкладок конденсатора в отдельности создает электрическое поле:

Выражение для напряженности поля равномерно заряженной пластины выглядит следующим образом:

Здесь – это поверхностная плотность заряда: . А – диэлектрическая проницаемость диэлектрика, расположенного между обкладками конденсатора. Поскольку площадь пластин конденсатора у нас одинаковая, как и величина заряда, то и модули напряженности электрического поля, равны между собой:

Но направления векторов разные – внутри конденсатора вектора направлены в одну сторону, а вне – в противоположные. Таким образом, внутри обкладок результирующее поле определяется следующим образом:

А какая же будет величина напряженности вне конденсатора? А все просто – слева и справа от обкладок поля пластин компенсируют друг друга и результирующая напряженность равна 0 🙂

Процессы зарядки и разрядки конденсаторов.

С устройством мы разобрались, теперь разберемся, что произойдет, если подключить к конденсатору источник постоянного тока. На принципиальных электрических схемах конденсатор обозначают следующим образом:

Итак, мы подключили обкладки конденсатора к полюсам источника постоянного тока. Что же будет происходить?

Свободные электроны с первой обкладки конденсатора устремятся к положительному полюсу источника, в связи с чем на обкладке возникнет недостаток отрицательно заряженных частиц и она станет положительно заряженной. В то же время электроны с отрицательного полюса источника тока переместятся ко второй обкладке конденсатора, в результате чего на ней возникнет избыток электронов, соответственно, обкладка станет отрицательно заряженной. Таким образом, на обкладках конденсатора образуются заряды разного знака (как раз этот случай мы и рассматривали в первой части статьи), что приводит к появлению электрического поля, которое создаст между пластинами конденсатора определенную . Процесс зарядки будет продолжаться до тех пор, пока эта разность потенциалов не станет равна напряжению источника тока, после этого процесс зарядки закончится, и перемещение электронов по цепи прекратится.

При отключении от источника конденсатор может на протяжении длительного времени сохранять накопленные заряды. Соответственно, заряженный конденсатор является источником электрической энергии, это означает, что он может отдавать энергию во внешнюю цепь. Давайте создадим простейшую цепь, просто соединив обкладки конденсатора друг с другом:

В данном случае по цепи начнет протекать ток разряда конденсатора , а электроны начнут перемещаться с отрицательно заряженной обкладки к положительной. В результате напряжение на конденсаторе (разность потенциалов между обкладками) начнет уменьшаться. Этот процесс завершится в тот момент, когда заряды пластин конденсаторов станут равны друг другу, соответственно электрическое поле между обкладками пропадет и по цепи перестанет протекать ток. Вот так и происходит разряд конденсатора, в результате которого он отдает во внешнюю цепь всю накопленную энергию.

Как видите, здесь нет ничего сложного 🙂

Емкость и энергия конденсатора.

Важнейшей характеристикой является электрическая емкость конденсатора – физическая величина, которая определяется как отношение заряда конденсатора одного из проводников к разности потенциалов между проводниками:

Емкость изменяется в Фарадах, но величина 1 Ф является довольно большой, поэтому чаще всего емкость конденсаторов измерятся в микрофарадах (мкФ), нанофарадах (нФ) и пикофарадах (пФ).

А поскольку мы уже вывели формулу для расчета напряженности, то давайте выразим напряжение на конденсаторе следующим образом:

Здесь у нас – это расстояние между пластинами конденсатора, а – заряд конденсатора. Подставим эту формулу в выражение для емкости конденсатора:

Если в качестве диэлектрика у нас выступает воздух, то во всех формулах можно подставить

Для запасенной энергии конденсатора справедливы следующие выражения:

Помимо емкости конденсаторы характеризуются еще одним параметром, а именно величиной напряжения, которое может выдержать его диэлектрик. При слишком больших значениях напряжения электроны диэлектрика отрываются от атомов, и диэлектрик начинает проводить ток. Это явление называется пробоем конденсатора, и в результате обкладки оказываются замкнутыми друг с другом. Собственно, характеристикой, которая часто используется при работе с конденсаторами является не напряжение пробоя, а рабочее напряжение – то есть величина напряжения, при которой конденсатор может работать неограниченно долгое время, и пробоя не произойдет.

В общем, мы рассмотрели сегодня основные свойства конденсаторов, их устройство и характеристики, так что на этом заканчиваем статью, а в следующей мы будем обсуждать различные варианты соединений конденсаторов, так что заходите на наш сайт снова!

Большое число конденсаторов, которые применяют в технике, приближены по типу к плоскому конденсатору. Это конденсатор, который представляет собой две параллельные проводящие плоскости (обкладки), которые разделяет небольшой промежуток, заполненный диэлектриком. На обкладках сосредоточены равные по модулю и противоположные по знаку заряды.

Электрическая емкость плоского конденсатора

Электрическая емкость плоского конденсатора очень просто выражается через параметры его частей. Изменяя площадь пластин конденсатора и расстояние между ними легко убедиться, что электрическая емкость плоского конденсатора прямо пропорциональна площади его пластин (S) и обратно пропорциональна расстоянию между ними (d):

Формулу для расчета емкости плоского конденсатора просто получить при помощи теоретических расчетов.

Положим, что расстояние между пластинами конденсатора много меньше, чем их линейные размеры. Тогда краевыми эффектами можно пренебречь, и электрическое поле между обкладками считать однородным. Поле (E), которое создают две бесконечные плоскости, несущие одинаковый по модулю и противоположный по знаку заряд, разделенные диэлектриком с диэлектрической проницаемостью , можно определить при помощи формулы:

где — плотность распределения заряда по поверхности пластины. Разность потенциалов между рассматриваемыми обкладками конденсатора, находящимися на расстоянии d будет равна:

Подставим правую часть выражения (3) вместо разности потенциалов в (1) учитывая, что , имеем:

Энергия поля плоского конденсатора и сила взаимодействия его пластин

Формула энергии поля плоского конденсатора записывается как:

где - объем конденсатора; E - напряженность поля конденсатора. Формула (5) связывает энергию конденсатора с зарядом на его обкладках и напряженностью поля.

Механическую (пондемоторную) силу, с которой пластины плоского конденсатора взаимодействуют между собой можно найти, если использовать формулу:

В выражении (6) минус показывает, что пластины конденсатора притягиваются друг к другу.

Примеры решения задач

ПРИМЕР 1

Задание Чему равно расстояние между пластинами плоского конденсатора, если при разности потенциалов В, заряд на пластине конденсатора равен Кл? Площадь пластин , диэлектриком в нем является слюда ().
Решение Емкость конденсатора вычисляется при помощи формулы:

Из этого выражения получим расстояние между пластинами:

Емкость любого конденсатора определяет формула:

где U - разность потенциалов между обкладками конденсатора. Подставим правую часть выражения (1.3) вместо емкости в формулу (1.2), имеем:

Вычислим расстояние между обкладками ():

Ответ м

ПРИМЕР 2

Задание Разность потенциалов между пластинами плоского воздушного конденсатора равна В. Площадь пластин равна , расстояние между ними м. Какова энергия конденсатора и чему она будет равна, если пластины раздвинуть до расстояния м. Учтите, что источник напряжения при раздвижении пластин не отключают.
Решение Сделаем рисунок.


Энергию электрического поля конденсатора можно найти при помощи выражения:

Так как конденсатор плоский, то его электрическую емкость можно вычислить как:

Рассмотрим теперь энергию, требуемую на то, чтоб зарядить конденсатор. Если заряд Q был снят с одной обкладки конденсатора и перенесен на другую, то между обкладками возникает разность потенциалов, равная

где С — емкость конденсатора. Сколько работы затрачено на зарядку конденсатора? Поступая точно так же, как мы поступали с шаром, вообразим, что конденсатор уже заряжен переносом заряда с одной обкладки на другую маленькими порциями dQ. Работа, требуемая для переноса заряда dQ, равна

Взяв V из (8.8), напишем

Или, интегрируя от Q = 0 до конечного заряда Q, получаем

Эту энергию можно также записать в виде

Вспоминая, что емкость проводящей сферы (по отношению к бесконечности) равна

мы немедленно получим из уравнения (8.9) энергию заряженной сферы

Это выражение, конечно, относится также и к энергии тонкого сферического слоя с полным зарядом Q; получается 5 / 6 энергии однородно заряженного шара [уравнение (8.7)].

Посмотрим, как применяется понятие электростатической энергии. Рассмотрим два вопроса. Какова сила, действующая между обкладками конденсатора? Какой вращательный (крутящий) момент вокруг некоторой оси испытывает заряженный проводник в присутствии другого проводника с противоположным зарядом? На такие вопросы легко ответить, пользуясь нашим выражением (8.9) для электростатической энергии конденсатора и принципом виртуальной работы (см. вып. 1, гл. 4, 13 и 14).

Применим этот метод для определения силы, действующей между двумя обкладками плоского конденсатора. Если мы представим, что промежуток между пластинами расширился на небольшую величину Δz, то тогда механическая работа, производимая извне для того, чтобы раздвинуть обкладки, была бы равна

где F — сила, действующая между обкладками. Эта работа обязана быть равной изменению электростатической энергии конденсатора, если только заряд конденсатора не изменился.

Согласно уравнению (8.9), энергия конденсатора первоначально была равна

Изменение в энергии (если мы не допускаем изменения величины заряда) тогда равно

Приравнивая (8.12) и (8.13), получаем

что может также быть записано в виде

Ясно, эта сила здесь возникает от притяжения зарядов на обкладках; мы видим, однако,что заботиться о том, как там они распределены, нам нечего; единственное, что нам нужно,— это учесть емкость С.

Легко понять, как обобщить эту идею на проводники произвольной формы и на прочие составляющие силы. Заменим в уравнении (8.14) F той составляющей, которая нас интересует, а Δz — малым смещением в соответствующем направлении. Или если у нас есть электрод, насаженный на какую-то ось, и мы хотим знать вращательный момент τ, то запишем виртуальную работу в виде

где Δθ — небольшой угловой поворот. Конечно, теперь Δ(1/С) должно быть изменением 1/С, отвечающим повороту на Δθ. Таким способом мы можем определить вращательный момент, действующий на подвижные пластины переменного конденсатора, показанного на фиг. 8.3.

Вернемся к частному случаю плоского конденсатора; мы можем взять формулу для емкости, выведенную в гл. 6:

где А — площадь каждой обкладки. Если промежуток увеличится на Δz , то

Из (8.14) тогда следует, что сила притяжения между двумя обкладками равна

Взглянем на уравнение (8.17) повнимательнее и подумаем, нельзя ли сказать, как возникает эта сила. Если заряд на одной из обкладок мы запишем в виде

то (8.17) можно будет переписать так:

поскольку поле между пластинами равно

Можно было сразу догадаться, что сила, действующая на одну из пластин, будет равна заряду Q этой пластины, умноженному на поле, действующее на заряд. Но что удивляет, так это множитель 1 / 2 . Дело в том, что Е 0 —это не то поле, которое действует на заряды. Если вообразить, что заряд на поверхности пластины занимает какой-то тонкий слой (фиг. 8.4), то поле будет меняться от нуля на внутренней границе слоя до Е 0 в пространстве снаружи пластин. Среднее поле, действующее на поверхностные заряды, равно E 0 / 2. Вот отчего в (8.18) стоит множитель 1 / 2 .

Вы должны обратить внимание на то, что, рассчитывая виртуальную работу, мы предположили, что заряд конденсатора постоянен, что конденсатор не был электрически связан с другими предметами и полный заряд не мог изменяться.

А теперь пусть мы предположили, что при виртуальных перемещениях конденсатор поддерживается при постоянной разности потенциалов. Тогда мы должны были бы взять

и вместо (8.15) мы бы имели

что приводит к силе, равной по величине той, что была получена в уравнении (8.15) (так как V= Q / C ), но с противоположным знаком!

Конечно, сила, действующая между пластинами конденсатора, не меняет свой знак, когда мы отсоединяем конденсатор от источника электричества. Кроме того, мы знаем, что две пластины с разноименными электрическими зарядами должны притягиваться. Принцип виртуальной работы во втором случае был применен неправильно, мы не приняли во внимание виртуальную работу, производимую источником, заряжающим конденсатор. Это значит, что для того, чтобы удержать потенциал при постоянном значении V, когда меняется емкость, источник электричества должен снабдить конденсатор зарядом VΔC . Но этот заряд поступает при потенциале V , так что работа, выполняемая электрической системой, удерживающей заряд постоянным, равна V 2 ΔC. Механическая работа FΔz плюс эта электрическая работа V 2 ΔC вместе приводят к изменению полной энергии конденсатора на 1 / 2 V 2 ΔC . Поэтому на механическую работу, как и прежде, приходится FΔz = - 1 / 2 V 2 ΔC.

Обкладки конденсатора, заряженные разноимённо, притягиваются друг к другу.

Механические силы, действующие на макроскопические заряженные тела, называют пондеромоторными .

Рассчитаем пондеромоторные силы, действующие на обкладки плоского конденсатора. При этом возможны два варианта:

    Конденсатор заряжен и отключён от заряженной батареи (в этом случае количество зарядов на пластинах остаётся постоянным q = const ).

При удалении одной обкладки конденсатора от другой совершается работа

за счёт которой увеличивается потенциальная энергия системы:

При этом dA = dW . Приравнивая правые части этих выражений, получаем

(12.67)

В данном случае при дифференцировании расстояние между пластинами обозначилось х.

    Конденсатор заряжен, но не отключён от батареи (в этом случае при перемещении одной из пластин конденсатора будет сохраняться постоянным напряжение (U = const ). В этом случае при удалении одной пластины от другой потенциальная энергия поля конденсатора уменьшается, так как происходит «утечка» зарядов с пластин, поэтому

Но
, тогда

Полученное выражение совпадает с формулой
. Оно может быть представлено и в другом виде, если вместо зарядаq ввести поверхностную плотность:

(12.68)

Поле однородно. Напряжённость поля конденсатора равна
, где х – расстояние между пластинами. Подставив в формулу
U 2 =E 2 x 2 , получим, что сила притяжения пластин плоского конденсатора

(12.69)

Эти силы действуют не только на пластины. Так как пластины, в свою очередь, давят на диэлектрик, помещённый между ними, и деформируют его, то в диэлектрике возникает давление

(S - площадь каждой пластины).

Давление, возникающее в диэлектрике, равно

(12.70)

Примеры решения задач

Пример 12. 5. К пластинам плоского воздушного конденсатора приложена разность потенциалов 1,5 кВ. Площадь пластин 150см 2 и расстояние между ними 5 мм. После отключения конденсатора от источника напряжения в пространство между пластинами вставили стекло (ε 2 =7).Определите:

1) разность потенциалов между пластинами после внесения диэлектрика; 2) ёмкость конденсатора до и после внесения диэлектрика; 3) поверхностную плотность заряда на пластинах до и после внесения диэлектрика.

Дано : U 1 =1,5кВ=1,5∙10 3 В; S=150см 2 =1,5∙10 -2 м 2 ; ε 1 =1; d=5мм=5∙10 -3 м.

Найти: 1) U 2 ; 2) С 1 С 2 ; 3) σ 1 , σ 2

Решение . Так как
(σ- поверхностная плотность зарядов на обкладках конденсатора), то до внесения диэлектрика σd=U 1 ε 0 ε 1 и после внесения диэлектрика σd=U 2 ε 0 ε 2 , поэтому

Ёмкость конденсатора до и после внесения диэлектрика

и

Заряд пластин после отключения от источника напряжения не меняется, т.е. q=const. Поэтому Поверхностная плотность заряда на пластинах до и после внесения диэлектрика

Ответ: 1) U 2 =214В; 2) С 1 =26,5пФ; С 2 =186пФ; 3) σ 1 = σ 2 =2.65 мкКл/м 2 .

Пример 12.7. Зазор между обкладками плоского конденсатора заполнен анизотропным диэлектриком, проницаемость ε которого изменяется в перпендикулярном к обкладкам направлении по линейному закону ε = α + βх от ε 1 до ε 2 , причём ε 2 > ε 1 . Площадь каждой обкладки S , расстояние между ними d . Найти ёмкость конденсатора.

Дано : S; d; ε 1 ; ε 2

Найти: С.

Решение . Диэлектрическая проницаемостьε изменяется по линейному закону, ε = α + βх, где х отсчитывается от обкладки, у которой проницаемость равна ε 1 . Учитывая, что ε (0) = ε 1 , ε (d) = ε 2 , получаем зависимость
. Найдём разность потенциалов между обкладками:

Ёмкость конденсатора будет равна

Ответ:

Пример 12.7. Между пластинами плоского конденсатора, заряженного до разности потенциалов U , параллельно его обкладкам помещены два слоя диэлектриков. Толщина слоёв и диэлектрическая проницаемость диэлектриков соответственно равны d 1 , d 2 , ε 1 , ε 2 . Определите напряжённость электростатических полей в слоях диэлектриков.

Дано : U ; d 1 , d 2 , ε 1 , ε 2

Найти: E 1 , E 2 .

Решение . Напряжение на пластинах конденсатора, учитывая, что поле в пределах каждого из диэлектрических слоёв однородно,

U=E 1 d 1 +E 2 d 2 . (1)

Электрическое смещение в обоих слоях диэлектрика одинаково, поэтому можем записать

D=D 1 =D 2 = ε 0 ε 1 E 1 = ε 0 ε 2 E 2 (2)

Из выражения (1) и (2) найдём искомое

(3)

Из формулы (2) следует, что

Ответ:
;

Пример 12.7. Площадь пластин S плоского конденсатора равна 100см 2 . Пространство между пластинами заполнено вплотную двумя слоями диэлектриков – слюдяной пластинкой (ε 1 =7) толщиной d 1 =3,5 мм и парафина (ε 2 =2) толщиной d 2 =5 мм. Определите ёмкость этого конденсатора..

Дано : S =100см 2 =10 -2 м 2 ; ε 1 =7; d 1 =3,5мм=3.5∙10 -3 м;, ε 1 =2; d 1 =3,5мм=5∙10 -3 м;

Найти: С.

Решение . Ёмкость конденсатора

где = - заряд на пластинах конденсатора (- поверхностная плотность заряда на пластинах); =- разность потенциалов пластин, равная сумме напряжений на слоях диэлектрика: U=U 1 +U 2 . Тогда

(1)

Напряжения U 1 и U 2 найдём по формулам

;
(2)

где Е 1 и Е 2 – напряжённость электростатического поля в первом и втором слоях диэлектрика; D - электрическое смещение в диэлектриках (в обоих случаях одинаково). Приняв во внимание, что

И учитывая формулу (2), из выражения (1) найдём искомую ёмкость конденсатора

Ответ: С=29,5пФ.

Пример 12.7. Батарея из трёх последовательно соединённых конденсаторов С 1 =1мкФ; С 2 =2мкФ и С 3 =4мкФ подсоединены к источнику ЭДС. Заряд батареи конденсаторов q =40мкКл. Определите: 1) напряжения U 1 , U 2 и U 3 на каждом конденсаторе; 2) ЭДС источника; 3) ёмкость батареи конденсаторов.

Дано : С 1 =1мкФ=1∙10 -6 Ф; С 2 =2мкФ=2∙10 -6 Ф и С 3 =4мкФ=4∙10 -6 Ф;q=40мкКл=40∙10 -6 Ф.

Найти: 1) U 1 , U 2 , U 3 ; 2) ξ; 3) С.

Решение . При последовательном соединении конденсаторов заряды всех обкладок равны по модулю, поэтому

q 1 =q 2 =q 3 =q.

Напряжение на конденсаторах



ЭДС источника равна сумме напряжений каждого из последовательно соединённых конденсаторов:

ξ = U 1 + U 2 +U 3

При последовательном соединении суммируются величины, обратные ёмкостям каждого из конденсаторов:

Откуда искомая ёмкость батареи конденсаторов

Ответ: 1) U 1 = 40В; U 2 = 20В, U 3 = 10В; 2) Ɛ= 70В; 3) С= 0,571мкФ.

Пример 12.7. Два плоских воздушных конденсатора одинаковой ёмкости соединены последовательно и подключены к источнику ЭДС. Как и во сколько раз изменится заряд конденсаторов, если один из них погрузить в масло с диэлектрической проницаемостью ε=2,2 .

Дано : С 1 =С 2 = С;q=40мкКл=40∙10 -6 Ф; ε 1 =1; ε 2 =2,2.

Найти: .

Решение . При последовательном соединении конденсаторов заряды обоих конденсаторов равны по модулю. До погружения в диэлектрик (в масло) заряд каждого конденсатора

где ξ = U 1 + U 2 (при последовательном соединении конденсаторов ЭДС источника равна сумме напряжений каждого из конденсаторов).

После погружения одного из конденсаторов в диэлектрик заряды конденсаторов опять одинаковы и соответственно на первом и втором конденсаторах равны

q= CU 1 =ε 2 CU 2

(учли, что ε 1 =1), откуда, если учесть, что ξ = U 1 + U 2 , найдём

(2)

Поделив (2) на (1), найдём искомое отношение

Ответ:
, т.е. заряд конденсаторов возрастает в 1,37 раз.

Пример 12.7. Конденсаторы ёмкостями С каждый соединены так, как указано на рис.а. определите ёмкость С общ этого соединения конденсаторов. .

Решение . Если отключить от цепи конденсатор С 4 , то получится соединение конденсаторов, которое легко рассчитывается. Поскольку ёмкости всех конденсаторов одинаковы (С 2 =С 3 и С 5 =С 6), обе параллельные ветви симметричны, поэтому потенциалы точек А и В, одинаково расположенные в ветвях, должны быть равны. Конденсатор С 4 подключен, таким образом, к точкам с нулевой разностью потенциалов. Следовательно, конденсатор С 4 не заряжен, т.е. его можно исключить и схему, представленную в условии задачи, упростить (рис.б).

Эта схема- из трёх параллельных ветвей, две из которых содержат по два последовательно включённых конденсаторов

Ответ: С общ =2С.

Пример 12.7. Плоский воздушный конденсатор ёмкостью С 1 =4пФ заряжен до разности потенциалов U 1 =100В. После отключения конденсатора от источника напряжения расстояние между обкладками конденсатора увеличили в два раза. Определите: 1) разность потенциалов U 2 на обкладках конденсатора после их раздвижения; 2) работу внешних сил по раздвижению пластин.

Дано : С 1 =4пФ=4∙10 -12 Ф; U 1 =100В;d 2 =2d 1 .

Найти: 1) U 2 ;2)A.

Решение . Заряд обкладок конденсатора после отключения от источника напряжения не меняется, т.е. Q=const. Поэтому

С 1 U 1 = С 2 U 2 , (1)

где С 2 и U 2 - соответственно ёмкость и разность потенциалов на обкладках конденсатора после их раздвижения.

Учитывая, что ёмкость плоского конденсатора
, из формулы (1) получим искомую разность потенциалов

(2)

После отключения конденсатора от источника напряжения систему двух заряженных обкладок можно рассматривать как замкнутую, для которой выполняется закон сохранения энергии: работа А внешних сил равна изменению энергии системы

А= W 2 - W 1 (3)

где W 1 и W 2 – соответственно энергия поля конденсатора в начальном и конечном состояниях.

Учитывая, что
и
(q – const), из формулы (3) получим искомую работу внешних сил

[учли, что q=C 1 U 1 и формулу (2)].

Ответ : 1) U 2 =200В;2)A=40нДж.

Пример 12.7. Сплошной шар из диэлектрика радиусом R =5см заряжен равномерно с объёмной плотностью ρ=5нКл/м 3 . Определите энергию электростатического поля, заключённую в окружающем шар пространстве.

Дано : R=5см=5∙10 -2 м; ρ=5нКл/м 3 = 5∙10 -9 Кл/м 3 .

Найти: W.

Решение . Поле заряженного шара сферически симметрично, поэтому объёмная плотность заряда одинакова во всех точках, расположенных на равных расстояниях от центра шара.

Энергия в элементарном сферическом слое (он выбран за пределами диэлектрика, где следует определить энергию) объёмомdV (см. рисунок)

где dV=4πr 2 dr (r – радиус элементарного сферического слоя; dr - его толщина);
(ε=1 – поле в вакууме; Е – напряженность электростатического поля).

Напряжённость Е найдём по теореме Гаусса для поля в вакууме, причём в качестве замкнутой поверхности мысленно выберем сферу радиусом r (см. рисунок). В данном случае внутрь поверхности попадает весь заряд шара, создающий рассматриваемое поле, и, по теореме Гаусса,

Откуда

Подставив найденные выражения в формулу (1), получим

Энергия, заключённая в окружающем шар пространстве,

Ответ : W=6,16∙10 -13 Дж.

Пример 12.7. Плоскому конденсатору с площадью обкладок S и расстоянием между ними ℓ сообщён заряд q , после чего конденсатор отключён от источника напряжения. Определите силу притяжения F между обкладками конденсатора, если диэлектрическая проницаемость среды между обкладками равна ε.

Дано : S; ℓ; q ; ε .

Найти: F.

Решение . Заряд обкладок конденсатора после отключения от источника напряжения не меняется, т.е. q=const. Предположим, что под действием силы притяжения F расстояние между обкладками конденсатора изменилось на d. Тогда сила F совершает работу

Согласно закону сохранения энергии, эта работа равна убыли энергии конденсатора, т.е.

. (3)

Подставив в формулу для энергии заряженного конденсатора
выражение для ёмкости плоского конденсатора
, получим

(4)

Ответ:

Пример 12.7. Плоский конденсатор площадью обкладок S и расстоянием между ними ℓ подключен к источнику постоянного напряжения U . Определите силу притяжения F между обкладками конденсатора, если диэлектрическая проницаемость среды между обкладками равна ε.

Дано : S; ℓ; U ; ε .

Найти: F.

Решение . Согласно условию задачи, на обкладках конденсатора поддерживается постоянное напряжение, т.е. U=const. Предположим, что под действием силы притяжения F расстояние между обкладками конденсатора изменилось на dℓ. Тогда сила F совершает работу

Согласно закону сохранения энергии, эта работа в данном случае идёт на увеличение энергии конденсатора (сравните с предыдущей задачей), т.е.

откуда, исходя из выражений (1) и (2), получим

(3)

Подставив в формулу для энергии конденсатора
выражение для ёмкости плоского конденсатора
, получим

(4)

Подставив в формулу (3) значение энергии (4) и выполнив дифференцирование, найдём искомую силу притяжения между обкладками конденсатора

.

где знак «-» указывает на то, что сила F является силой притяжения.

Ответ :

Содержание:

Одним из важных элементов электрической цепи является конденсатор, формулы для которого позволяют рассчитать и подобрать наиболее подходящий вариант. Основная функция данного устройства заключается в накоплении определенного количества электроэнергии. Простейшая система включает в себя два электрода или обкладки, разделенные между собой диэлектриком.

В чем измеряется емкость конденсатора

Одной из важнейших характеристик конденсатора является его емкость. Данный параметр определяется количеством электроэнергии, накапливаемой этим прибором. Накопление происходит в виде электронов. Их количество, помещающееся в конденсаторе, определяет величину емкости конкретного устройства.

Для измерения емкости применяется единица - фарада. Емкость конденсатора в 1 фараду соответствует электрическому заряду в 1 кулон, а на обкладках разность потенциалов равна 1 вольту. Эта классическая формулировка не подходит для практических расчетов, поскольку в конденсаторе собираются не заряды, а электроны. Емкость любого конденсатора находится в прямой зависимости от объема электронов, способных накапливаться при нормальном рабочем режиме. Для обозначения емкости все равно используется фарада, а количественные параметры определяются по формуле: С = Q / U, где С означает емкость, Q - заряд в кулонах, а U является напряжением. Таким образом, просматривается взаимная связь заряда и напряжения, оказывающих влияние на способность конденсатора к накоплению и удержанию определенного количества электричества.

Для расчетов используется формула:
в которой ε 0 = 8,854187817 х 10 -12 ф/м представляет собой постоянную величину. Прочие величины: ε - является диэлектрической проницаемостью диэлектрика, находящегося между обкладками, S - означает площадь обкладки, а d - зазор между обкладками.

Формула энергии конденсатора

С емкостью самым тесным образом связана другая величина, известная как . После зарядки любого конденсатора, в нем образуется определенное количество энергии, которое в дальнейшем выделяется в процессе разрядки. С этой потенциальной энергией вступают во взаимодействие обкладки конденсатора. В них образуются разноименные заряды, притягивающиеся друг к другу.

В процессе зарядки происходит расходование энергии внешнего источника для разделения зарядов с положительным и отрицательным значением, которые, затем располагаются на обкладках конденсатора. Поэтому в соответствии с законом сохранения энергии, она не исчезает бесследно, а остается внутри конденсатора в виде электрического поля, сосредоточенного между пластинами. Разноименные заряды образуют взаимодействие и последующее притяжение обкладок между собой.

Каждая пластина конденсатора под действием заряда создает напряженность электрического поля, равную Е/2. Общее поле будет складываться из обоих полей, возникающих в каждой обкладке с одинаковыми зарядами, имеющими противоположные значения.

Таким образом, энергия конденсатора выражается формулой: W=q(E/2)d. В свою очередь, напряжение выражается с помощью понятий напряженности и расстояния и представляется в виде формулы U=Ed. Это значение, подставленное в первую формулу, отображает энергию конденсатора в таком виде:W=qU/2. Для получения окончательного результата необходимо использовать определение емкости: C=q/U, и в конце концов энергия заряженного конденсатора будет выглядеть следующим образом: W эл = CU 2 /2.

Формула заряда конденсатора

Для выполнения зарядки, конденсатор должен быть подключен к цепи постоянного тока. С этой целью может использоваться генератор. У каждого генератора имеется внутреннее сопротивление. При замыкании цепи происходит зарядка конденсатора. Между его обкладками появляется напряжение, равное электродвижущей силе генератора: U c = E.

Обкладка, подключенная к положительному полюсу генератора, заряжается положительно (+q), а другая обкладка получает равнозначный заряд с отрицательной величиной (- q). Величина заряда q находится в прямой пропорциональной зависимости с емкостью конденсатора С и напряжением на обкладках Uc. Эта зависимость выражается формулой: q = C x Uc.

В процессе зарядки одна из обкладок конденсатора приобретает, а другая теряет определенное количество электронов. Они переносятся по внешней цепи под влиянием электродвижущей силы генератора. Такое перемещение является электрическим током, известным еще как зарядный емкостной ток (Iзар).

Течение зарядного тока в цепи происходит практически за тысячные доли секунды, до того момента, пока напряжение конденсатора не станет равным электродвижущей силе генератора. Напряжение увеличивается плавно, а потом постепенно замедляется. Далее значение напряжения конденсатора будет постоянным. Во время зарядки по цепи течет зарядный ток. В самом начале он достигает максимальной величины, так как напряжение конденсатора имеет нулевое значение. Согласно закона Ома I зар = Е/R i , поскольку к сопротивлению Ri приложена вся ЭДС генератора.

Формула тока утечки конденсатора

Ток утечки конденсатора вполне можно сравнить с воздействием подключенного к нему резистора с каким-либо сопротивлением R. Ток утечки тесно связан с типом конденсатора и качеством используемого диэлектрика. Кроме того, важным фактором становится конструкция корпуса и степень его загрязненности.

Некоторые конденсаторы имеют негерметичный корпус, что приводит к проникновению влаги из воздуха и возрастанию тока утечки. В первую очередь это касается устройств, где в качестве диэлектрика использована промасленная бумага. Значительные токи утечки возникают из-за снижения электрического сопротивления изоляции. В результате нарушается основная функция конденсатора - способность получать и сохранять заряд электрического тока.

Основная формула для расчета выглядит следующим образом: I ут = U/R d , где I ут, - это ток утечки, U - напряжение, прилагаемое к конденсатору, а R d - сопротивление изоляции.