Стандартный регрессионный анализ в STATISTICA. Парная линейная регрессия: Статистический анализ модели

В своих работах, датированных ещё 1908 годом. Он описал его на примере работы агента, осуществляющего продажу недвижимости. В своих записях специалист по торговле домами вёл учёт широкого спектра исходных данных каждого конкретного строения. По результатам торгов определялось, какой фактор имел наибольшее влияние на цену сделки.

Анализ большого количества сделок дал интересные результаты. На конечную стоимость оказывали влияние множество факторов, иногда приводя к парадоксальным выводам и даже к явным «выбросам», когда дом с высоким изначальным потенциалом продавался по заниженному ценовому показателю.

Вторым примером применения подобного анализа приведена работа которому было доверено определение вознаграждения сотрудникам. Сложность задачи заключалась в том, что требовалась не раздача фиксированной суммы каждому, а строгое соответствие её величины конкретно выполненной работе. Появление множества задач, имеющих практически сходный вариант решения, потребовало более детального их изучения на математическом уровне.

В существенное место было отведено под раздел «регрессионный анализ», в нём объединились практические методы, используемые для исследования зависимостей, подпадающих под понятие регрессионных. Эти взаимосвязи наблюдаются между данными, полученными в ходе статистических исследований.

Среди множества решаемых задач основными ставит перед собой три цели: определение для уравнения регрессии общего вида; построение оценок параметров, являющихся неизвестными, которые входят в состав уравнения регрессии; проверка статистических регрессионных гипотез. В ходе изучения связи, возникающей между парой величин, полученных в результате экспериментальных наблюдений и составляющих ряд (множество) типа (x1, y1), ..., (xn, yn), опираются на положения теории регрессии и предполагают, что для одной величины Y наблюдается определённое вероятностное распределение, при том, что другое X остаётся фиксированным.

Результат Y зависит от значения переменной X, зависимость эта может определяться различными закономерностями, при этом на точность полученных результатов оказывает влияние характер наблюдений и цель анализа. Экспериментальная модель основывается на определённых допущениях, которые являются упрощёнными, но правдоподобными. Основным условием является то, что параметр X является величиной контролируемой. Его значения задаются до начала эксперимента.

Если в ходе эксперимента используется пара неконтролируемых величин XY, то регрессионный анализ осуществляется одним и тем же способом, но для интерпретации результатов, в ходе которой изучается связь исследуемых случайных величин, применяются методы Методы математической статистики не являются отвлеченной темой. Они находят себе применение в жизни в самых различных сферах деятельности человека.

В научной литературе для определения выше указанного метода нашёл широкое использование термин линейный регрессионный анализ. Для переменной X применяют термин регрессор или предиктор, а зависимые Y-переменные ещё называют критериальными. В данной терминологии отражается лишь математическая зависимость переменных, но никак не следственно-причинные отношения.

Регрессионный анализ служит наиболее распространённым методом, который используется в ходе обработки результатов самых различных наблюдений. Физические и биологические зависимости изучаются по средствам данного метода, он реализован и в экономике, и в технике. Масса других областей используют модели регрессионного анализа. Дисперсионный анализ, статистический анализ многомерный тесно сотрудничают с данным способом изучения.

Основная цель регрессионного анализа состоит в определении аналитической формы связи, в которой изменение результативного признака обусловлено влиянием одного или нескольких факторных признаков, а множество всех прочих факторов, также оказывающих влияние на результативный признак, принимается за постоянные и средние значения.
Задачи регрессионного анализа :
а) Установление формы зависимости. Относительно характера и формы зависимости между явлениями, различают положительную линейную и нелинейную и отрицательную линейную и нелинейную регрессию.
б) Определение функции регрессии в виде математического уравнения того или иного типа и установление влияния объясняющих переменных на зависимую переменную.
в) Оценка неизвестных значений зависимой переменной. С помощью функции регрессии можно воспроизвести значения зависимой переменной внутри интервала заданных значений объясняющих переменных (т. е. решить задачу интерполяции) или оценить течение процесса вне заданного интервала (т. е. решить задачу экстраполяции). Результат представляет собой оценку значения зависимой переменной.

Парная регрессия - уравнение связи двух переменных у и х: , где y - зависимая переменная (результативный признак); x - независимая, объясняющая переменная (признак-фактор).

Различают линейные и нелинейные регрессии.
Линейная регрессия: y = a + bx + ε
Нелинейные регрессии делятся на два класса: регрессии, нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам, и регрессии, нелинейные по оцениваемым параметрам.
Регрессии, нелинейные по объясняющим переменным:

Регрессии, нелинейные по оцениваемым параметрам: Построение уравнения регрессии сводится к оценке ее параметров. Для оценки параметров регрессий, линейных по параметрам, Используют метод наименьших квадратов (МНК). МНК позволяет получить такие оценки параметров, при которых сумма квадратов отклонений фактических значений результативного признака у от теоретических минимальна, т.е.
.
Для линейных и нелинейных уравнений, приводимых к линейным, решается следующая система относительно a и b:

Можно воспользоваться готовыми формулами, которые вытекают из этой системы:

Тесноту связи изучаемых явлений оценивает линейный коэффициент парной корреляции для линейной регрессии :

и индекс корреляции - для нелинейной регрессии:

Оценку качества построенной модели даст коэффициент (индекс) детерминации, а также средняя ошибка аппроксимации .
Средняя ошибка аппроксимации - среднее отклонение расчетных значений от фактических:
.
Допустимый предел значений - не более 8-10%.
Средний коэффициент эластичности показывает, на сколько процентов в среднем по совокупности изменится результат у от своей средней величины при изменении фактора x на 1% от своего среднего значения:
.

Задача дисперсионного анализа состоит в анализе дисперсии зависимой переменной:
,
где - общая сумма квадратов отклонений;
- сумма квадратов отклонений, обусловленная регрессией («объясненная» или «факторная»);
- остаточная сумма квадратов отклонений.
Долю дисперсии, объясняемую регрессией, в общей дисперсии результативного признака у характеризует коэффициент (индекс) детерминации R 2:

Коэффициент детерминации - квадрат коэффициента или индекса корреляции.

F-тест - оценивание качества уравнения регрессии - состоит в проверке гипотезы Но о статистической незначимости уравнения регрессии и показателя тесноты связи. Для этого выполняется сравнение фактического F факт и критического (табличного) F табл значений F-критерия Фишера. F факт определяется из соотношения значений факторной и остаточной дисперсий, рассчитанных на одну степень свободы:
,
где n - число единиц совокупности; m - число параметров при переменных х.
F табл - это максимально возможное значение критерия под влиянием случайных факторов при данных степенях свободы и уровне значимости a. Уровень значимости a - вероятность отвергнуть правильную гипотезу при условии, что она верна. Обычно a принимается равной 0,05 или 0,01.
Если F табл < F факт, то Н о - гипотеза о случайной природе оцениваемых характеристик отклоняется и признается их статистическая значимость и надежность. Если F табл > F факт, то гипотеза Н о не отклоняется и признается статистическая незначимость, ненадежность уравнения регрессии.
Для оценки статистической значимости коэффициентов регрессии и корреляции рассчитываются t-критерий Стьюдента и доверительные интервалы каждого из показателей. Выдвигается гипотеза Н о о случайной природе показателей, т.е. о незначимом их отличии от нуля. Оценка значимости коэффициентов регрессии и корреляции с помощью t-критерия Стьюдента проводится путем сопоставления их значений с величиной случайной ошибки:
; ; .
Случайные ошибки параметров линейной регрессии и коэффициента корреляции определяются по формулам:



Сравнивая фактическое и критическое (табличное) значения t-статистики - t табл и t факт - принимаем или отвергаем гипотезу Н о.
Связь между F-критерием Фишера и t-статистикой Стьюдента выражается равенством

Если t табл < t факт то H o отклоняется, т.е. a, b и не случайно отличаются от нуля и сформировались под влиянием систематически действующего фактора х. Если t табл > t факт то гипотеза Н о не отклоняется и признается случайная природа формирования а, b или .
Для расчета доверительного интервала определяем предельную ошибку D для каждого показателя:
, .
Формулы для расчета доверительных интервалов имеют следующий вид:
; ;
; ;
Если в границы доверительного интервала попадает ноль, т.е. нижняя граница отрицательна, а верхняя положительна, то оцениваемый параметр принимается нулевым, так как он не может одновременно принимать и положительное, и отрицательное значения.
Прогнозное значение определяется путем подстановки в уравнение регрессии соответствующего (прогнозного) значения . Вычисляется средняя стандартная ошибка прогноза :
,
где
и строится доверительный интервал прогноза:
; ;
где .

Пример решения

Задача №1 . По семи территориям Уральского района За 199Х г. известны значения двух признаков.
Таблица 1.
Требуется: 1. Для характеристики зависимости у от х рассчитать параметры следующих функций:
а) линейной;
б) степенной (предварительно нужно произвести процедуру линеаризации переменных, путем логарифмирования обеих частей);
в) показательной;
г) равносторонней гиперболы (так же нужно придумать как предварительно линеаризовать данную модель).
2. Оценить каждую модель через среднюю ошибку аппроксимации и F-критерий Фишера.

Решение (Вариант №1)

Для расчета параметров a и b линейной регрессии (расчет можно проводить с помощью калькулятора).
решаем систему нормальных уравнений относительно а и b:
По исходным данным рассчитываем :
y x yx x 2 y 2 A i
l 68,8 45,1 3102,88 2034,01 4733,44 61,3 7,5 10,9
2 61,2 59,0 3610,80 3481,00 3745,44 56,5 4,7 7,7
3 59,9 57,2 3426,28 3271,84 3588,01 57,1 2,8 4,7
4 56,7 61,8 3504,06 3819,24 3214,89 55,5 1,2 2,1
5 55,0 58,8 3234,00 3457,44 3025,00 56,5 -1,5 2,7
6 54,3 47,2 2562,96 2227,84 2948,49 60,5 -6,2 11,4
7 49,3 55,2 2721,36 3047,04 2430,49 57,8 -8,5 17,2
Итого 405,2 384,3 22162,34 21338,41 23685,76 405,2 0,0 56,7
Ср. знач. (Итого/n) 57,89 54,90 3166,05 3048,34 3383,68 X X 8,1
s 5,74 5,86 X X X X X X
s 2 32,92 34,34 X X X X X X


Уравнение регрессии: у = 76,88 - 0,35х. С увеличением среднедневной заработной платы на 1 руб. доля расходов на покупку продовольственных товаров снижается в среднем на 0,35 %-ных пункта.
Рассчитаем линейный коэффициент парной корреляции:

Связь умеренная, обратная.
Определим коэффициент детерминации:

Вариация результата на 12,7% объясняется вариацией фактора х. Подставляя в уравнение регрессии фактические значения х, определим теоретические (расчетные) значения . Найдем величину средней ошибки аппроксимации :

В среднем расчетные значения отклоняются от фактических на 8,1%.
Рассчитаем F-критерий:

поскольку 1< F < ¥ , следует рассмотреть F -1 .
Полученное значение указывает на необходимость принять гипотезу Но о случайной природе выявленной зависимости и статистической незначимости параметров уравнения и показателя тесноты связи.
1б. Построению степенной модели предшествует процедура линеаризации переменных. В примере линеаризация производится путем логарифмирования обеих частей уравнения:


где Y=lg(y), X=lg(x), C=lg(a).

Для расчетов используем данные табл. 1.3.

Таблица 1.3

Y X YX Y 2 X 2 A i
1 1,8376 1,6542 3,0398 3,3768 2,7364 61,0 7,8 60,8 11,3
2 1,7868 1,7709 3,1642 3,1927 3,1361 56,3 4,9 24,0 8,0
3 1,7774 1,7574 3,1236 3,1592 3,0885 56,8 3,1 9,6 5,2
4 1,7536 1,7910 3,1407 3,0751 3,2077 55,5 1,2 1,4 2,1
5 1,7404 1,7694 3,0795 3,0290 3,1308 56,3 -1,3 1,7 2,4
6 1,7348 1,6739 2,9039 3,0095 2,8019 60,2 -5,9 34,8 10,9
7 1,6928 1,7419 2,9487 2,8656 3,0342 57,4 -8,1 65,6 16,4
Итого 12,3234 12,1587 21,4003 21,7078 21,1355 403,5 1,7 197,9 56,3
Среднее значение 1,7605 1,7370 3,0572 3,1011 3,0194 X X 28,27 8,0
σ 0,0425 0,0484 X X X X X X X
σ 2 0,0018 0,0023 X X X X X X X

Рассчитаем С иb:


Получим линейное уравнение:.
Выполнив его потенцирование, получим:

Подставляя в данное уравнение фактические значения х, получаем теоретические значения результата. По ним рассчитаем показатели: тесноты связи - индекс корреляции и среднюю ошибку аппроксимации

Характеристики степенной модели указывают, что она несколько лучше линейной функции описывает взаимосвязь.

. Построению уравнения показательной кривой

предшествует процедура линеаризации переменных при логарифмировании обеих частей уравнения:

Для расчетов используем данные таблицы.

Y x Yx Y 2 x 2 A i
1 1,8376 45,1 82,8758 3,3768 2034,01 60,7 8,1 65,61 11,8
2 1,7868 59,0 105,4212 3,1927 3481,00 56,4 4,8 23,04 7,8
3 1,7774 57,2 101,6673 3,1592 3271,84 56,9 3,0 9,00 5,0
4 1,7536 61,8 108,3725 3,0751 3819,24 55,5 1,2 1,44 2,1
5 1,7404 58,8 102,3355 3,0290 3457,44 56,4 -1,4 1,96 2,5
6 1,7348 47,2 81,8826 3,0095 2227,84 60,0 -5,7 32,49 10,5
7 1,6928 55,2 93,4426 2,8656 3047,04 57,5 -8,2 67,24 16,6
Итого 12,3234 384,3 675,9974 21,7078 21338,41 403,4 -1,8 200,78 56,3
Ср. зн. 1,7605 54,9 96,5711 3,1011 3048,34 X X 28,68 8,0
σ 0,0425 5,86 X X X X X X X
σ 2 0,0018 34,339 X X X X X X X

Значения параметров регрессии A и В составили:


Получено линейное уравнение: . Произведем потенцирование полученного уравнения и запишем его в обычной форме:

Тесноту связи оценим через индекс корреляции :

y =f (x ), когда каждому значению независимой переменной x соответствует одно определённое значение величины y , при регрессионной связи одному и тому же значению x могут соответствовать в зависимости от случая различные значения величины y . Если при каждом значении наблюдается n i {\displaystyle n_{i}} значений y i 1 …y in 1 величины y , то зависимость средних арифметических y ¯ i = (y i 1 + . . . + y i n 1) / n i {\displaystyle {\bar {y}}_{i}=(y_{i1}+...+y_{in_{1}})/n_{i}} от x = x i {\displaystyle x=x_{i}} и является регрессией в статистическом понимании этого термина .

Энциклопедичный YouTube

  • 1 / 5

    Этот термин в статистике впервые был использован Френсисом Гальтоном (1886) в связи с исследованием вопросов наследования физических характеристик человека. В качестве одной из характеристик был взят рост человека; при этом было обнаружено, что в целом сыновья высоких отцов, что не удивительно, оказались более высокими, чем сыновья отцов с низким ростом. Более интересным было то, что разброс в росте сыновей был меньшим, чем разброс в росте отцов. Так проявлялась тенденция возвращения роста сыновей к среднему (regression to mediocrity ), то есть «регресс». Этот факт был продемонстрирован вычислением среднего роста сыновей отцов, рост которых равен 56 дюймам, вычислением среднего роста сыновей отцов, рост которых равен 58 дюймам, и т. д. После этого результаты были изображены на плоскости, по оси ординат которой откладывались значения среднего роста сыновей, а по оси абсцисс - значения среднего роста отцов. Точки (приближённо) легли на прямую с положительным углом наклона меньше 45°; важно, что регрессия была линейной.

    Описание

    Допустим, имеется выборка из двумерного распределения пары случайных переменных (X, Y ). Прямая линия в плоскости (x, y ) была выборочным аналогом функции

    g (x) = E (Y ∣ X = x) . {\displaystyle g(x)=E(Y\mid X=x).} E (Y ∣ X = x) = μ 2 + ϱ σ 2 σ 1 (x − μ 1) , {\displaystyle E(Y\mid X=x)=\mu _{2}+\varrho {\frac {\sigma _{2}}{\sigma _{1}}}(x-\mu _{1}),} v a r (Y ∣ X = x) = σ 2 2 (1 − ϱ 2) . {\displaystyle \mathrm {var} (Y\mid X=x)=\sigma _{2}^{2}(1-\varrho ^{2}).}

    В этом примере регрессия Y на X является линейной функцией . Если регрессия Y на X отлична от линейной, то приведённые уравнения – это линейная аппроксимация истинного уравнения регрессии.

    В общем случае регрессия одной случайной переменной на другую не обязательно будет линейной. Также не обязательно ограничиваться парой случайных переменных. Статистические проблемы регрессии связаны с определением общего вида уравнения регрессии, построением оценок неизвестных параметров, входящих в уравнение регрессии, и проверкой статистических гипотез о регрессии . Эти проблемы рассматриваются в рамках регрессионного анализа .

    Простым примером регрессии Y по X является зависимость между Y и X , которая выражается соотношением: Y =u (X )+ε, где u (x )=E (Y | X =x ), а случайные величины X и ε независимы. Это представление полезно, когда планируется эксперимент для изучения функциональной связи y =u (x ) между неслучайными величинами y и x . На практике обычно коэффициенты регрессии в уравнении y =u (x ) неизвестны и их оценивают по экспериментальным данным.

    Линейная регрессия

    Представим зависимость y от x в виде линейной модели первого порядка:

    y = β 0 + β 1 x + ε . {\displaystyle y=\beta _{0}+\beta _{1}x+\varepsilon .}

    Будем считать, что значения x определяются без ошибки, β 0 и β 1 - параметры модели, а ε - ошибка, распределение которой подчиняется нормальному закону с нулевым средним значением и постоянным отклонением σ 2 . Значения параметров β заранее не известны и их нужно определить из набора экспериментальных значений (x i , y i ), i =1, …, n . Таким образом мы можем записать:

    y i ^ = b 0 + b 1 x i , i = 1 , … , n {\displaystyle {\widehat {y_{i}}}=b_{0}+b_{1}x_{i},i=1,\dots ,n}

    где означает предсказанное моделью значение y при данном x , b 0 и b 1 - выборочные оценки параметров модели. Определим также e i = y i − y i ^ {\displaystyle e_{i}=y_{i}-{\widehat {y_{i}}}} - значение ошибки аппроксимации для i {\displaystyle i} -го наблюдения.

    Метод наименьших квадратов даёт следующие формулы для вычисления параметров данной модели и их отклонений:

    b 1 = ∑ i = 1 n (x i − x ¯) (y i − y ¯) ∑ i = 1 n (x i − x ¯) 2 = c o v (x , y) σ x 2 ; {\displaystyle b_{1}={\frac {\sum _{i=1}^{n}(x_{i}-{\bar {x}})(y_{i}-{\bar {y}})}{\sum _{i=1}^{n}(x_{i}-{\bar {x}})^{2}}}={\frac {\mathrm {cov} (x,y)}{\sigma _{x}^{2}}};} b 0 = y ¯ − b 1 x ¯ ; {\displaystyle b_{0}={\bar {y}}-b_{1}{\bar {x}};} s e 2 = ∑ i = 1 n (y i − y ^) 2 n − 2 ; {\displaystyle s_{e}^{2}={\frac {\sum _{i=1}^{n}(y_{i}-{\widehat {y}})^{2}}{n-2}};} s b 0 = s e 1 n + x ¯ 2 ∑ i = 1 n (x i − x ¯) 2 ; {\displaystyle s_{b_{0}}=s_{e}{\sqrt {{\frac {1}{n}}+{\frac {{\bar {x}}^{2}}{\sum _{i=1}^{n}(x_{i}-{\bar {x}})^{2}}}}};} s b 1 = s e 1 ∑ i = 1 n (x i − x ¯) 2 , {\displaystyle s_{b_{1}}=s_{e}{\sqrt {\frac {1}{\sum _{i=1}^{n}(x_{i}-{\bar {x}})^{2}}}},}

    здесь средние значения определяются как обычно: x ¯ = ∑ i = 1 n x i n {\displaystyle {\bar {x}}={\frac {\sum _{i=1}^{n}x_{i}}{n}}} , y ¯ = ∑ i = 1 n y i n {\displaystyle {\bar {y}}={\frac {\sum _{i=1}^{n}y_{i}}{n}}} и s e 2 обозначает остаточное отклонение регрессии, которое является оценкой дисперсии σ 2 в том случае, если модель верна.

    Стандартные ошибки коэффициентов регрессии используются аналогично стандартной ошибке среднего - для нахождения доверительных интервалов и проверки гипотез. Используем, например, критерий Стьюдента для проверки гипотезы о равенстве коэффициента регрессии нулю, то есть о его незначимости для модели. Статистика Стьюдента: t = b / s b {\displaystyle t=b/s_{b}} . Если вероятность для полученного значения и n −2 степеней свободы достаточно мала, например, <0,05 - гипотеза отвергается. Напротив, если нет оснований отвергнуть гипотезу о равенстве нулю, скажем, b 1 {\displaystyle b_{1}} - есть основание задуматься о существовании искомой регрессии, хотя бы в данной форме, или о сборе дополнительных наблюдений. Если же нулю равен свободный член b 0 {\displaystyle b_{0}} , то прямая проходит через начало координат и оценка углового коэффициента равна

    b = ∑ i = 1 n x i y i ∑ i = 1 n x i 2 {\displaystyle b={\frac {\sum _{i=1}^{n}x_{i}y_{i}}{\sum _{i=1}^{n}x_{i}^{2}}}} ,

    а её стандартной ошибки

    s b = s e 1 ∑ i = 1 n x i 2 . {\displaystyle s_{b}=s_{e}{\sqrt {\frac {1}{\sum _{i=1}^{n}x_{i}^{2}}}}.}

    Обычно истинные величины коэффициентов регрессии β 0 и β 1 не известны. Известны только их оценки b 0 и b 1 . Иначе говоря, истинная прямая регрессии может пройти иначе, чем построенная по выборочным данным. Можно вычислить доверительную область для линии регрессии. При любом значении x соответствующие значения y распределены нормально. Средним является значение уравнения регрессии y ^ {\displaystyle {\widehat {y}}} . Неопределённость его оценки характеризуется стандартной ошибкой регрессии:

    s y ^ = s e 1 n + (x − x ¯) 2 ∑ i = 1 n (x i − x ¯) 2 ; {\displaystyle s_{\widehat {y}}=s_{e}{\sqrt {{\frac {1}{n}}+{\frac {(x-{\bar {x}})^{2}}{\sum _{i=1}^{n}(x_{i}-{\bar {x}})^{2}}}}};}

    Теперь можно вычислить -процентный доверительный интервал для значения уравнения регрессии в точке x :

    y ^ − t (1 − α / 2 , n − 2) s y ^ < y < y ^ + t (1 − α / 2 , n − 2) s y ^ {\displaystyle {\widehat {y}}-t_{(1-\alpha /2,n-2)}s_{\widehat {y}},

    где t (1−α/2, n −2) - t -значение распределения Стьюдента. На рисунке показана линия регрессии, построенная по 10 точкам (сплошные точки), а также 95%-я доверительная область линии регрессии, которая ограничена пунктирными линиями. С 95%-й вероятностью можно утверждать, что истинная линия находится где-то внутри этой области. Или иначе, если мы соберём аналогичные наборы данных (обозначены кружками) и построим по ним линии регрессии (обозначены голубым цветом), то в 95 случаях из 100 эти прямые не покинут пределов доверительной области. (Для визуализации кликните по картинке) Обратите внимание, что некоторые точки оказались вне доверительной области. Это совершенно естественно, поскольку речь идёт о доверительной области линии регрессии, а не самих значений. Разброс значений складывается из разброса значений вокруг линии регрессии и неопределённости положения самой этой линии, а именно:

    s Y = s e 1 m + 1 n + (x − x ¯) 2 ∑ i = 1 n (x i − x ¯) 2 ; {\displaystyle s_{Y}=s_{e}{\sqrt {{\frac {1}{m}}+{\frac {1}{n}}+{\frac {(x-{\bar {x}})^{2}}{\sum _{i=1}^{n}(x_{i}-{\bar {x}})^{2}}}}};}

    Здесь m - кратность измерения y при данном x . И 100 ⋅ (1 − α 2) {\displaystyle 100\cdot \left(1-{\frac {\alpha }{2}}\right)} -процентный доверительный интервал (интервал прогноза) для среднего из m значений y будет:

    y ^ − t (1 − α / 2 , n − 2) s Y < y < y ^ + t (1 − α / 2 , n − 2) s Y {\displaystyle {\widehat {y}}-t_{(1-\alpha /2,n-2)}s_{Y}.

    На рисунке эта 95%-я доверительная область при m =1 ограничена сплошными линиями. В эту область попадает 95 % всех возможных значений величины y в исследованном диапазоне значений x .

    Еще немного статистики

    Можно строго доказать, что, если условное матожидание E (Y ∣ X = x) {\displaystyle E(Y\mid X=x)} некоторой двумерной случайной величины (X, Y ) является линейной функцией от x {\displaystyle x} , то это условное матожидание обязательно представимо в виде E (Y ∣ X = x) = μ 2 + ϱ σ 2 σ 1 (x − μ 1) {\displaystyle E(Y\mid X=x)=\mu _{2}+\varrho {\frac {\sigma _{2}}{\sigma _{1}}}(x-\mu _{1})} , где E (X )=μ 1 , E (Y )=μ 2 , var(X )=σ 1 2 , var(Y )=σ 2 2 , cor(X, Y )=ρ.

    Более того, для уже упомянутой ранее линейной модели Y = β 0 + β 1 X + ε {\displaystyle Y=\beta _{0}+\beta _{1}X+\varepsilon } , где X {\displaystyle X} и - независимые случайные величины, а ε {\displaystyle \varepsilon } имеет нулевое матожидание (и произвольное распределение), можно доказать, что E (Y ∣ X = x) = β 0 + β 1 x {\displaystyle E(Y\mid X=x)=\beta _{0}+\beta _{1}x} . Тогда с помощью указанного ранее равенства можно получить формулы для и : β 1 = ϱ σ 2 σ 1 {\displaystyle \beta _{1}=\varrho {\frac {\sigma _{2}}{\sigma _{1}}}} ,

    β 0 = μ 2 − β 1 μ 1 {\displaystyle \beta _{0}=\mu _{2}-\beta _{1}\mu _{1}} .

    Если откуда-то априори известно, что множество случайных точек на плоскости порождается линейной моделью, но с неизвестными коэффициентами β 0 {\displaystyle \beta _{0}} и β 1 {\displaystyle \beta _{1}} , можно получить точечные оценки этих коэффициентов по указанным формулам. Для этого в эти формулы вместо матожиданий, дисперсий и корреляции случайных величин X и Y нужно подставить их несмещенные оценки. Полученные формулы оценок в точности совпадут с формулами, выведенными на основе метода наименьших квадратов.

    Целью регрессионного анализа является измерение связи меж­ду зависимой переменной и одной (парный регрессионный анализ) или не­сколькими (множественный) независимыми переменными. Независимые переменные называют также факторными, объясняющими, опреде­ляющими, регрессорами и предикторами.

    Зависимую переменную иногда называют определяемой, объясняемой, «откликом». Чрезвы­чайно широкое распространение регрессионного анализа в эмпири­ческих исследованиях связано не только с тем, что это удобный ин­струмент тестирования гипотез. Регрессия, особенно множественная, является эффективным методом моделирования и прогнозирования.

    Объяснение принципов работы с регрессионным анализом начнем с более простого - парного метода.

    Парный регрессионный анализ

    Первые действия при использовании регрессионного анализа будут практически идентичны предпринятым нами в рамках вычисления коэффициента корреляции. Три основных условия эффективности корреляционного анализа по методу Пирсона - нормальное распре­деление переменных, интервальное измерение переменных, линейная связь между переменными - актуальны и для множественной регрес­сии. Соответственно, на первом этапе строятся диаграммы рассеяния, проводится статистически-описательный анализ переменных и вы­числяется линия регрессии. Как и в рамках корреляционного анализа, линии регрессии строятся методом наименьших квадратов.

    Чтобы более наглядно проиллюстрировать различия между двумя методами анализа данных, обратимся к уже рассмотренному приме­ру с переменными «поддержка СПС» и «доля сельского населения». Исходные данные идентичны. Отличие в диаграммах рассеяния бу­дет заключаться в том, что в регрессионном анализе корректно от­кладывать зависимую переменную - в нашем случае «поддержка СПС» по оси Y, тогда как в корреляционном анализе это не имеет значения. После чистки выбросов диаграмма рассеяния имеет вид:

    Принципиальная идея регрессионного анализа состоит в том, что, имея общую тенденцию для переменных - в виде линии регрессии, - можно предсказать значение зависимой переменной, имея значения независимой.

    Представим обычную математическую линейную функцию. Лю­бую прямую в евклидовом пространстве можно описать формулой:

    где а - константа, задающая смещение по оси ординат; b - коэффи­циент, определяющий угол наклона линии.

    Зная угловой коэффициент и константу, можно рассчитать (пред­сказать) значение у для любого х.

    Эта простейшая функция и легла в основу модели регрессионного анализа с той оговоркой, что значение у мы предскажем не точно, а в рамках определенного доверительного интервала, т.е. приблизительно.

    Константой является точка пересечения линии регрессии и оси ординат (F-пересечение, в статистических пакетах, как правило, обозначаемое «interceptor»). В нашем примере с голосованием за СПС ее округленное значение составит 10,55. Угловой коэффициент Ъ бу­дет равен примерно -0,1 (как и в корреляционном анализе, знак по­казывает тип связи - прямая или обратная). Таким образом, получен­ная модель будет иметь вид СП С = -0,1 х Сел. нас. + 10,55.

    СПС = -0,10 х 47 + 10,55 = 5,63.

    Разность между исходным и предсказанным значениями называет­ся остатком (с этим термином - принципиальным для статистики - мы уже сталкивались при анализе таблиц сопряженности). Так, для случая «Республика Адыгея» остаток будет равен 3,92 - 5,63 = -1,71. Чем больше модульное значение остатка, тем менее удачно предсказа­но значение.

    Рассчитываем предсказанные значения и остатки для всех случаев:
    Случай Сел. нас. СПС

    (исходное)

    СПС

    (предсказанное)

    Остатки
    Республика Адыгея 47 3,92 5,63 -1,71 -
    Республика Алтай 76 5,4 2,59 2,81
    Республика Башкортостан 36 6,04 6,78 -0,74
    Республика Бурятия 41 8,36 6,25 2,11
    Республика Дагестан 59 1,22 4,37 -3,15
    Республика Ингушетия 59 0,38 4,37 3,99
    И т.д.

    Анализ соотношения исходных и предсказанных значений служит для оценки качества полученной модели, ее прогностической способности. Одним из главных показателей регрессионной статистики является множественный коэффициент корреляции R - коэффициент корреляции между исходными и предсказанными значениями зави­симой переменной. В парном регрессионном анализе он равен обыч­ному коэффициенту корреляции Пирсона между зависимой и неза­висимой переменной, в нашем случае - 0,63. Чтобы содержательно интерпретировать множественный R, его необходимо преобразовать в коэффициент детерминации. Это делается так же, как и в корреля­ционном анализе - возведением в квадрат. Коэффициент детерминации R -квадрат (R 2) показывает долю вариации зависимой пере­менной, объясняемую независимой (независимыми) переменными.

    В нашем случае R 2 = 0,39 (0,63 2); это означает, что переменная «доля сельского населения» объясняет примерно 40% вариации переменной «поддержка СПС». Чем больше величина коэффициента детер­минации, тем выше качество модели.

    Другим показателем качества модели является стандартная ошиб­ка оценки (standard error of estimate). Это показатель того, насколько сильно точки «разбросаны» вокруг линии регрессии. Мерой разброса для интервальных переменных является стандартное отклонение. Со­ответственно, стандартная ошибка оценки - это стандартное откло­нение распределения остатков. Чем выше ее значение, тем сильнее разброс и тем хуже модель. В нашем случае стандартная ошибка со­ставляет 2,18. Именно на эту величину наша модель будет «ошибаться в среднем» при прогнозировании значения переменной «поддерж­ка СПС».

    Регрессионная статистика включает в себя также дисперсионный анализ. С его помощью мы выясняем: 1) какая доля вариации (дисперсии) зависимой переменной объясняется независимой перемен­ной; 2) какая доля дисперсии зависимой переменной приходится на остатки (необъясненная часть); 3) каково отношение этих двух вели­чин (/"-отношение). Дисперсионная статистика особенно важна для выборочных исследований - она показывает, насколько вероятно наличие связи между независимой и зависимой переменными в генеральной совокупности. Однако и для сплошных исследований (как в нашем примере) изучение результатов дисперсионного анализа небесполезно. В этом случае проверяют, не вызвана ли выявленная ста­тистическая закономерность стечением случайных обстоятельств, насколько она характерна для того комплекса условий, в которых на­ходится обследуемая совокупность, т.е. устанавливается не истинность полученного результата для какой-то более обширной гене­ральной совокупности, а степень его закономерности, свободы от случайных воздействий.

    В нашем случае статистика дисперсионного анализа такова:

    SS df MS F значение
    Регрес. 258,77 1,00 258,77 54,29 0.000000001
    Остат. 395,59 83,00 Л,11
    Всего 654,36

    F-отношение 54,29 значимо на уровне 0,0000000001. Соответ­ственно, мы можем с уверенностью отвергнуть нулевую гипотезу (что обнаруженная нами связь носит случайный характер).

    Аналогичную функцию выполняет критерий t, но уже в отношении регрессионных коэффициентов (углового и F-пересечения). С помо­щью критерия / проверяем гипотезу о том, что в генеральной совокуп­ности регрессионные коэффициенты равны нулю. В нашем случае мы вновь можем уверенно отбросить нулевую гипотезу.

    Множественный регрессионный анализ

    Модель множественной регрессии практически идентична модели парной регрессии; разница лишь в том, что в линейную функцию последовательно включаются несколько независимых переменных:

    Y = b1X1 + b2X2 + …+ bpXp + а.

    Если независимых переменных больше двух, мы не имеем возмож­ности получить визуальное представление об их связи, в этом плане множественная регрессия менее «наглядна», нежели парная. При на­личии двух независимых переменных данные бывает полезно отобразить на трехмерной диаграмме рассеяния. В профессиональных ста­тистических пакетах программ (например, Statisticа) существует опция вращения трехмерной диаграммы, позволяющая хорошо визуально представить структуру данных.

    При работе с множественной регрессией, в отличие от парной, не­обходимо определять алгоритм анализа. Стандартный алгоритм включает в итоговую регрессионную модель все имеющиеся предикторы. Пошаговый алгоритм предполагает последовательное включе­ние (исключение) независимых переменных, исходя из их объяснительного «веса». Пошаговый метод хорош, когда имеется много независимых переменных; он «очищает» модель от откровенно слабых предикторов, делая ее более компактной и лаконичной.

    Дополнительным условием корректности множественной регрес­сии (наряду с интервальностью, нормальностью и линейностью) является отсутствие мультиколлинеарности - наличия сильных корреляционных связей между независимыми переменными.

    Интерпретация статистики множественной регрессии включает в себя все злементы, рассмотренные нами для случая парной регрессии. Кроме того, в статистике множественного регрессионного анализа есть и другие важные составляющие.

    Работу с множественной регрессией мы проиллюстрируем на при­мере тестирования гипотез, объясняющих различия в уровне электоральной активности по регионам России. В ходе конкретных эмпири­ческих исследований были высказаны предположения, что на уровень явки избирателей влияют:

    Национальный фактор (переменная «русское население»; операционализирована как доля русского населения в субъектах РФ). Предполагается, что увеличение доли русского населения ведет к сни­жению активности избирателей;

    Фактор урбанизации (переменная «городское население»; операционализирована как доля городского населения в субъектах РФ, с этим фактором мы уже работали в рамках корреляционного анализа). Предполагается, что увеличение доли городского населения также ве­дет к снижению активности избирателей.

    Зависимая переменная - «интенсивность избирательной активно­сти» («актив») операционализирована через усредненные данные яв­ки по регионам на федеральных выборах с 1995 по 2003 г. Исходная таблица данных для двух независимых и одной зависимой перемен­ной будет иметь следующий вид:

    Случай Переменные
    Актив. Гор. нас. Рус. нас.
    Республика Адыгея 64,92 53 68
    Республика Алтай 68,60 24 60
    Республика Бурятия 60,75 59 70
    Республика Дагестан 79,92 41 9
    Республика Ингушетия 75,05 41 23
    Республика Калмыкия 68,52 39 37
    Карачаево-Черкесская Республика 66,68 44 42
    Республика Карелия 61,70 73 73
    Республика Коми 59,60 74 57
    Республика Марий Эл 65,19 62 47

    И т.д. (после чистки выбросов остается 83 случая из 88)

    Статистика, описывающая качество модели:

    1. Множественный R = 0,62; Л-квадрат = 0,38. Следовательно, национальный фактор и фактор урбанизации вместе объясняют около 38% вариации переменной «электоральная активность».

    2. Средняя ошибка составляет 3,38. Именно настолько «в среднем ошибается» построенная модель при прогнозировании уровня явки.

    3. /л-отношение объясненной и необъясненной вариации состав­ляет 25,2 на уровне 0,000000003. Нулевая гипотеза о случайности выявленных связей отвергается.

    4. Критерий /для константы и регрессионных коэффициентов пе­ременных «городское население» и «русское население» значим на уровне 0,0000001; 0,00005 и 0,007 соответственно. Нулевая гипотеза о случайности коэффициентов отвергается.

    Дополнительная полезная статистика в анализе соотношения ис­ходных и предсказанных значений зависимой переменной - расстояние Махаланобиса и расстояние Кука. Первое - мера уникальности слу­чая (показывает, насколько сочетание значений всех независимых переменных для данного случая отклоняется от среднего значения по всем независимым переменным одновременно). Второе - мера влия­тельности случая. Разные наблюдения по-разному влияют на наклон линии регрессии, и с помощью расстояния Кука можно сопоставлять их по этому показателю. Это бывает полезно при чистке выбросов (вы­брос можно представить как чрезмерно влиятельный случай).

    В нашем примере к уникальным и влиятельным случаям, в частно­сти, относится Дагестан.

    Случай Исходные

    значения

    Предска­

    значения

    Остатки Расстояние

    Махаланобиса

    Расстояние
    Адыгея 64,92 66,33 -1,40 0,69 0,00
    Республика Алтай 68,60 69.91 -1,31 6,80 0,01
    Республика Бурятия 60,75 65,56 -4,81 0,23 0,01
    Республика Дагестан 79,92 71,01 8,91 10,57 0,44
    Республика Ингушетия 75,05 70,21 4,84 6,73 0,08
    Республика Калмыкия 68,52 69,59 -1,07 4,20 0,00

    Собственно регрессионная модель обладает следующими парамет­рами: У-пересечение (константа) = 75,99; Ь (Гор. нас.) = -0,1; Ъ (Рус. нас.) = -0,06. Итоговая формула.

    В предыдущих заметках предметом анализа часто становилась отдельная числовая переменная, например, доходность взаимных фондов, время загрузки Web-страницы или объем потребления безалкогольных напитков. В настоящей и следующих заметках мы рассмотрим методы предсказания значений числовой переменной в зависимости от значений одной или нескольких других числовых переменных.

    Материал будет проиллюстрирован сквозным примером. Прогнозирование объема продаж в магазине одежды. Сеть магазинов уцененной одежды Sunflowers на протяжении 25 лет постоянно расширялась. Однако в настоящее время у компании нет систематического подхода к выбору новых торговых точек. Место, в котором компания собирается открыть новый магазин, определяется на основе субъективных соображений. Критериями выбора являются выгодные условия аренды или представления менеджера об идеальном местоположении магазина. Представьте, что вы - руководитель отдела специальных проектов и планирования. Вам поручили разработать стратегический план открытия новых магазинов. Этот план должен содержать прогноз годового объема продаж во вновь открываемых магазинах. Вы полагаете, что торговая площадь непосредственно связана с объемом выручки, и хотите учесть этот факт в процессе принятия решения. Как разработать статистическую модель, позволяющую прогнозировать годовой объем продаж на основе размера нового магазина?

    Как правило, для предсказания значений переменной используется регрессионный анализ. Его цель - разработать статистическую модель, позволяющую предсказывать значения зависимой переменной, или отклика, по значениям, по крайней мере одной, независимой, или объясняющей, переменной. В настоящей заметке мы рассмотрим простую линейную регрессию - статистический метод, позволяющий предсказывать значения зависимой переменной Y по значениям независимой переменной X . В последующих заметках будет описана модель множественной регрессии, предназначенная для предсказания значений независимой переменной Y по значениям нескольких зависимых переменных (Х 1 , Х 2 , …, X k ).

    Скачать заметку в формате или , примеры в формате

    Виды регрессионных моделей

    где ρ 1 – коэффициент автокорреляции; если ρ 1 = 0 (нет автокорреляции), D ≈ 2; если ρ 1 ≈ 1 (положительная автокорреляции), D ≈ 0; если ρ 1 = -1 (отрицательная автокорреляции), D ≈ 4.

    На практике применение критерия Дурбина-Уотсона основано на сравнении величины D с критическими теоретическими значениями d L и d U для заданного числа наблюдений n , числа независимых переменных модели k (для простой линейной регрессии k = 1) и уровня значимости α. Если D < d L , гипотеза о независимости случайных отклонений отвергается (следовательно, присутствует положительная автокорреляция); если D > d U , гипотеза не отвергается (то есть автокорреляция отсутствует); если d L < D < d U , нет достаточных оснований для принятия решения. Когда расчётное значение D превышает 2, то с d L и d U сравнивается не сам коэффициент D , а выражение (4 – D ).

    Для вычисления статистики Дурбина-Уотсона в Excel обратимся к нижней таблице на рис. 14 Вывод остатка . Числитель в выражении (10) вычисляется с помощью функции =СУММКВРАЗН(массив1;массив2), а знаменатель =СУММКВ(массив) (рис. 16).

    Рис. 16. Формулы расчета статистики Дурбина-Уотсона

    В нашем примере D = 0,883. Основной вопрос заключается в следующем - какое значение статистики Дурбина-Уотсона следует считать достаточно малым, чтобы сделать вывод о существовании положительной автокорреляции? Необходимо соотнести значение D с критическими значениями (d L и d U ), зависящими от числа наблюдений n и уровня значимости α (рис. 17).

    Рис. 17. Критические значения статистики Дурбина-Уотсона (фрагмент таблицы)

    Таким образом, в задаче об объеме продаж в магазине, доставляющем товары на дом, существуют одна независимая переменная (k = 1), 15 наблюдений (n = 15) и уровень значимости α = 0,05. Следовательно, d L = 1,08 и d U = 1,36. Поскольку D = 0,883 < d L = 1,08, между остатками существует положительная автокорреляция, метод наименьших квадратов применять нельзя.

    Проверка гипотез о наклоне и коэффициенте корреляции

    Выше регрессия применялась исключительно для прогнозирования. Для определения коэффициентов регрессии и предсказания значения переменной Y при заданной величине переменной X использовался метод наименьших квадратов. Кроме того, мы рассмотрели среднеквадратичную ошибку оценки и коэффициент смешанной корреляции. Если анализ остатков подтверждает, что условия применимости метода наименьших квадратов не нарушаются, и модель простой линейной регрессии является адекватной, на основе выборочных данных можно утверждать, что между переменными в генеральной совокупности существует линейная зависимость.

    Применение t -критерия для наклона. Проверяя, равен ли наклон генеральной совокупности β 1 нулю, можно определить, существует ли статистически значимая зависимость между переменными X и Y . Если эта гипотеза отклоняется, можно утверждать, что между переменными X и Y существует линейная зависимость. Нулевая и альтернативная гипотезы формулируются следующим образом: Н 0: β 1 = 0 (нет линейной зависимости), Н1: β 1 ≠ 0 (есть линейная зависимость). По определению t -статистика равна разности между выборочным наклоном и гипотетическим значением наклона генеральной совокупности, деленной на среднеквадратичную ошибку оценки наклона:

    (11) t = (b 1 β 1 ) / S b 1

    где b 1 – наклон прямой регрессии по выборочным данным, β1 – гипотетический наклон прямой генеральной совокупности, , а тестовая статистика t имеет t -распределение с n – 2 степенями свободы.

    Проверим, существует ли статистически значимая зависимость между размером магазина и годовым объемом продаж при α = 0,05. t -критерий выводится наряду с другими параметрами при использовании Пакета анализа (опция Регрессия ). Полностью результаты работы Пакета анализа приведены на рис. 4, фрагмент, относящийся к t-статистике – на рис. 18.

    Рис. 18. Результаты применения t

    Поскольку число магазинов n = 14 (см. рис.3), критическое значение t -статистики при уровне значимости α = 0,05 можно найти по формуле: t L =СТЬЮДЕНТ.ОБР(0,025;12) = –2,1788, где 0,025 – половина уровня значимости, а 12 = n – 2; t U =СТЬЮДЕНТ.ОБР(0,975;12) = +2,1788.

    Поскольку t -статистика = 10,64 > t U = 2,1788 (рис. 19), нулевая гипотеза Н 0 отклоняется. С другой стороны, р -значение для Х = 10,6411, вычисляемое по формуле =1-СТЬЮДЕНТ.РАСП(D3;12;ИСТИНА), приближенно равно нулю, поэтому гипотеза Н 0 снова отклоняется. Тот факт, что р -значение почти равно нулю, означает, что если бы между размерами магазинов и годовым объемом продаж не существовало реальной линейной зависимости, обнаружить ее с помощью линейной регрессии было бы практически невозможно. Следовательно, между средним годовым объемом продаж в магазинах и их размером существует статистически значимая линейная зависимость.

    Рис. 19. Проверка гипотезы о наклоне генеральной совокупности при уровне значимости, равном 0,05, и 12 степенях свободы

    Применение F -критерия для наклона. Альтернативным подходом к проверке гипотез о наклоне простой линейной регрессии является использование F -критерия. Напомним, что F -критерий применяется для проверки отношения между двумя дисперсиями (подробнее см. ). При проверке гипотезы о наклоне мерой случайных ошибок является дисперсия ошибки (сумма квадратов ошибок, деленная на количество степеней свободы), поэтому F -критерий использует отношение дисперсии, объясняемой регрессией (т.е. величины SSR , деленной на количество независимых переменных k ), к дисперсии ошибок (MSE = S Y X 2 ).

    По определению F -статистика равна среднему квадрату отклонений, обусловленных регрессией (MSR), деленному на дисперсию ошибки (MSE): F = MSR / MSE , где MSR = SSR / k , MSE = SSE /(n – k – 1), k – количество независимых переменных в регрессионной модели. Тестовая статистика F имеет F -распределение с k и n – k – 1 степенями свободы.

    При заданном уровне значимости α решающее правило формулируется так: если F > F U , нулевая гипотеза отклоняется; в противном случае она не отклоняется. Результаты, оформленные в виде сводной таблицы дисперсионного анализа, приведены на рис. 20.

    Рис. 20. Таблица дисперсионного анализа для проверки гипотезы о статистической значимости коэффициента регрессии

    Аналогично t -критерию F -критерий выводится в таблицу при использовании Пакета анализа (опция Регрессия ). Полностью результаты работы Пакета анализа приведены на рис. 4, фрагмент, относящийся к F -статистике – на рис. 21.

    Рис. 21. Результаты применения F -критерия, полученные с помощью Пакета анализа Excel

    F-статистика равна 113,23, а р -значение близко к нулю (ячейка Значимость F ). Если уровень значимости α равен 0,05, определить критическое значение F -распределения с одной и 12 степенями свободы можно по формуле F U =F.ОБР(1-0,05;1;12) = 4,7472 (рис. 22). Поскольку F = 113,23 > F U = 4,7472, причем р -значение близко к 0 < 0,05, нулевая гипотеза Н 0 отклоняется, т.е. размер магазина тесно связан с его годовым объемом продаж.

    Рис. 22. Проверка гипотезы о наклоне генеральной совокупности при уровне значимости, равном 0,05, с одной и 12 степенями свободы

    Доверительный интервал, содержащий наклон β 1 . Для проверки гипотезы о существовании линейной зависимости между переменными можно построить доверительный интервал, содержащий наклон β 1 и убедиться, что гипотетическое значение β 1 = 0 принадлежит этому интервалу. Центром доверительного интервала, содержащего наклон β 1 , является выборочный наклон b 1 , а его границами - величины b 1 ± t n –2 S b 1

    Как показано на рис. 18, b 1 = +1,670, n = 14, S b 1 = 0,157. t 12 =СТЬЮДЕНТ.ОБР(0,975;12) = 2,1788. Следовательно, b 1 ± t n –2 S b 1 = +1,670 ± 2,1788 * 0,157 = +1,670 ± 0,342, или + 1,328 ≤ β 1 ≤ +2,012. Таким образом, наклон генеральной совокупности с вероятностью 0,95 лежит в интервале от +1,328 до +2,012 (т.е. от 1 328 000 до 2 012 000 долл.). Поскольку эти величины больше нуля, между годовым объемом продаж и площадью магазина существует статистически значимая линейная зависимость. Если бы доверительный интервал содержал нуль, между переменными не было бы зависимости. Кроме того, доверительный интервал означает, что каждое увеличение площади магазина на 1 000 кв. футов приводит к увеличению среднего объема продаж на величину от 1 328 000 до 2 012 000 долларов.

    Использование t -критерия для коэффициента корреляции. был введен коэффициент корреляции r , представляющий собой меру зависимости между двумя числовыми переменными. С его помощью можно установить, существует ли между двумя переменными статистически значимая связь. Обозначим коэффициент корреляции между генеральными совокупностями обеих переменных символом ρ. Нулевая и альтернативная гипотезы формулируются следующим образом: Н 0 : ρ = 0 (нет корреляции), Н 1 : ρ ≠ 0 (есть корреляция). Проверка существования корреляции:

    где r = + , если b 1 > 0, r = – , если b 1 < 0. Тестовая статистика t имеет t -распределение с n – 2 степенями свободы.

    В задаче о сети магазинов Sunflowers r 2 = 0,904, а b 1 - +1,670 (см. рис. 4). Поскольку b 1 > 0, коэффициент корреляции между объемом годовых продаж и размером магазина равен r = +√0,904 = +0,951. Проверим нулевую гипотезу, утверждающую, что между этими переменными нет корреляции, используя t -статистику:

    При уровне значимости α = 0,05 нулевую гипотезу следует отклонить, поскольку t = 10,64 > 2,1788. Таким образом, можно утверждать, что между объемом годовых продаж и размером магазина существует статистически значимая связь.

    При обсуждении выводов, касающихся наклона генеральной совокупности, доверительные интервалы и критерии для проверки гипотез являются взаимозаменяемыми инструментами. Однако вычисление доверительного интервала, содержащего коэффициент корреляции, оказывается более сложным делом, поскольку вид выборочного распределения статистики r зависит от истинного коэффициента корреляции.

    Оценка математического ожидания и предсказание индивидуальных значений

    В этом разделе рассматриваются методы оценки математического ожидания отклика Y и предсказания индивидуальных значений Y при заданных значениях переменной X .

    Построение доверительного интервала. В примере 2 (см. выше раздел Метод наименьших квадратов ) регрессионное уравнение позволило предсказать значение переменной Y X . В задаче о выборе места для торговой точки средний годовой объем продаж в магазине площадью 4000 кв. футов был равен 7,644 млн. долл. Однако эта оценка математического ожидания генеральной совокупности является точечной. для оценки математического ожидания генеральной совокупности была предложена концепция доверительного интервала. Аналогично можно ввести понятие доверительного интервала для математического ожидания отклика при заданном значении переменной X :

    где , = b 0 + b 1 X i – предсказанное значение переменное Y при X = X i , S YX – среднеквадратичная ошибка, n – объем выборки, X i - заданное значение переменной X , µ Y | X = X i – математическое ожидание переменной Y при Х = Х i , SSX =

    Анализ формулы (13) показывает, что ширина доверительного интервала зависит от нескольких факторов. При заданном уровне значимости возрастание амплитуды колебаний вокруг линии регрессии, измеренное с помощью среднеквадратичной ошибки, приводит к увеличению ширины интервала. С другой стороны, как и следовало ожидать, увеличение объема выборки сопровождается сужением интервала. Кроме того, ширина интервала изменяется в зависимости от значений X i . Если значение переменной Y предсказывается для величин X , близких к среднему значению , доверительный интервал оказывается уже, чем при прогнозировании отклика для значений, далеких от среднего.

    Допустим, что, выбирая место для магазина, мы хотим построить 95%-ный доверительный интервал для среднего годового объема продаж во всех магазинах, площадь которых равна 4000 кв. футов:

    Следовательно, средний годовой объем продаж во всех магазинах, площадь которых равна 4 000 кв. футов, с 95% -ной вероятностью лежит в интервале от 6,971 до 8,317 млн. долл.

    Вычисление доверительного интервала для предсказанного значения. Кроме доверительного интервала для математического ожидания отклика при заданном значении переменной X , часто необходимо знать доверительный интервал для предсказанного значения. Несмотря на то что формула для вычисления такого доверительного интервала очень похожа на формулу (13), этот интервал содержит предсказанное значение, а не оценку параметра. Интервал для предсказанного отклика Y X = Xi при конкретном значении переменной X i определяется по формуле:

    Предположим, что, выбирая место для торговой точки, мы хотим построить 95%-ный доверительный интервал для предсказанного годового объема продаж в магазине, площадь которого равна 4000 кв. футов:

    Следовательно, предсказанный годовой объем продаж в магазине, площадь которого равна 4000 кв. футов, с 95%-ной вероятностью лежит в интервале от 5,433 до 9,854 млн. долл. Как видим, доверительный интервал для предсказанного значения отклика намного шире, чем доверительный интервал для его математического ожидания. Это объясняется тем, что изменчивость при прогнозировании индивидуальных значений намного больше, чем при оценке математического ожидания.

    Подводные камни и этические проблемы, связанные с применением регрессии

    Трудности, связанные с регрессионным анализом:

    • Игнорирование условий применимости метода наименьших квадратов.
    • Ошибочная оценка условий применимости метода наименьших квадратов.
    • Неправильный выбор альтернативных методов при нарушении условий применимости метода наименьших квадратов.
    • Применение регрессионного анализа без глубоких знаний о предмете исследования.
    • Экстраполяция регрессии за пределы диапазона изменения объясняющей переменной.
    • Путаница между статистической и причинно-следственной зависимостями.

    Широкое распространение электронных таблиц и программного обеспечения для статистических расчетов ликвидировало вычислительные проблемы, препятствовавшие применению регрессионного анализа. Однако это привело к тому, что регрессионный анализ стали применять пользователи, не обладающие достаточной квалификацией и знаниями. Откуда пользователям знать об альтернативных методах, если многие из них вообще не имеют ни малейшего понятия об условиях применимости метода наименьших квадратов и не умеют проверять их выполнение?

    Исследователь не должен увлекаться перемалыванием чисел - вычислением сдвига, наклона и коэффициента смешанной корреляции. Ему нужны более глубокие знания. Проиллюстрируем это классическим примером, взятым из учебников. Анскомб показал, что все четыре набора данных, приведенных на рис. 23, имеют одни и те же параметры регрессии (рис. 24).

    Рис. 23. Четыре набора искусственных данных

    Рис. 24. Регрессионный анализ четырех искусственных наборов данных; выполнен с помощью Пакета анализа (кликните на рисунке, чтобы увеличить изображение)

    Итак, с точки зрения регрессионного анализа все эти наборы данных совершенно идентичны. Если бы анализ был на этом закончен, мы потеряли бы много полезной информации. Об этом свидетельствуют диаграммы разброса (рис. 25) и графики остатков (рис. 26), построенные для этих наборов данных.

    Рис. 25. Диаграммы разброса для четырех наборов данных

    Диаграммы разброса и графики остатков свидетельствуют о том, что эти данные отличаются друг от друга. Единственный набор, распределенный вдоль прямой линии, - набор А. График остатков, вычисленных по набору А, не имеет никакой закономерности. Этого нельзя сказать о наборах Б, В и Г. График разброса, построенный по набору Б, демонстрирует ярко выраженную квадратичную модель. Этот вывод подтверждается графиком остатков, имеющим параболическую форму. Диаграмма разброса и график остатков показывают, что набор данных В содержит выброс. В этой ситуации необходимо исключить выброс из набора данных и повторить анализ. Метод, позволяющий обнаруживать и исключать выбросы из наблюдений, называется анализом влияния. После исключения выброса результат повторной оценки модели может оказаться совершенно иным. Диаграмма разброса, построенная по данным из набора Г, иллюстрирует необычную ситуацию, в которой эмпирическая модель значительно зависит от отдельного отклика (Х 8 = 19, Y 8 = 12,5). Такие регрессионные модели необходимо вычислять особенно тщательно. Итак, графики разброса и остатков являются крайне необходимым инструментом регрессионного анализа и должны быть его неотъемлемой частью. Без них регрессионный анализ не заслуживает доверия.

    Рис. 26. Графики остатков для четырех наборов данных

    Как избежать подводных камней при регрессионном анализе:

    • Анализ возможной взаимосвязи между переменными X и Y всегда начинайте с построения диаграммы разброса.
    • Прежде чем интерпретировать результаты регрессионного анализа, проверяйте условия его применимости.
    • Постройте график зависимости остатков от независимой переменной. Это позволит определить, насколько эмпирическая модель соответствует результатам наблюдения, и обнаружить нарушение постоянства дисперсии.
    • Для проверки предположения о нормальном распределении ошибок используйте гистограммы, диаграммы «ствол и листья», блочные диаграммы и графики нормального распределения.
    • Если условия применимости метода наименьших квадратов не выполняются, используйте альтернативные методы (например, модели квадратичной или множественной регрессии).
    • Если условия применимости метода наименьших квадратов выполняются, необходимо проверить гипотезу о статистической значимости коэффициентов регрессии и построить доверительные интервалы, содержащие математическое ожидание и предсказанное значение отклика.
    • Избегайте предсказывать значения зависимой переменной за пределами диапазона изменения независимой переменной.
    • Имейте в виду, что статистические зависимости не всегда являются причинно-следственными. Помните, что корреляция между переменными не означает наличия причинно-следственной зависимости между ними.

    Резюме. Как показано на структурной схеме (рис. 27), в заметке описаны модель простой линейной регрессии, условия ее применимости и способы проверки этих условий. Рассмотрен t -критерий для проверки статистической значимости наклона регрессии. Для предсказания значений зависимой переменной использована регрессионная модель. Рассмотрен пример, связанный с выбором места для торговой точки, в котором исследуется зависимость годового объема продаж от площади магазина. Полученная информация позволяет точнее выбрать место для магазина и предсказать его годовой объем продаж. В следующих заметках будет продолжено обсуждение регрессионного анализа, а также рассмотрены модели множественной регрессии.

    Рис. 27. Структурная схема заметки

    Используются материалы книги Левин и др. Статистика для менеджеров. – М.: Вильямс, 2004. – с. 792–872

    Если зависимая переменная является категорийной, необходимо применять логистическую регрессию.