Типы микросхем динамических озу. Динамические оперативные запоминающие устройства (ОЗУ)

ОЗУ динамического типа

В запоминающих устройствах динамического типа информация хранится в виде заряда на конденсаторе. Поэтому питание на ОЗУ подается не постоянно, а только в очень короткие промежутки времени. Оно используется для восстановления заряда на конденсаторах матрицы ОЗУ. Благодаря импульсному питанию динамические ОЗУ потребляют в тысячи раз меньше мощности, чем аналогичные по емкости статические.

В микросхемах динамической памяти функции запоминающих элементов выполняют электрические конденсаторы, образованные внутри МДП-структуры. Поскольку время сохранения заряда на конденсаторе ограничено, необходимо предусмотреть восстановление (регенерацию) записанной информации. Период регенерации для динамических ОЗУ равен нескольким миллисекундам (для микросхем серии К565 время регенерации 2 мс).

Микросхемы (МС) большинства динамических ОЗУ с целью уменьшения количества выводов построены с мультиплексированием кода адреса: вначале в МС вводят код строки А0 – А7, фиксируя его во входном регистре стробирующим сигналом RAS (Row Address Strobe ), а затем код адреса столбца А8 – А13, фиксируя его во внутреннем регистре стробирующим сигналом CAS (Column Address Strobe ).

В режиме регенерации микросхема ОЗУ изолируется от информационных входа и выхода за счет подачи сигнала CAS = 1. Следовательно, адресуются только строки, т.к. регенерация информации происходит во всех элементах памяти строки одновременно.

Перебирая адреса строк, устройство регенерации обеспечивает восстановление информации во всей матрице накопителя. Условное обозначение БИС динамического ОЗУ типа К565РУ5 и временная диаграмма функционирования показаны на рисунке 5.6.

Схема динамической ячейки памяти на 8 транзисторах показана на рисунке 5.7. Она отличается от аналогичной ячейки статического ОЗУ только тем, что затворы транзисторов Т3 и Т6 соединены с генератором импульсов регенерации, а не с источником питания.

Рисунок 5.7 - Схема ячейки памяти динамического ОЗУ Рисунок 5.8 – Схема однотранзисторной ячейки динамического ОЗУ

За счет уменьшения количества транзисторов на одну ячейку удалось существенно увеличить емкость динамической памяти, располагаемой на одном кристалле и снизить потребление энергии от источника питания.

5.5. Постоянные запоминающие устройства

Постоянные запоминающие устройства (ПЗУ) являются энергонезависимыми устройствами, служащими для хранения цифровых данных. ПЗУ могут быть построены на пассивных элементах (плавких перемычках П или диодах D) или активных (транзисторах). Схема ПЗУ представляет собой матрицу (рисунок 5.9) количество горизонтальных линий равно разрядности хранимого слова, а число вертикальных – количеству хранимых слов.

Как видно из схемы, при активации адресной линии вертикальная шина соединяется с сигнальной землей и диоды, подключенные к этой шине, шунтируют линии данных на "землю". Таким образом, если горизонтальная линии данных соединена с вертикальной через диод (или перемычку), то при выборе адресной линии, на выходе линии данных будет потенциал близкий к нулю, т. е. логический 0. Если диод или перемычка отсутствуют в данном узле, то на соответствующем выходе линии данных присутствует высокий потенциал, близкий к Е П , т.е. логическая 1. Обычно такие ПЗУ изготавливаются со всеми диодами (или плавкими перемычками) в узлах матрицы. В тех узлах, в которых диод или перемычка должны отсутствовать, их убирают путем выжигания. Эта процедура выполняется в процессе программирования ПЗУ и называется "прожиганием ПЗУ".
Рисунок 5.9 – Схема матричного ПЗУ

Запись информации в ПЗУ осуществляется пословно (побайтно). Для занесения информации в ячейку ПЗУ необходимо на линии данных, в которых должна быть "1", подать высокий потенциал (≈ 25 В) и выбрать соответствующую адресную линию, т.е. соединить ее с сигнальной землей. Протекающий ток расплавляет диод или плавкую перемычку, исключая тем самым шунтирующую цепь соответствующей линии данных.

Недостаток рассмотренной схемы ПЗУ состоит в том, что после занесения информации в это устройство ее нельзя изменить. То есть, при изменении программы, подлежащей хранению в ПЗУ, необходимо запрограммировать новое устройство. Для устранения этого недостатка разработаны полупостоянные электрически перепрограммируемые постоянные запоминающие устройства (ЭППЗУ). Схема ЭППЗУ подобна ПЗУ на основе МОП транзисторов, однако транзисторы в таком устройстве имеют "плавающий" затвор, который электрически изолирован оксидным слоем полупроводникового материала. Схема ЭППЗУ изображена на рисунке 5.10. При подаче на "плавающий" затвор (ПЗ) положительного потенциала по отношению к стоку транзистора на ПЗ индуцируется электрический заряд, который за счет высококачественной изоляции может сохраняться до 10 лет и более. Благодаря этому заряду транзистор находится в открытом состоянии, при котором сопротивление Сток-Исток становится близким к нулю.

Динамическая память состоит из ядра (массива ЗЭ) и интерфейсной логики (буферных регистров, усилителей чтения данных, схемы регенерации и др.), Хотя количество видов DRAM уже превысило два десятка, ядро у них организовано практически одинаково. Главные различия связаны с интерфейсной логикой, причем различия эти обусловлены также и областью применения микросхем - помимо основной памяти ЭВМ, микросхемы памяти входят, например, в состав видеоадаптеров. Классификация микросхем динамической памяти показана ниже (см. рисунок ниже).

Типы микросхем динамического ОЗУ

Теперь рассмотрим различные типы микросхем динамической памяти DRAM. На начальном этапе это были микросхемы асинхронной памяти, работа которых не привязана жестко к тактовым импульсам системной шины. Асинхронной памяти свойственны дополнительные затраты времени на взаимодействие микросхем памяти и контроллера. Так, в асинхронной схеме сигнал RAS будет сформирован только после поступления в контроллер тактирующего импульса и будет воспринят микросхемой памяти через некоторое время.

Микросхемы DRAM . В первых микросхемах динамической памяти применялся наиболее простой способ обмена данными. Он позволял считывать и записывать строку памяти только на каждый пятый такт (см. рисунок ниже "a"). Этапы такой процедуры были описаны ранее. Традиционной DRAM соответствует формула 5-5-5-5. Микросхемы данного типа могли работать на частотах до 40 МГц и из-за своей медлительности (время доступа составляло около 120 нс) просуществовали недолго.

Микросхемы FРМ DRAM . Микросхемы динамического ОЗУ, реализующие режим FPM (Fast Page Mode), также относятся к ранним типам DRAM. В основе лежит следующая идея. Доступ к ячейкам, лежащим в одной строке матрицы, можно проводить быстрее. Для доступа к очередной ячейке достаточно подавать на микросхему лишь адрес нового столбца, сопровождая его сигналом CAS. Полный же адрес (строки и столбца) передается только при первом обращении к строке. Сигнал RAS остается активным на протяжении всего страничного цикла и позволяет заносить в регистр адреса столбца новую информацию не по спадающему фронту CAS, а как только адрес на входе стабилизируется, то есть практически по переднему фронту сигнала CAS. Схема чтения для FPM DRAM (см. рисунок ниже "b") описывается формулой 5-3-3-3 (всего 14 тактов). Применение схемы быстрого страничного доступа позволило сократить время доступа до 60 нс.

Микросхемы EDO DRAM . Следующим этапом в развитии динамических ОЗУ стали микросхемы с гuперстраничным режимом доступа (НРМ, Нурег Page Mode), более известные как EDO (Extended Data Output - расширенное время удержания данных на выходе). Главная особенность технологии - увеличенное по cpaвнению с FPM DRAM время доступности данных на выходе микросхемы. В микросхемах FPM DRAM выходные данные остаются действительными только при активном сигнале CAS, за счет чего во втором и последующих доступах к строке нужно три такта: такт переключения CAS в активное состояние, такт считывания данных и такт переключения CAS в неактивное состояние. В EDO DRAM по активному (спадающему) фронту сигнала CAS данные запоминаются во внутреннем регистре, где хранятся еще некоторое время после того, как поступит следующий активный фронт сигнала. Это позволяет использовать хранимые данные, когда CAS уже переведен в неактивное состояние. Схема чтения у EDO DRAM уже 5-2- 2-2 (см. рисунок ниже "c"), что на 20% быстрее, чем у FPM. Время доступа составляет порядка 30-40 нс.

Временные диаграммы DRAM, FPM DRAM, EDO DRAM

Микросхемы BEDO DRAM . Технология EDO была усовершенствована компанией VIА Technologies. Новая модификация EDO известна как BEDO (Burst EDO - пакетная EDO). Новизна метода в том, что при первом обращении считывается вся строка микросхемы, в которую входят последовательные слова пакета. За последовательной пересылкой слов (переключением столбцов) автоматически следит внутренний счетчик микросхемы. Это исключает необходимость выдавать адреса для всех ячеек пакета, но требует поддержки со стороны внешней логики. Способ позволяет сократить время считывания второго и последующих слов еще на один такт (см. рисунок ниже), благодаря чему формула приобретает вид 5-1-1-1.

Микросхемы SDRAM . Аббревиатура SDRAM (Sуnchrоnous DRAM - Синхронная DRAM) используется для обозначения микросхем "обычных" синхронных динамических ОЗУ. Кардинальные отличия SDRAM от рассмотренных выше асинхронных динамических ОЗУ можно свести к четырем положениям:

Синхронный метод передачи данных на шину;

Применение нескольких (двух или четырех) внутренних банков памяти;

Конвейерный механизм пересылки пакета;

Передача части функций контроллера памяти логике самой микросхемы.

Синхронность памяти позволяет контроллеру памяти "знать" моменты готовности данных, за счет чего снижаются издержки циклов ожидания и поиска данных. Так как данные появляются на выходе микросхемы одновременно с тактовыми импульсами, упрощается взаимодействие памяти с другими устройствами ЭВМ.В отличие от ВЕDО конвейер позволяет передавать данные пакета по тактам, благодаря чему ОЗУ может работать бесперебойно на более высоких частотах, чем асинхронные ОЗУ.

Временные диаграммы BEDO DRAM, SDRAM

Микросхемы DDR SDRAM . Важным этапом в дальнейшем развитии технологии SDRAM стала DDR SDRAM (Double Data Rate SDRAM - SDRAM с удвоенной скоростью передачи данных). В отличие от SDRAM, новая модификация выдает данные в пакетном режиме по обоим фронтам импульса синхронизации, из-за чего пропускная способность возрастает вдвое.

Микросхемы RDRAM, DRDRAM . Принципиально отличный подход к построению DRAM был предложен компанией Rambus в 1997 году. В нем используется оригинальная система обмена данными между ядром и контроллером памяти. В таблице (см. таблица ниже) приведены сравнительные характеристики перечисленных выше микросхем памяти. Ведутся работы по повышению быстродействия, в частности, связанные с применением КЭШ в микросхемах (CDRAM).

Основой ячейки памяти в ЗУ статического типа является триггер. В качестве базовых элементов для реализации триггера используются полевые транзисторы. Использование полевых транзисторов обусловлено тем, что они потребляют меньшую мощность, чем биполярные транзисторы, следовательно, и построенные на их основе микросхемы памяти являются более экономичными.

На рисунке 19.1 представлен триггер на МОП-транзисторах с индуцируемым p -каналом. Для отпирания такого транзистора напряжение на его затворе относительно истока должно быть меньше нуля: .

Пусть в исходном состоянии транзистор VT3 открыт, a VT1 закрыт (состояние хранения нуля). Транзисторы VT2 и VT4 выполняют роль резисторов, поэтому на стоке транзистора VT3 будет потенциал напряжения питания , а на стоке транзистора VT1 – нулевой потенциал. Транзисторы VT5 и VT6 осуществляют запись и считывание информации. В режиме хранения данных напряжения на разрядных линиях P0 и P1 равны нулю, а на линии потенциал равен напряжению питания схемы . При этом напряжение сток-исток на транзисторе VT5 равно нулю, и транзистор VT5 закрыт. Напряжение транзистора VT6 равно нулю и он также закрыт.

Рисунке 19.1 – Принципиальная схема ячейки ОЗУ статического типа

Для установления триггера в единичное состояние (запись единицы) на линию подается нулевой потенциал, а на разрядную линию P1 потенциал равный . При этом транзистор VT5 будет включен инверсно, т. е. истоком становится вывод, подсоединенный к разрядной линии P1. Напряжение затвор-исток инверсно включенного транзистора VT5 становится меньше нуля и транзистор VT5 открывается. Положительный сигнал поступает на затвор транзистора VT3 , при этом становится равным нулю и транзистор VT3 закрывается. В результате на затвор транзистора VT1 поступает нулевой потенциал. У этого транзистора становится отрицательным, и транзистор VT1 открывается, на его стоке устанавливается положительное напряжение, что соответствует единичному состоянию триггера. Напряжение на стоке VT3 становится равным нулю.

Для записи нуля необходимо при нулевом напряжении на линии А подать напряжение на разрядную линию P0 , при этом через открытый транзистор VT6 положительное напряжение, попадая на затвор транзистора VT1, запирает его, что приводит к открыванию транзистора VT3. На стоке транзистора VT1 установится нулевой потенциал, а на стоке транзистора VT3 – потенциал напряжения питания.

Для считывания информации, предварительно записанной в триггер, необходимо подать нулевой потенциал только на линию. При этом если был открыт транзистор VT1 (единичное состояние), то отрицательным напряжением будет открыт транзистор VT5 и через него высокий потенциал поступит в разрядную линию P1 . Если триггер находится в состоянии нуля, то откроется транзистор VT6 и высокий потенциал поступит в разрядную линию Р0.



На рисунке 19.2 приведена типичная структура микросхемы ОЗУ статического типа. Информация хранится в накопителе. Накопитель представляет собой матрицу, составленную из ячеек памяти рассмотренных выше. Для поиска требуемой ячейки памяти указываются строка и столбец, соответствующие положению ячейки памяти в накопителе.


Рисунок 19.2 – Структура микросхемы ОЗУ статистического типа

Адрес ячейки памяти (ЯП) в виде двоичного числа принимается по шине адреса в регистр адреса. Число разрядов адреса связано с емкостью накопителя. Число строк и столбцов накопителя выбираются равными целой степени двух. Если число строк и число столбцов , то общее число ячеек памяти (емкость накопителя)
, где – число разрядов адреса, принимаемого в регистр адреса. Например, при емкости число разрядов адреса . При этом выбирается . В этом случае число строк и число столбцов накопителя равно . Требуемая размерность матрицы накопителя – .

Разряды регистра адреса подразделяются на две группы. Одна группа в n1 разрядов определяет двоичный номер строки, в которой расположена ячейка памяти, другая группа в n2 разрядов определяет двоичный номер столбца, в котором находится ячейка памяти. Каждая группа разрядов адреса подается на соответствующий дешифратор строк или столбцов. При этом каждый из дешифраторов создает на одной из своих выходных цепей уровень логического нуля. На остальных выходах устанавливается уровень логической единицы. Ячейка памяти, оказавшаяся под воздействием двух логических нулей на соответствующих линиях и одновременно, является выбранной. Этому соответствует подача логического нуля на линию триггера ячейки памяти, рассмотренной выше.



В режиме считывания содержимое ячейки памяти выдается на усилитель считывания и с него на выход микросхемы DO. При этом сигнал записи должен иметь пассивный единичный уровень. Режим записи устанавливается подачей активного нулевого уровня сигнала на вход записи . Открывается усилитель записи, и бит информации с входа данных DI поступает в выбранную ячейку памяти для запоминания, при этом усилитель считывания закрывается и данные на выход DO схемы не поступают.

Указанные процессы происходят, если на входе выбора микросхемы действует активный уровень логического нуля. При уровне логической единицы на этом входе на всех выходах дешифратора строк устанавливается уровень логической единицы, и ЗУ оказывается в режиме хранения. Последовательность подачи управляющих сигналов индивидуальна для каждого типа микросхемы памяти. Между тем имеются общие закономерности. Рассмотрим последовательность подачи сигналов управления в режимах чтения и записи (рисунок 19.3).

Первым как в режиме записи, так и в режиме считывания на шину адреса должен выставляться адрес активизируемой ячейки памяти. Снимается адрес с шины после того, как запись в ячейку или чтение из ячейки завершено.


Рисунок 19.3 – Временные диаграммы работы ОЗУ статического типа

Один из управляющих сигналов записи, или выбора микросхемы, или оба должны устанавливаться в активное состояние после установки адреса (интервалы времени, и , ) и сниматься до снятия адреса (интервалы времени , и , ). Тем самым обеспечивается высокоимпедансное состояние выводов DO и DI микросхемы, что исключает возможность ложного обмена информацией между микросхемами памяти и устройствами при смене адресов. В случае пассивного уровня сигнала отключается соответствующий буферный усилитель считывания или записи в каждом из своих режимах. В случае же пассивного уровня сигнала вырабатывается единичный уровень сигнала на линии ячейки памяти, благодаря чему она отключается от линий P0 ) и P1 хранит записанную информацию.

На рисунке 19.3 приведены временные диаграммы работы ОЗУ в случае смены режима, т.е. режим считывания осуществляется после режима записи, а режим записи – после режима считывания. Поэтому происходит установка обоих сигналов и .

Обычно при нескольких режимах чтения подряд и при отсутствии обращения к микросхеме памяти сигнал имеет постоянное значение логической единицы. В этом случае активизация входа DO осуществляется только нулевым уровнем сигнала на входе . Первым определяется режим работы памяти, т.е. подается сигнал . Управление выводами DI и DO осуществляется сигналом , который подается внутри временного интервала действия сигнала .

Считывание информации из микросхемы памяти возможно только в интервал времени , когда завершился процесс формирования данных на выходе DO (интервал времени ), и пока не снят сигнал выбора микросхемы. При этом время выборки характеризуется временным интервалом с момента выставления сигнала и до момента формирования информации на выходе DO.

В режиме записи сигнал должен выставляться только тогда, когда записываемые данные готовы и поступили на вход DI (временной интервал ). Аналогично сами данные для записи должны быть подготовлены к моменту, когда выработается активный уровень сигнала (временной интервал ), и удержаны до окончания действия этого сигнала.

Микросхемы ОЗУ допускают наращивание емкости памяти как путем наращивания числа хранимых слов, так и путем наращивания разрядности этих слов. На практике часто используется комбинированная структура, объединяющая наращивание, как разрядности, так и количества хранимых слов. В этом случае формируется некоторое количество однотипных групп микросхем, объединенных в структуру с наращиванием разрядности слов. Далее эти группы объединяются в единую структуру с наращиванием количества хранимых слов.

Динамическое оперативное запоминающее устройство.

Как уже отмечалось, информация в ячейке динамического ОЗУ представлена в виде наличия или отсутствия заряда на конденсаторе. Схема ячейки памяти динамического ЗУ на одном МОП – транзисторе с индуцируемым -каналом представлена на рисунок 19.4 (выделена пунктирной линией).

Рисунке 19.4 – Принципиальная схема ячейки ОЗУ динамического типа с элементами записи и усилителя считывания

На схеме также показаны общие элементы для – ячеек одного столбца. Главное достоинство этой схемы – малая занимаемая площадь. Накопительный конденсатор имеет МДП-структуру и изготовляется в едином технологическом цикле. Величина его емкости составляет сотые доли пФ. Конденсатор хранит информационный заряд. Транзистор выполняет роль переключателя, передающего заряд конденсатора в разрядную шину данных ШД при считывании либо заряжающего конденсатор при записи. В режиме хранения на адресной линии должен присутствовать потенциал логической единицы, под действием которого транзистор будет закрыт и конденсатор отключен от шины данных ШД. Включение конденсатора в шину данных осуществляется логическим нулем на линии . При этом на транзистор подается напряжение что приводит к его открыванию.

Поскольку шина данных ШД объединяет все ячейки памяти данного столбца, то она характеризуется большой длиной и ее собственная емкость имеет существенное значение. Поэтому при открывании транзистора потенциал шины данных изменяется незначительно. Чтобы установившийся потенциал на ШД однозначно идентифицировать с уровнем напряжения логического нуля или логической единицы, используется усилитель на базе транзистора и резистора . Непосредственно перед считыванием емкость шины данных подзаряжают подключением ее к источнику питания через транзистор . Делается это для фиксации потенциала шины данных. При считывании информации происходит перераспределение заряда конденсатора и заряда шины данных, в результате чего информация, хранимая на конденсаторе , разрушается. Поэтому в цикле считывания необходимо произвести восстановление (регенерацию) заряда конденсатора. Для этих целей, а также для записи в ячейку памяти новых значений, используются транзисторы и , которые подключают шину данных либо к источнику питания, либо к нулевому общему потенциалу. Для записи в ячейку памяти логической единицы необходимо открыть транзистор нулевым значением управляющего сигнала и подключить к шине данных источник питания. Для записи логического нуля необходимо нулевым потенциалом на входе открыть транзистор . Одновременная подача логических нулей на входы и не допускается, так как это вызовет короткое замыкание источника питания на общий провод заземления.

На рисунке 19.5 показан пример структуры микросхемы динамического ОЗУ емкостью 64 Кбит. Данные в этой микросхеме памяти представлены как 64 К отдельных бит, т.е. формат памяти 64 . Ввод и вывод осуществляется раздельно, для чего предусмотрена пара выводов и . Для ввода адреса имеется восемь контактов . Адресация к 64 К ячейкам памяти осуществляется шестнадцатиразрядными адресами . Причем сначала на входы подаются восемь младших разрядов адреса, а затем – восемь старших разрядов . Восемь младших разрядов адреса фиксируются в регистре адреса строки подачей сигнала (сигнал выборки строки). Восемь старших разрядов адреса фиксируются в регистре адреса столбца подачей сигнала (сигнал выборки столбца). Такой режим передачи кода адреса называется мультиплексированным по времени.

Рисунок 19.5 – Структура микросхемы ОЗУ динамического типа

Мультиплексирование позволяет сократить количество выводов микросхемы. Ячейки памяти расположены в виде матрицы из 128 строк и 512 столбцов.

На рисунке 19.6 представлены временные диаграммы, поясняющие работу динамического ОЗУ. В режиме считывания на адресные входы микросхемы подаются восемь младших разрядов , при этом производится выбор строки матрицы в соответствии с поступившим адресом. У всех ячеек памяти выбранной строки регенерируется заряд конденсаторов. Далее производится подача на адресные входы микросхемы восьми старших разрядов адреса, после чего вырабатывается сигнал . Этим сигналом выбирается нужная ячейка памяти из выбранной строки и считанный бит информации поступает на выход микросхемы . В режиме считывания промежуток времени между подачей сигнала и появлением данных на выходе называется временем выборки .

Рисунок 19.6 – Временные диаграммы работы ОЗУ динамического типа

В режиме записи за время цикла записи принимается интервал времени между появлением сигнала и окончанием сигнала . В момент появления сигнала записываемые данные уже должны поступать на вход . Сигнал обычно вырабатывается раньше сигнала .

Для каждого типа микросхем динамических ОЗУ в справочниках приводятся временные параметры, регламентирующие длительность управляющих сигналов, подаваемых на микросхему, а также порядок их взаимного следования.

Заряд конденсатора динамического ОЗУ со временем уменьшается вследствие утечки, поэтому для сохранения содержимого памяти процесс регенерации каждой ячейки памяти должен производится через определенное время. Следовательно, для предотвращения разряда запоминающих конденсаторов необходимо обращаться к каждой строке матрицы через определенное время. При обычном режиме работы ОЗУ это условие не соблюдается, так как обращение к одним ячейкам происходит часто, а к другим очень редко. Поэтому необходим специальный блок, ответственный за регенерацию памяти.

Для правильной работы динамического ОЗУ требуется довольно сложная схема управления. Вследствие того, что обращение к ОЗУ со стороны устройств, с которыми оно работает, и обращение со стороны схемы регенерации не зависит один от другого, следовательно, могут возникать одновременно, то необходимая схема, обеспечивающая упорядоченность этих обращений. Для этих целей существует схемы, управляющие работой динамических ОЗУ, реализованные на одном кристалле. Их использование позволяет значительно упростить построение памяти на динамических ОЗУ.

Постоянное запоминающее устройство предназначено для долговременного хранения информации, не разрушаемой при отключении питания. Принцип работы ПЗУ поясняет схема, изображенная на рисунке 19.7.

Таким образом, информация, хранимая в ПЗУ, определяется расположением диодов в пересечениях горизонтальных и вертикальных линий. При этом необходимое расположение диодов можно организовать двумя путями. В первом случае запись необходимой информации выполняется в ходе технологического процесса изготовления ПЗУ с использованием маскирующих фотошаблонов, причем запись информации производится в соответствии с технической документацией на данное ПЗУ. Такие ПЗУ называются масочными. Примерами таких ПЗУ являются ПЗУ с записанными программами работы станков с числовым управлением, преобразователи кодов и ряд других случаев, когда одна и та же информация используется в процессе работы множества однотипных устройств.

Рисунок 19.7 – Структура схема масочного ПЗУ

Во втором случае запись в ПЗУ осуществляет сам пользователь. Такие ПЗУ называются прожигаемыми ПЗУ. Запись информации в них производится с помощью специальных устройств, называемых программаторами. В процессе изготовления прожигаемых ПЗУ диоды устанавливаются во всех без исключения точках пересечения вертикальных и горизонтальных линий. Последовательно с каждым диодом включены плавкие перемычки, изготавливаемые из материала с относительно большим удельным сопротивлением, обычно из поликристаллического кремния или нихрома.

Если через горизонтальную и вертикальную линии пропустить импульс тока порядка 20 мА и длительностью 1 мс, то плавкая перемычка выгорает и соответствующий диод оказывается отключенным. Очевидно, что однажды записанная таким образом информация не может быть изменена. В реальных микросхемах ПЗУ вместо диодов обычно используются биполярные или полевые транзисторы.

Отдельным классом ПЗУ выделяют перепрограммируемые ПЗУ (ППЗУ), которые допускают стирание записанной информации и запись новой. Схема ППЗУ почти полностью совпадает с ранее рассмотренной схемой ПЗУ с той разницей, что в точках пересечения горизонтальных и вертикальных линий вместо диодов включены специальные МДП – транзисторы с так называемым изолированным затвором.

В обычном состоянии участок исток-сток транзистора электрический ток не проводит. Однако если приложить между истоком и стоком большое напряжение (приблизительно 80 В), то затвор зарядится в результате инжекции электронов. Такой процесс называется зарядкой через влияние. В дальнейшем заряд затвора будет сохраняться достаточно долго. Благодаря весьма высокому качеству диэлектрика из двуокиси кремния при температуре заряд уменьшается на 70% первоначального значения примерно за 10 лет. Отрицательный заряд на затворе притягивает дырки, создает в « -области проводящий -канал между истоком и стоком, т.е. транзистор оказывается в проводящем состоянии.

Стирание информации производится путем подачи специальных электрических сигналов в течение определенного времени. В качестве соединительного транзистора в электрически стираемых ППЗУ используется МНОП-транзистор. Он имеет следующую структуру: металл – нитрид кремния – оксид – полупроводник. Между затвором и полупроводником находятся два разных слоя диэлектрика. Использование таких ППЗУ позволяет осуществлять процесс программирования, не извлекая микросхему из устройства, в котором она эксплуатируется.

Контрольные вопросы

1 Провидите сравнительный анализ БИС ОЗУ статического и динамического типов.

2 Поясните принцип функционирования ячейки ОЗУ статического типа.

3 Какие функции в микросхеме памяти выполняют дешифраторы строк и столбцов?

4 Какая общая последовательность подачи управляющих сигналов на микросхемы ОЗУ статического типа в режиме считывания и записи?

5 Какие способы увеличения объема хранимой информации при организации модулей оперативной памяти вам известны?

6 Поясните принципы функционирования микросхем ОЗУ динамического типа.

7 Как организуется хранение информации в микросхемах ПЗУ?

8 Как реализуется возможность записи информации в прожигаемые ПЗУ?

9 Каким образом реализуются стирание и запись информации в ППЗУ?

Статические оперативные запоминающие устройства позволяют обеспечивать хранение записанной информации до тех пор, пока на микросхему подаётся питание. Однако запоминающая ячейка статического ОЗУ занимает относительно большую площадь, поэтому для ОЗУ большого объема в качестве запоминающей ячейки применяют конденсатор. Заряд на этой ёмкости естественно с течением времени уменьшается, поэтому его необходимо подзаряжать с периодом приблизительно 10 мс. Этот период называется периодом регенерации. Подзарядка ёмкости производится при считывании ячейки памяти, поэтому для регенерации информации достаточно просто считать регенерируемую ячейку памяти.

Схема запоминающего элемента динамического ОЗУ и его конструкция приведена на рисунке 1.


Рисунок 1. Схема запоминающего элемента динамического ОЗУ и его конструкция

При считывании заряда ёмкости необходимо учитывать, что ёмкость линии считывания много больше емкости запоминающей ячейки. Графики изменения напряжения на линии считывания при считывании информации с запоминающей ячейки без применения регенерации приведены на рисунке 2.


Рисунок 2. Графики изменения напряжения на линии считывания при считывании информации с запоминающей ячейки

Первоначально на линии записи/считывания присутствует половина питания микросхемы. При подключении к линии записи/считывания запоминающей ячейки заряд, хранящийся в запоминающей ячейке, изменяет напряжение на линии на небольшую величину DU. Теперь это напряжение необходимо восстановить до первоначального логического уровня. Если приращение напряжения DU было положительным, то напряжение необходимо довести до напряжения питания микросхемы. Если приращение DU было отрицательным, то напряжение необходимо довести до уровня общего провода.

Для регенерации первоначального напряжения, хранившегося в запоминающей ячейке в схеме применяется , включенный между двумя линиями записи/считывания. Схема такого включения приведена на рисунке 3. Эта схема за счет положительной обратной связи восстанавливает первоначальное значение напряжения в запоминающем элементе, подключенном к выбранной линии считывания. То есть, при считывании ячейки производится регенерация хранящегося в ней заряда.


Рисунок 3. Схема регенерирующего каскада динамического ОЗУ

Для уменьшения времени регенерации микросхема устроена так, что при считывании одной ячейки памяти в строке запоминающей матрицы регенерируется вся строка.

Особенностью динамических ОЗУ является мультиплексирование шины адреса. Адрес строки и адрес столбца передаются поочередно. Адрес строки синхронизируется стробирующим сигналом RAS# (Row Address strobe), а адрес столбца - CAS# (Column Adress Strobe). Мультиплексирование адресов позволяет уменьшить количество ножек микросхем ОЗУ. Изображение микросхемы динамического ОЗУ приведено на рисунке 4, а временные диаграммы обращения к динамическому ОЗУ на рисунке 5.


Рисунок 4. Изображение динамического ОЗУ на принципиальных схемах


Рисунок 5. Временная диаграмма обращения к динамическому ОЗУ

Именно так долгое время велась работа с динамическими ОЗУ. Затем было замечено, что обычно обращение ведется к данным, лежащим в соседних ячейках памяти, поэтому не обязательно при считывании или записи каждый раз передавать адрес строки. Данные стали записывать или считывать блоками и адрес строки передавать только в начале блока. При этом можно сократить общее время обращения к динамическому ОЗУ и тем самым увеличить быстродействие компьютера.

Такой режим обращения к динамическому ОЗУ называется быстрым страничным режимом доступа FPM (Fast Page Mode). Длина считываемого блока данных равна четырем словам. Для того, чтобы оценить время такого режима доступа к памяти время измеряют в тактах системной шины процессора. В обычном режиме доступа к памяти время доступа одинаково для всех слов. Поэтому цикл обращения к динамической памяти можно записать как 5-5-5-5. При режиме быстрого страничного доступа цикл обращения к динамической памяти можно записать как 5-3-3-3, то есть время обращения к первой ячейке не изменяется по сравнению с предыдущим случаем, а считывание последующих ячеек сокращается до трех тактов. При этом среднее время доступа к памяти сокращается почти в полтора раза. Временная диаграмма режима FPM приведена на рисунке 6.



Рисунок 6. Временная диаграмма обращения к динамическому ОЗУ в режиме FPM

Еще одним способом увеличения быстродействия ОЗУ является применение микросхем EDO (Extended Data Out — ОЗУ с расширенным выходом данных). В EDO ОЗУ усилители-регенераторы не сбрасываются по окончанию строба CAS#, поэтому времени для считывания данных в таком режиме больше. Теперь для того чтобы сохранить время считывания на прежнем уровне можно увеличить тактовую частоту системной шины и тем самым увеличить быстродействие компьютера. Для EDO ОЗУ цикл обращения к динамической памяти можно записать как 5-2-2-2.

Следующим шагом в развитии схем динамического ОЗУ было применение в составе ОЗУ счетчика столбцов. То есть при переходе адреса ячейки к следующему столбцу запоминающей матрицы адрес столбца инкрементируется (увеличивается) автоматически. Такое ОЗУ получило название BEDO (ОЗУ с пакетным доступом). В этом типе ОЗУ удалось достигнуть режима обращения к динамической памяти 5-1-1-1.

В синхронном динамическом ОЗУ (SDRAM) дальнейшее увеличение быстродействия получается за счет применения конвейерной обработки сигнала. Как известно при использовании конвейера можно разделить операцию считывания или записи на отдельные подоперации, такие как выборка строк, выборка столбцов, считывание ячеек памяти, и производить эти операции одновременно. При этом пока на выход передается считанная ранее информация, производится дешифрация столбца для текущей ячейки памяти и производится дешифрация строки для следующей ячейки памяти. Этот процесс иллюстрируется рисунком 7



Рисунок 7. Структурная схема конвейерной обработки данных

Из приведенного рисунка видно что, несмотря на то, что при считывании одной ячейки памяти время доступа к ОЗУ увеличивается, при считывании нескольких соседних ячеек памяти общее быстродействие микросхем синхронного динамического ОЗУ увеличивается. http://www.epos.kiev.ua/pubs/pm/pc133.htm

Литература:

Вместе со статьей "Динамические оперативные запоминающие устройства" читают:

(Тема)

Запоминающая ячейка динамического типа хранит информацию в виде заряда емкости. Ток утечки обратно смещенного p-n перехода составляет не более 10-10 A (0,1 нA ), а емкость - 0,1..0,2 пФ, следовательно постоянная времени разряда - более 1 мС . Поэтому через каждые 1..2 мС требуется производить подзаряд емкостей запоминающих элементов - регенерацию динамической памяти.

В динамических ОЗУ чаще используется т.н. "строчная регенерация", при которой в одном цикле регенерируются все элементы, расположенные в одной строке прямоугольной матрицы накопителя. Следует отметить, что любое обращение к запоминающей ячейке (запись или чтение) осуществляет ее регенерацию и одновременно регенерирует все ячейки, расположенные в той же строке накопителя.

Рис. 1. Управление регенерацией динамической памяти

Однако, при работе ОЗУ в составе МПС в общем случае нельзя дать гарантию, что в течение 2мС произойдет обращение ко всем строкам накопителя, т.к. поток адресов является случайным. Для обеспечения гарантированной сохранности информации в динамическом ОЗУ при работе МПС вводятся специальные циклы регенерации - обращения к ОЗУ по последовательным адресам строк.

В большинство динамических ОЗУ адрес ячейки подается за два приема : сначала - адрес строки, который запоминается во внутреннем регистре ОЗУ, потом по тем же линиям - адрес столбца. Каждая передаваемая по мультиплексированным линиям часть адреса сопровождается соответствующим управляющим сигналом (RAS, CAS).

Для регенерации накопителя достаточно провести обращение только к последовательным строкам - каждый цикл обращения для регенерации может состоять только из передачи адреса строки. Поэтому для полной регенерации накопителя объемом 16K (матрица 128 ´ 128) достаточно 128 тактов. Накопители большего объема реализуют на неквадратных матрицах, чтобы уменьшить число строк и сократить время регенерации. Так, накопитель объемом 64K имеет матрицу 128 ´ 512.

Различают несколько способов организации регенерации динамических ОЗУ в МПС.

Регенерация "по таймеру" . В состав МПС вкл ючается таймер регенерации, который каждые 2 мС формирует сигнал, блокирующий обращение МП к памяти и запускающий процедуру регенерации. Схема управления регенерацией включает в себя счетчик адреса регенерации, триггер регенерации и мультиплексор адреса.

Недостатком такого способа регенерации является значительная потеря времени на регенерацию - до нескольких процентов времени работы МПС, причем это время может возрастать с ростом объема памяти МПС. Таким образом, использование метода регенерации по таймеру снижает производительность МПС, т.к. при выполнении регенерации МП пребывает в состоянии ожидания.

"Прозрачная" регенерация . Главным достоинством метода прозрачной регенерации является отсутствие простоев МП при регенерации ОЗУ, поскольку для регенерации выбираются такие моменты времени, когда МП не занимает системную шину. Однажды начав регенерацию, совсем не обязательно проводить ее полностью. Циклы регенерации могут чередоваться с процессорными циклами, главное, чтобы процесс регенерации накопителя завершился за время, не превышающее 2 мС . Многие МП формируют специальные сигналы, отмечающие занятость шины. Эти сигналы можно использовать для управления триггером регенерации. Если МП (например, i8080) не формирует сигнала занятости магистрали, то такой сигнал можно сформировать специальной внешней схемой.

Так, в машинном цикле МП i8080 могут появляться такты T4, T5, в которых МП не занимает системную шину. Эти моменты времени можно выделять специальной схемой и использовать для регенерации.

Микропроцессор Z80 имеет встроенный счетчик регенерации и обеспечивает этот процесс самостоятельно параллельно с внутренней обработкой информации на кристалле.

В большинстве МП не предусмотрены средства обеспечения регенерации, т.к. в МПС может и отсутствовать динамическая память. Однако, в составе микропроцессорных комплектов выпускаются специальные БИС контроллеров регенерации. В качестве примера кратко рассмотрим структуру и функционирование БИС К1818ВТ03 - "Контроллер динамической памяти". Ниже показана структура БИС 565РУ5 (64К´ 1), а на рис.3 временная диаграмма ее работы.


Рис. 2 . Структура БИС динамического ОЗУ

БИС динамических ЗУ имеют объемы от 16К´ 1 (565РУ3) до 1М´ 1 (..РУ9 ), но имеют одинаковую структуру и линии управления (за исключением числа адресных).


Рис. 3 . Временная диаграмма работы БИС динамического ОЗУ

Из рисунков следует, что адрес ячейки подается в ОЗУ последовательно двумя порциями по одним и тем же линиям в сопровождении управляющих сигналов RAS\ (строб адреса строки) и CAS\ (строб адреса столбца). Поэтому адрес на системной шине, формируемый МП, должен мультиплексироваться, одновременно вырабатываться управляющие сигналы RAS и CAS.

Кристалл ОЗУ бывает выбран только при условии RAS = CAS = 0, что позволяет осуществлять селекцию блоков по двум координатам.

Контроллер динамической памяти (КДП) обеспечивает мультиплексирование адреса системной шины, выработку управляющих сигналов CAS и RAS (для селекции модулей ОЗУ), а также внутреннюю (по таймеру) или внешнюю (прозрачную) регенерацию.

Структурная схема контроллеравключает в себя :

· буферные схемы Буф.1,2,3 для подключения системной шины адреса и управления;

· счетчик адреса регенерации;

· мультиплексоры MUX1,2;

· схему управления с тактовым генератором, таймером и триггером регенерации, арбитром и логической схемой L для формирования управляющих сигналов.

КДП обеспечивает преобразование сигналов системной шины МПС в сигналы управления динамическим ОЗУ, причем может работать в двух режимах : "16/64" (на память 16K или 64K соответственно). В режиме "16" две старшие линии адреса используются для формирования одного из сигналов RAS\, в режиме "64" КДП может управлять двумя банками по 64K, причем сигнал RAS появляется на одном из выходов RAS0 или RAS1 - в зависимости от состояния линии RAS3\/B0, которая в режиме "64" становится входом, определяющим номер банка ОЗУ.

Регенерация может осуществляться в двух режимах - внутреннем и внешнем. Если вход REFR остается неактивным 10..16 мкС , то формируется запрос на цикл регенерации от внутреннего таймера, причем в случае конфликта арбитр отдает предпочтение циклу памяти. Таким образом, и при регенерации по таймеру используются свободные такты шины. При внешней регенерации запрос должен быть сформирован на входе REFR.

Сигнал PCS - "Защищенный выбор кристалла" отличается от традиционного CS тем, что если PCS сформирован, то цикл ЗУ аннулировать нельзя.

Рис. 4 . Контроллер динамического ОЗУ

RD, WR - запросы на циклы чтения и записи соответственно.

X0, X1 - выводы для подключения кварцевого резонатора при работе с внутренним генератором. При работе с внешним генератором на вход X0 подается высокий потенциал, а на X1 - частота CLK внешнего генератора.

Выходной сигнал SACK\ вырабатывается КДП в начале цикла обращения к памяти. Если запрос от МП приходится на цикл регенерации, то SACK\ задерживается до начала цикла чтения/записи.

Выходной сигнал XACK\ ("Готовность данных") вырабатывается в конце цикла чтения/записи.

Сигналы SACK\ и XACK\ можно использовать для управления потенциалом на входе READY микропроцессора.

В некоторых, достаточно редких частных случаях, можно воспользоваться способом регенерации "размещением данных" . Так, если, например, память изображения дисплея является составной частью единого ОЗУ МПС и МП регулярно обращается в эту область для поддержания изображения на экране, то достаточно расположить область ОЗУ дисплея в памяти МПС таким образом, чтобы она "перекрывала" все строки накопителя (достигается соответствующим подбором адресов), чтобы каждое обращение к области ОЗУ дисплея, помимо регенерации изображения, регенерировала и всю память МПС.