Типы выпрямителей переменного тока Какие бывают выпрямители? Как сделать выпрямитель и простейший блок питания

В осветительной электрической сети, от которой получают питание все бытовые электроприборы, как правило, течёт переменный ток. Редкое исключение составляют небольшие сельские посёлки, где электростанции дают постоянный ток.

Радиоприемники, магнитофоны, электропроигрыватели и другие устройства работают на электронновакуумных лампах или полупроводниковых приборах, на электроды которых необходимо подавать напряжение постоянного тока. Зарядка аккумуляторов может быть произведена только постоянным током. Ряд производственных процессов на заводах, как например, хромирование, невозможно осуществить, если не имеется постоянного напряжения.

Почему же наши электростанции дают переменный ток? Ведь электронагревательные приборы и электромоторы так же хорошо будут работать и на постоянном токе? Объясняется это главным образом тем, что переменный ток можно легко трансформировать (преобразовать) в различные напряжения, что нельзя делать с постоянным током. Передачу энергии переменного тока по линии электропередачи можно осуществить со значительно меньшими потерями, чем при постоянном токе, вследствие того, что напряжение в линии в этом случае может составлять десятки и сотни тысяч вольт. В месте потребления напряжение понижается на трансформаторных подстанциях и в наши квартиры и на заводы подается переменное напряжение 127 или 220 в.

Как же получить постоянное напряжение, необходимое для нормальной работы некоторых приборов?

Для преобразования переменных напряжений в постоянные служит выпрямитель. Понять, как работает выпрямитель, можно, только ясно представляя, что такое переменный ток. Переменным током называется такой ток, направление и величина которого меняются во времени.

В осветительной сети, по принятому в нашей стране стандарту, направление тока меняется 50 раз в секунду, или, как говорят, частота промышленного тока равна 50 периодам (герцам). Это означает, что в какой-то период времени ток в сети равен 0, затем ток начинает плавно возрастать, достигает максимального (амплитудного) значения, после чего ток в сети постепенно уменьшается и становится равным нулю. После этого направление тока снова изменяется и ток опять плавно возрастает до максимального значения, а затем вновь уменьшается до нуля. Этот процесс напоминает качели, которые, качаясь около положения равновесия (нулевое значение тока), поднимаются на максимальную высоту (максимальное значение тока), затем опускаются, опять поднимаются и т. д. Такой процесс изменения тока называют периодическим. В нашей электросети такой процесс повторяется пятьдесят раз в секунду, т. е. ток (напряжение) имеет пятьдесят периодов в секунду, изменяя своё значение по синусоидальному закону.

Графически картина изменения тока в сети представлена на рис. 1. Такой график получается, если на вертикальной оси откладывать значения тока или напряжения, а по горизонтальной оси - отрезки времени, отсчитываемые от какого-то момента, принимаемого за начало отсчёта.

Задачей выпрямителя является получение постоянного напряжения из переменного; Постоянное напряжение графически можно изобразить так, как это показано на рис. 2. Постоянный ток не меняет ни своего направления, ни своей величины.

Процесс выпрямления переменного тока (напряжения) заключается в том, что на пути тока в электрической цепи включается элемент - вентиль, который пропускает ток только в одном направлении (одного знака). Схематично электрическая цепь переменного тока с вентилем представлена на рис. 3. Односторонняя проводимость вентиля приводит к тому, что только в положительные полупериоды ток проходит через вентиль, а в отрицательные полупериоды (отмеченные на рис. 1 знаком "-") тока в цепи нет. Графически ток в такой цепи можно изобразить так, как это показа но на рис. 4. При положительной полуволне сопротивление вентиля мало и ток свободно проходит через него. При отрицательной полуволне ток встречает большое сопротивление, так как в обратном направлении сопротивление вентиля в сотни и даже тысячи раз больше и ток через него не проходит. Таким образом, включив в электрическую цепь переменного тока вентиль, мы уже не получаем в этой цепи переменного тока. Ток в этой цепи будет меняться только по величине и не будет изменять своего направления. Такой ток называют пульсирующим. Использовать его можно, например, для зарядки аккумуляторов. Для питания радиоаппаратуры такой ток не годится. Требуется дальнейшее его сглаживание, с тем чтобы ток превратился из пульсирующего в постоянный. Это достигается применением фильтра.

В простейшем случае роль фильтра может выполнять конденсатор достаточно большой ёмкости. На рис. 5 показана схема цепи с вентилем и конденсатором С, являющимся фильтром. Сглаживание пульсаций (фильтрация) выпрямленного тока осуществляется вследствие того, что конденсатор заряжается током, проходящим через вентиль, и запасает электрическую энергию. Как только ток через вентиль начнет уменьшаться и напряжение на нагрузке Rн выпрямителя начнет падать, - а это происходит в конце каждого положительного полупериода, - конденсатор отдаёт накопленную им за положительный полупериод энергию. Графически это изображено на рис 6. Как видно из рисунка, ток ещё не стал совсем постоянным и заметны резкие пульсации. Необходим более совершенный фильтр, который на нагрузке обеспечил бы постоянный ток с очень незначительными пульсациями, которые не будут оказывать существенного влияния на работу устройства, питаемого от выпрямителя.

Существует несколько типов выпрямителей. Наиболее простым из них является однополупериодный, схема которого изображена на рис. 7. В таком выпрямителе используются только положительные полупериоды выпрямленного тока. Частота пульсаций этого тока равна частоте сетевого напряжения и для сглаживания пульсаций выпрямитель, собранный по однополупериодной схеме, требует хорошего фильтра. Такие выпрямители используются для питания аппаратуры, потребляющей незначительный ток, так как при возрастании тока необходимо будет усложнять фильтр выпрямителя.

Более распространена двухполупериодная схема выпрямления, где (см. рис. 8) используются два вентиля В1 и В2. Ток в нагрузке протекает всё время в одном направлении. Выпрямление напряжения происходит следующим образом. В какой-то момент времени на одном (верхнем, по схеме} выводе вторичной обмотки трансформатора Тр1 будет положительное напряжение по отношению ко второму (нижнему) концу. Ток пойдёт через вентиль В1, и имеющий в прямом направлении маленькое сопротивление, затем через нагрузку на среднюю точку вторичной обмотки трансформатора. На рис. 8 прохождение тока показано сплошной стрелкой. Так будет продолжаться в течение первого положительного полупериода. При изменении направления тока в сети на верхнем конце трансформатора будет уже отрицательное напряжение и ток через вентиль B1 не пойдёт, так как вентиль будет иметь очень большое сопротивление. На нижнем конце вторичной обмотки трансформатора теперь будет положительное напряжение и ток пойдёт уже через вентиль В2, нагрузку и на среднюю точку вторичной обмотки - трансформатор Тр1.

При таком включении вентилей используются уже оба полупериода выпрямляемого напряжения. Частота пульсаций в таком выпрямителе в два раза больше и поэтому значительно облегчается фильтрация выпрямленного напряжения. По двухполупериодной схеме собраны почти все выпрямители для радиоприёмников, телевизоров и магнитофонов.

Существует ещё мостовая схема включения выпрямителя. В этом случае выпрямление происходит по двухполупериодной схеме, но трансформатор имеет более простую конструкцию, вторичная обмотка его содержит в два раза меньше витков и не требуется вывода от средней точки. Однако в выпрямителе, собранном по мостовой схеме, необходимо в два раза больше вентилей, чем при двухполупериодной схеме. Схема мостового выпрямителя изображена на рис. 9. Стрелками указано прохождение тока в оба полупериода.

В качестве вентиля для выпрямления переменного тока могут быть использованы селеновые или купроксные шайбы , кенотроны, газотроны или полупроводниковые диоды.

Для питания массовой радиоаппаратуры наибольшее распространение получили кенотронные и селеновые выпрямители. За последнее время начинают всё шире использоваться германиевые силовые диоды типа ДГ-Ц21-27.

Кенотрон представляет собой вакуумную, обычно стеклянную, радиолампу, имеющую два электрода - анод и катод. Двуханодный кенотрон имеет два анода. Вентильное свойство кенотрона проявляется в том, что ток через кенотрон может идти только в одном направлении - от анода к катоду. В обратном направлении - ток не пойдет, так как электроны вылетают только с поверхности нагретого катода и могут двигаться только на анод, если на нём в данный момент имеется положительное напряжение по отношению к катоду.

Простейшая однополупериодная схема выпрямителя с использованием в качестве вентиля кенотрона изображена на рис. 10. Направление тока I показано стрелкой. Конденсаторы С1 и С2 и дроссель Др1 составляют фильтр для сглаживания пульсаций. Подробно о фильтрах будет рассказано ниже.

Существует много различных типов кенотронов, каждый из которых рассчитан на определенные условия работы: одни позволяют получить большой выпрямленный ток при относительно низком напряжении, другие, наоборот, работают в выпрямителе, дающем высокое напряжение при ничтожно малом токе.

При конструировании выпрямителя прежде всего необходимо правильно выбрать тип кенотрона. Для этого нужно знать, какой ток и напряжение потребляет нагрузка, питающаяся от выпрямителя, и в соответствии с этими данными выбирать по справочнику подходящий тип кенотрона. Пусть требуется выбрать кенотрон, который предполагается установить в выпрямитель для питания приёмника. Приёмник имеет четыре лампы, не считая кенотрона.

Постоянное напряжение, потребное для питания радиоламп приёмника, равно 250 в. Общий ток, потребляемый анодно-экранными цепями всех ламп приемника, составляет около 40 мА.

Наиболее подходящим для нашего выпрямителя будет кенотрон 6Ц4П, который, по справочным данным, может обеспечить ток до 70 мА при двухполупериодной схеме выпрямления. По напряжению этот кенотрон также вполне подходит, так как для двухполупериодной схемы выпрямления обратное напряжение, возникающее в выпрямителе, не превышает тройного напряжения на нагрузке и равно 250х3 = 750 В, а кенотрон 6Ц4П выдерживает до 1000 В обратного напряжения.

В селеновом выпрямителе в качестве вентиля используют селеновые шайбы.

Селеновая шайба представляет собой железный диск или прямоугольную железную пластину, на которой с одной стороны нанесён тонкий слой полупроводника - селена. Сверху слой селена покрыт, для создания контакта, тонким слоем легкоплавкого металла.

Вентильные свойства селена проявляются в том, что он обладает односторонней проводимостью. Когда на железную пластину подан положительный полюс источника тока, селеновая шайба обладает ничтожно малым сопротивлением, и, наоборот, при смене полярности сопротивление шайбы возрастает в сотни раз.

Выбор селенового вентиля для выпрямителя производится также по току и напряжению, потребному для нагрузки. Необходимо помнить, что одна селеновая шайба выдерживает напряжение до 20 В, следовательно, если на нагрузке развивается напряжение больше этой величины, то селеновые шайбы нужно соединять последовательно.

Для нашего примера достаточно в каждое плечо двухполупериодного выпрямителя поставить по 13 шайб, так как напряжение на нагрузке равно 250 В и число шайб получится, если 250 В разделить на 20 В. Получившееся дробное число необходимо округлить до ближайшего целого. Чтобы определить, какого диаметра нужно поставить шайбы, необходимо помнить, что на один квадратный сантиметр поверхности селеновой шайбы допускается ток, равный 30 мА. Следовательно, чтобы определить площадь селеновых шайб для нашего выпрямителя, нужно разделить величину тока, потребляемого приемником, на допустимую плотность тока (величину тока, допустимую на 1 см 2). Площадь шайбы равна 40/30 = 1,33 см. Диаметр шайбы легко определить по известной формуле площади окружности

Sплощ = 0,25*π*D 2 ,

откуда диаметр шайбы равен

D = (4*S/π) 0,5 = (4*1,33/3,14) 0,5 ≈ 1,3 см.

Можно такого расчёта не производить и диаметр шайбы брать непосредственно из справочника. В случае, если у радиолюбителя имеются шайбы какого-то другого диаметра, то их можно использовать в этом выпрямителе. Если шайбы имеют больший диаметр, чем получился по расчету, их можно установить в качестве вентиля без всяких изменений в схеме выпрямителя, помня только, что допустимое напряжение на каждую шайбу не должно превышать 20 В.

В случае если диаметр имеющихся шайб меньше, чем получился по расчету, то шайбы можно соединить параллельно с таким расчетом, чтобы общая площадь двух параллельно соединённых шайб была равна или больше получившейся по расчету. При параллельном соединении шайб число их удваивается, так как необходимо соблюдать условие допустимого напряжения на каждую шайбу.

Расчёт вентиля, в качестве которого используется германиевый диод (рис. 11), производится аналогично. Зная ток нагрузки и напряжение на ней, выбирают по справочнику подходящий тип диода. Может случиться, что имеющиеся германиевые диоды типа ДГ-Ц не подходят по допустимому току или напряжению. Если диоды не подходят по току (ток нагрузки больше допустимого), то необходимо поставить несколько диодов, соединенных параллельно. Если диоды не подходят по напряжению, их соединяют последовательно. Расчёт числа последовательно соединенных диодов сводится к тому, чтобы выбрать такое количество диодов, при котором падение напряжения на каждом из них не превысило допустимого.

При последовательном соединении диодов типа ДГ-Ц каждый из них следует зашунтировать сопротивлением не менее 100 кОм мощностью до 1 Вт. Шунтировать диоды необходимо для выравнивания падения напряжения на каждом из них. Выпускаемые диоды имеют значительный разброс параметров, и может быть такой случай, когда на одном из них падение напряжения будет в несколько раз больше, чем на другом, что выводит диоды из строя. Этого не произойдет, если каждый диод будет зашунтирован сопротивлением и падение напряжения распределится равномерно между каждым диодом.

При параллельном соединении полупроводниковых диодов типа ДГ-Ц количество их рассчитывается по несложным формулам. Так, для диодов типа ДГ-Ц21 - 24 число параллельно соединённых диодов будет равно

Для диодов типа ДГ-Ц25 - 27 число параллельно соединённых диодов

n = 15,4I0 - 0,54.

В этих формулах I0 означает выпрямленный ток в амперах. Может случиться так, что число диодов n, рассчитанное по этим формулам, получается дробным. Тогда следует округлить это число до ближайшего большего целого числа. Иногда в расчете получается 0 или отрицательное число. Это означает, что необходимо поставить только один диод и никаких параллельных соединений делать не нужно, так как выбранный диод обеспечит требуемую величину выпрямленного тока.

Сглаживающий фильтр

Как указывалось выше, для сглаживания пульсаций после выпрямителя на его выходе включается фильтр. Обычно фильтр состоит из дросселя фильтра Др1 (рис. 12), обмотка которого, выполненная из нескольких тысяч витков тонкой проволоки, располагается на стальном сердечнике. В фильтр входит также два и более конденсаторов фильтра. На месте этих конденсаторов в подавляющем большинстве случаев применяются электролитические конденсаторы, имеющие сравнительно небольшие габариты и большую ёмкость (10...50 мкф}.

Фильтр значительно ослабляет переменную составляющую выпрямленного напряжения и мало влияет на постоянную составляющую, идущую на питание анодно-экранных цепей приёмника.

Качество фильтра определяется его коэффициентом фильтрации, который показывает, во сколько раз переменная составляющая на выходе фильтра ослабляется относительно переменной составляющей на его входе.

Допустимая величина переменной составляющей на выходе фильтра зависит от аппаратуры, которая питается от данного выпрямителя. Для усилителей низкой частоты амплитуда пульсаций анодного напряжения не должна превышать 0,5-1% от напряжения полезного сигнала, измеренного в анодной цепи данного каскада. Для каскадов усиления высокой и промежуточной частоты эта амплитуда не должна превышать 0,05-0,1% (0,1-0,2 В).

Работа фильтра зависит от произведения индуктивности дросселя на ёмкость конденсатора фильтра на выходе. Ёмкость этого конденсатора обычно берут в пределах 10-40 мкф. Индуктивность дросселя для маломощного выпрямителя обычно не превышает 20-30 Гн.

При прикидке данных фильтра можно пользоваться следующим правилом: произведение индуктивности катушки дросселя фильтра, выраженное в генри, на ёмкость конденсатора на выходе фильтра, выраженное в микофарадах, должно равняться 200.

Для улучшения фильтрации можно составлять сглаживающий фильтр из нескольких звеньев. Улучшения фильтрации можно также добиться путём применения настроенного дросселя, для этого параллельно дросселю фильтра подсоединяется конденсатор постоянной ёмкости (на рис. 12 это подключение показано пунктиром).

Ёмкость конденсатора берётся в пределах 0,05-0,1 мкф и в каждом отдельном случае находится опытным путём.

Дроссель фильтра можно включить как в «+», так и в «-» выпрямителя, это не скажется на качестве работы фильтра. В некоторых случаях, когда желательно воспользоваться падением напряжения на обмотке дросселя фильтра для подачи отрицательного смещения на управляющие сетки ламп усилителя приёмника, дроссель включают в минусовую цепь выпрямителя.

При питании малоламповых приемников вместо дросселя фильтра можно включить обмотки (или обмотку) трансформатора низкой частоты.

Конструктивно дроссель для сглаживающих фильтров аналогичен маломощному силовому трансформатору. Разница заключается в том, что трансформатор имеет несколько обмоток, дроссель только одну. Сердечник дросселя обязательно должен иметь воздушный зазор, который устраняет возможность магнитного насыщения сердечника постоянным током, протекающим по обмотке дросселя.

Магнитное насыщение уменьшает индуктивность дросселя, что ухудшает работу фильтра.

Конструктивно дроссель фильтра и силовой трансформатор выпрямителя можно рассчитать, руководствуясь статьей, напечатанной в приложении № 1 для начинающих, «Расчет и изготовление силового трансформатора» (разослано с журналом «Радио» № 5 за 1957 год). Следует только учитывать, что, задаваясь напряжением на выходе выпрямителя, нужно принять во внимание падение напряжения на дросселе фильтра и что в случае применения двухполупериодного кенотронного выпрямителя с конденсаторным фильтром эффективное напряжение и ток повышающей обмотки связаны с напряжением и током на выходе выпрямителя следующими соотношениями: напряжение на вторичной обмотке берётся в 2..2,2 раза больше напряжения на выходе выпрямителя, а ток в обмотке 1..1,2 I0. Токи и напряжения обмоток для накала ламп и кенотрона определяются данными накала кенотрона и ламп, для питания которых предназначен рассчитываемый выпрямитель.

Вместо дросселя фильтра иногда применяют активное сопротивление, которое для получения хорошей фильтрации должно иметь значительную величину.

Недостатком такого фильтра является большое падение напряжения на сопротивлении фильтра, поэтому применять такой фильтр можно только в маломощных усилителях. При расчёте выпрямителя с таким фильтром задаются допустимым падением выпрямленного напряжения на сопротивлении, включенном в фильтр, Uпад, после чего величину этого сопротивления R находят по формуле

где I0 - ток в мА, снимаемый с выпрямителя.

Очень часто для питания той или иной аппаратуры применяются различные постоянные напряжения. Для того чтобы использовать для этой цели один и тот же выпрямитель, на его вход включают цепочку из нескольких последовательно соединённых постоянных сопротивлений величиной по нескольку тысяч Ом. Эти сопротивления не должны быть очень большими, так как в противном случае напряжение, снимаемое с делителя, будет сильно зависеть от величины нагрузки. Они также не должны быть очень малыми, чтобы не перегружать выпрямитель.

Одними из самых распространенных преобразователей тока являются выпрямители переменного тока в пульсирующий (постоянный по направлению движения носителей, но переменный по мгновенной величине) ток. Они имеют очень широкое применение. Условно их можно разделить на маломощные выпрямители (до нескольких сотен ватт и выпрямители большой мощности (киловатты и больше)).

Главною его частью является выпрямляющее устройство В, образованное из диодов, объединенных особым образом. Именно здесь и происходит преобразование переменного тока в пульсирующий постоянный. Переменное напряжение подается на выпрямляющее устройство через трансформатор Тр. В некоторых случаях трансформатора может и не быть (если напряжение силовой сети отвечает той, которая необходима для работы выпрямителя). Трансформатор(если он есть) в большинстве также имеет особенности в соединении его обмоток. Пульсирующий ток, как правило не является постоянным по величине в каждое мгновение времени, и когда необходимо иметь более сглаженное его значение, чем полученный после выпрямляющего устройства, применяют фильтры Ф. В случае необходимости выпрямитель дополняют стабилизатором напряжения или тока Ст, который поддерживает их на постоянном уровне, если параметры силовой сети изменяется по разным причинам. Структурную схему завершает нагрузка Н, которая значительно влияет на работу всего устройства и поэтому считается составляющей частью всего преобразователя.

Собственно выпрямителем является та его часть, которая обведена на рисунке выше пунктиром и состоит из трансформатора и выпрямительного устройства.

В этом подразделе рассматриваются выпрямители малой мощности, которые необходимы для обеспечения постоянным напряжением всяких устройств в областях управления, регулирования, усилителях тока, генераторах малой мощности и так далее. Как правило, они питаются от однофазного переменного напряжения 220 или 380 В частотою 50 Гц.

Нулевая схема выпрямления

Рассмотреть принцип действия самого простого выпрямителя однофазного тока целесообразно на так называемой нулевой схеме. Хотя она сейчас встречается относительно редко (о чем речь пойдет далее), знание физических процессов, которые происходят в этой схеме, очень важны для понимания дальнейшего материала.

Нулевая схема выглядит так:

Трансформатор Тр имеет на вторичной стороне две обмотки, соединенные последовательно таким образом, что относительно средней точки а напряжения на свободных концах обмоток в и с одинаковые по величине, но противоположные по фазе. Выпрямительное устройство образовано двумя диодами D1 и D2, которые соединены вместе своими катодами, тогда как каждый анод соединен с соответствующей обмоткой. Нагрузка Zн присоединена между катодами диодов и точкой трансформатора.

Рассмотрим, как возникает пульсирующее напряжение на нагрузке. Сначала будем считать нагрузку чисто активным сопротивлением, Z н =R н. Когда напряжение в обмотках будет изменяться по синусоидальному закону, то в тот полупериод, когда к аноду диода приложен положительный потенциал, будет проходить прямой ток. Поскольку напряжение на диоде составляет доли вольта, пренебрежем им. Тогда вся положительная полуволна переменного напряжения будет приложена просто к нагрузке R н. Когда напряжение приложенное минусом к аноду, тока не будет (малым обратным током диода также пренебрежем). Таким образом, до нагрузки будем доходить лишь положительная полуволна переменного напряжения в течении половины периода. Вторая половина периода будет свободна от тока.

Вторичные обмотки соединены противофазно, нагрузка общая для обеих обмоток, таким образом, в то время, когда в одной из них (например в верхней) ток будет проходить, другая будет от него свободна и наоборот.

Поэтому в нагрузке каждый полупериод будет заполнен полуволной переменного напряжения:

И выпрямленное напряжение U d будет иметь вид одинаковых полуволн, которые повторяются с периодом, вдвое меньшим, чем период переменного напряжения в сети питания (2π радиан). Для обобщения, что будет удобно, далее будем считать, что период изменения выпрямленного напряжения меньше 2π в m раз и равняется 2π/m (в нашем случае m -2). Если нагрузка активное сопротивление R н, то и ток в нем i d , будет повторять кривую напряжения.

Рассмотренная схема будет иметь тот недостаток, что во вторичных обмотках по сравнению с первичной имеют место значительные пульсации тока, потому что эти обмотки работают по очереди. Поскольку они намотаны на один сердечник, магнитный поток в последнем будет переменным, поэтому и в первичной обмотке ток будет переменным, имея как положительную, так и отрицательную полуволны. Как известно из курса электротехники, действующие и средние значения тока или напряжения одинаковые только для постоянного тока. Чем больше пульсации, тем больше будет действующее значение относительно среднего. Поэтому мощности обеих сторон трансформатора не будут одинаковыми. Однако трансформатор один, и объем железа для его сердечника следует выбирать, исходя из какого-то одного значения мощности.

Поэтому условно ввели понятие типовой мощности трансформатора, которая равняется среднему мощностей обеих сторон:

Выпрямительный мост или схема Гретца

Указанный недостаток можно исправить, используя выпрямляющее устройство в виде так называемого моста (схема Гретца):

В этом случае первые полупериоды будут работать, например, диоды D2 и D4, а вторые полупериода — D1 и D3. На нагрузке каждый раз будет полная полуволна вторичного напряжения:

Мостовая схема кроме того имеет менее сложный, более легкий и дешевый трансформатор. у нее есть еще несколько преимуществ.

Интересно, что эта схема появилась исторически раньше нулевой однако распространения не получила, потому что имела во-первых четыре диода вместо двух. Однако главным было не их количество, а то что при работе каждые полупериода ток проходит через два последовательно соединенных диода, на которые падает двойное напряжение. На то время полупроводниковых диодов еще не было, а вакуумные или ртутные имели значительное падение напряжения при прохождении прямого тока, что существенно понижало коэффициент полезного действия. Оказалось, что более сложный трансформатор нулевой схемы, но с одним диодом в кругу выпрямления тока экономично выгоднее, чем мостовая схема с удвоенным числом диодов и двойным расходом энергии на них. И только появление относительно дешевых полупроводниковых диодов с очень маленьким падением прямого напряжения позволило повернуться к мостовым схемам, которая сейчас практически вытеснила нулевую (в этом при желании можно усмотреть проявление одного из диалектических законов – развитие по спирали).

Основные соотношения для выпрямителя

Выведем некоторые важные формулы, которые описывают процессы, существующие в этой схеме. Будем считать, что заданными величинами являются средние значения напряжения на нагрузку U d и среднее значение тока в нем I d .

Запомним это выражение на дальнейшее. В нашем случае m=2 и . Поскольку U d считаем заданным, то


Из предыдущего выражения имеем:

Этот коэффициент определяет отношения питающей сети к напряжению на обмотке вторичной стороны:

Действующее значение тока вторичной обмотки

Ток вторичной обмотки в то же время есть током в нагрузке. Поскольку нагрузка чисто активная и ток в ней повторяет по форме пульсирующее напряжение, то между его средним значением и его действующим значением существует такая же зависимость, что и для напряжений, то есть


Действующее значение тока первичной обмотки

Ток в первичной обмотке повторяет с учетом n ток вторичной обмотки:

Мощность трансформатора

Мощности первичной и вторичной сторон трансформатора в этой схеме одинаковые, поэтому:

Пульсация выпрямленного напряжения

Пульсирующее напряжение состоит из среднего значения U d и бесконечного количества гармоничных составляющих, амплитуды которых можно определить по формулам Фурье. Если начало координат выбрать так как на рисунке, то в гармоничном составе будут присутствовать только косинусные гармоники (т.к. кривая симметрична относительна оси координат). Амплитуда k-ой гармоники определяется по формуле:

Где: l – полупериод π/m;

Наибольшую амплитуду будет иметь первая гармоника U (1) m , поэтому определим только ее, предположив, что k=1:

Заменив получим:

Отношение первой гармоники к среднему значению называют коэффициентом пульсаций:

Запомним эту формулу на будущее, а сейчас отметим, что в нашем случае при m – 2, q – 2/3. Это большие пульсации – амплитуда первой гармоники составляет 67% от среднего значения выпрямленного напряжения.

Средний ток диодов

Как мы уже видели диоды работают по очереди – каждый из них проводит в среднем половину общего тока, который есть в нагрузке. Поэтому каждый из диодов должен быть рассчитан на ток I в = I d /2

Наибольшее обратное напряжение на диоде

В то время когда диод B1 проводит его можно считать замкнутым, и тогда к диоду B2 будет приложено в обратном направлении напряжение вторичной обмотки. Поэтому каждый из диодов должен быть рассчитан на ее амплитудное значение:

Поскольку большинство радиоэлектронных устройств питаются постоянным током, а в нашей сети переменный, то самое время научиться его «выпрямлять». Для преобразования переменного напряжения или тока в постоянный служат выпрямители, о которых мы и поговорим. Самый простой выпрямитель можно выполнить всего на одном диоде:

На графиках, полученных с помощью осциллографа и представленных на рисунке, хорошо видно, что до диода напряжение было переменным, разнополярным. Диод «обрезал» отрицательные полуволны, и остались одни положительные. Таким образом, мы получили однополярное напряжение, но оно сильно пульсирует, и питать им электронику невозможно. Чтобы сгладить пульсации используют конденсаторы большой емкости:

Пока проходит положительная полуволна, конденсатор заряжается, во время провала он отдает запасенную энергию и разряжается. Теперь дело обстоит несколько лучше, но не совсем хорошо — чем мощнее нагрузка, тем глубже будут провалы и тем большую емкость нужно включать, чтобы как-то спасти положение. Поэтому такой вид выпрямителя, который называется однополупериодным , используют достаточно редко и только для выпрямления переменного тока достаточно высокой частоты и малых токов нагрузки. В противном случае размеры сглаживающих конденсаторов будут неоправданно большими.

Для улучшения формы выпрямленного напряжения достаточно добавить в схему еще три диода:

В этом выпрямителе, который называют двухполупериодным, волны перенаправляются диодами и на выходе получается тоже пульсирующее напряжение, но удвоенной частоты, а пауз между импульсами практически нет. Добавим сюда сглаживающий конденсатор и увидим, что постоянное напряжение действительно похоже на постоянное:

Преимущество такого типа выпрямителя не только в лучшей форме выпрямленного напряжения, но и в том, что в качестве диодов можно использовать приборы, рассчитанные на вдвое меньший ток, поскольку в каждый момент времени через каждый диод течет только половина тока нагрузки. Такая схема получила настолько широкое распространение, что диоды собирают в мосты прямо на заводе. Такие сборки мы называем диодными или выпрямительными мостами.

Но двухполупериодная схема может иметь и другой вид, в котором присутствует всего два диода:

Здесь «минусовым» проводом служит отвод от середины вторичной обмотки трансформатора, а положительные полуволны собираются двумя диодами на «плюсе» благодаря двум одинаковым полуобмоткам. В этой схеме диоды тоже работают с половинным током нагрузки, но оправдана она лишь тогда, когда трансформатор имеет две обмотки, каждая из которых выдает номинальное напряжение и обмотки эти можно включить последовательно.

В этой статье мы разберем какие бывают выпрямители, для какой цели служат, в чем заключаются особенности того или иного выпрямителя. Если мы решаем собрать какое-либо устройство или просто необходимо запитать готовое, то мы можем использовать питание от гальванических элементов (батареек), либо воспользоваться для этих целей аккумуляторами. Но как быть, если радиоустройство не планируется носить с собой и оно потребляет значительный ток? В таких случаях запитывают устройство от сети 220 вольт.

Напрямую запитать от 220 вольт, разумеется, мы не можем, напряжение слишком высокое и ток переменный, а для питания электронных устройств почти всегда необходим постоянный ток и более низкое напряжение. Необходим так называемый сетевой адаптер .

Фотография трансформатора

Понизить напряжение мы можем с помощью трансформатора, о нем мы поговорим в одной из следующих статей, пока нам достаточно знать, что с помощью трансформатора мы можем понизить или повысить напряжение при переменном токе. Далее нам необходимо сделать из переменного тока постоянный, для этих целей и служит выпрямитель. Существуют три основных типа выпрямителей.

Однополупериодный выпрямитель

Этот выпрямитель работает только в течение положительного полупериода синусоиды. Это можно видеть на следующем графике:

На выходе после диода мы получаем пульсирующее напряжение, нам нужно сделать из него постоянное, то есть из пульсирующего тока получить постоянный. Для этих целей служит электролитический конденсатор большой емкости, подключенный параллельно выходу питания в соответствии с полярностью. На фотографии ниже можно увидеть внешний вид подобного конденсатора:

Такой конденсатор благодаря большой емкости разряжается в течении отрицательного полупериода синусоиды. Обычно для фильтрации напряжения в выпрямителях применяют электролитические конденсаторы от 2200 микрофарад. В усилителях и других устройствах, где важно чтобы напряжение не проседало при увеличении мощности нагрузки, ставят конденсаторы на большую емкость, чем 2200 микрофарад. Для устройств питающих бытовую аппаратуру обычно конденсаторов такой емкости бывает достаточно. На следующем графике (выделено красным), мы можем видеть, как конденсатор поддерживает напряжение стабильным во время прохождения отрицательной полуволны.

Двухполупериодный выпрямитель со средней точкой

Для этой схемы необходим трансформатор, с двумя вторичными обмотками. Напряжение на диодах в два раза выше, чем при включении схемы с однополупериодным выпрямителем или при включении мостовой схемы. В этой схеме попеременно работают оба полупериода. В течении положительного полупериода работает одна часть схемы обозначенная В1 , во время отрицательного полупериода работает вторая часть схемы обозначенная В2 . Эта схема является менее экономичной, чем мостовая схема, в частности у неё более низкий коэффициент использования трансформатора. В этой схеме после диодов получается также пульсирующее напряжение, но частота пульсаций в два раза выше. Что мы и можем видеть на следующем графике:

Двухполупериодный выпрямитель, мостовая схема

И наконец, рассмотрим схему мостового выпрямителя, самую распространенную схему, по которой сделана большая часть всех выпущенных трансформаторных блоков питания. Сейчас объясню принцип работы :

Ток у нас на выходе с трансформатора переменный, а переменный ток, как известно, в течение периода дважды меняет свое направление. Говоря другими словам, конечно же упрощенно, при переменном токе с частотой 50 герц, ток у нас 100 раз в секунду меняет свое направление. То есть сначала он течет от вывода диодного моста под цифрой один , ко второму, потом в течение другой полуволны он течет от вывода под номером два к первому.

Рассмотрим, что происходит с диодным мостом при подаче напряжения, мы видим, на рисунке обозначен красным путь тока, напрямую пройти к выводу диодного моста соединенного с переменным током не позволит диод, который получается у нас включенный в обратном включении, а в обратном включении, как мы помним, диоды не пропускают ток. Току остается только один путь (выделено на рисунке синим), через нагрузку и через диод уйти в провод соединенный с выводом переменного тока. Когда у нас ток меняет свое направление, то вступает в действие вторая часть диодного моста, которая действует аналогично той, что описал выше. В итоге у нас получается на выходе такой же график напряжения, как и у двухполупериодного выпрямителя со средней точкой:

При сборке выпрямителя нужно учитывать полярность на выходе диодного моста, если мы подключим электролитический конденсатор неправильно, то рискуем испортить конденсатор и можно считать, что повезло, если этим все ограничится. Поэтому при сборке диодного моста важно помнить одно правило, плюс на выходе с моста всегда будет в точке соединения 2 катодов диодов, а минус в точке соединения анодов. Встречается и такое обозначение на схемах диодного моста:

Диодный мост можно собрать как из отдельных диодов, так и взять специальную сборку из 4 диодов, уже соединенных по мостовой схеме, и имеющий 4 вывода. В таком случае остается только подать переменный ток, идущий обычно с вторичной обмотки трансформатора на два вывода моста, а с оставшихся двух выводов снимать плюс и минус. Обычно на самой детали бывает обозначено, где какой вывод у моста. Так выглядит импортный диодный мост:

Фото диодный мост кц405

Трехфазные выпрямители

Существуют и трехфазные трансформаторы. Обычным однофазным диодным мостом с такого трансформатора не получится на выходе постоянный ток. Конечно, если нагрузка небольшая можно подключиться к одной фазе и к нулевому проводу трансформатора, но экономичным такое решение не назовешь.

Для трехфазного тока существуют специальные схемы выпрямителей, две таких схемы приведены на рисунках ниже. Первая, известная как схема Миткевича , имеет низкий коэффициент габаритной мощности трансформатора. Эта схема применяется при небольших мощностях нагрузки.

Вторая схема, известная как , нашла широкое применение в электротехнике, так как имеет лучшие технико-экономические показатели по сравнению со схемой Миткевича.

Схема Ларионова может использоваться как "звезда-Ларионов” и "треугольник-Ларионов”. Вид подключения зависит от схемы подключения трансформатора, либо генератора, с выходом которого соединен этот выпрямитель. Автор статьи - AKV .

Обсудить статью ВЫПРЯМИТЕЛИ

Выпрямителем электрического тока называют особое устройство, которое предназначено для получения выходного постоянного электрического тока из входного переменного тока. В большинстве выпрямителей принимают фильтры, чтобы сгладить создаваемые ими однонаправленные пульсирующие напряжения и токи.

Зачем нужен выпрямитель

Основным недостатком гальванических элементов, питающих многие электроприборы, является малый срок их службы. Эти неудобства особенно ощутимы, если нагрузке требуются токи большой силы. Для питания электронных потребителей лучше всего подходит электрический ток промышленной электросети. Но подключать устройство, предусмотренное для питания батареей, непосредственно в сеть нельзя. Необходимо преобразовать переменное напряжение сети в постоянное. Поэтому очень полезно разобраться в том, как сделать выпрямитель. Для питания аппаратуры обычно используются напряжения меньше, чем напряжения сети. Это достигается благодаря применению силового трансформатора. Затем преобразуют переменное напряжение в постоянное. Постоянное получают в два этапа:

сначала переменное изображение преобразуют в пульсирующее, то есть, изменяющееся от нулевого значения только в одну сторону. После этого фильтр преобразовывает пульсирующее напряжение в постоянное.

Виды выпрямителей

  • Однополупериодный – выпрямитель, состоящий из конденсатора и одного полупроводникового диода. Его конструкция очень простая. Отличается малым коэффициентом полезного действия, поэтому используется только для питания маломощных потребителей.
  • Двухполупериодный – выпрямитель, состоит из обмоток трансформатора, конденсатора и четырех диодов. Обычно его выполняют по мостовой схеме. Применяется для питания радиоаппаратуры.

Диоды выбирают по таким параметрам: величине постоянного (выпрямленного) тока на выходе выпрямителя и величине обратного напряжения. Эти параметры берутся из справочников. Выпрямленный ток не может быть меньшим, чем ток, который потребляет нагрузка. Диоды не будут нагреваться, если выпрямленный ток будет большим в 2 раза, чем ток необходимый потребителю. Обратное напряжение состоит из напряжения вторичной обмотки и напряжению на конденсаторе.

Изготовление выпрямителя

  • Возьмем полулитровую стеклянную банку или стакан, пластины площадью 40х100 мм – алюминиевую и медную, резиновую трубу с диаметром 2 см. Отрежем 2 см от трубы и наденем на алюминиевую пластину. Это делается потому, что электролит во время работы сильно разъедает алюминий. Если на него надеть резину, то она защитит металл от коррозии, и выпрямитель прослужит гораздо дольше.
  • Как электролит будем использовать раствор питьевой соды. Ее понадобится 5-7 грамм на 100 мл воды. За положительный полюс примем алюминий, а за отрицательный - свинец. Ток пойдет, если подключить выпрямитель свинцовой пластиной в сеть. Но идти ток будет только в одном направлении. Алюминиевая пластина будет постоянным положительным полюсом напряжения.
  • Если в сеть включить алюминиевую пластину, то свинцовая пластина будет выступать отрицательным полюсом. Это будет однополупериодный выпрямитель, через который течет ток только одного полупериода. В этом случае будет течь ток положительного направления.
  • Двухполупериодные выпрямители применяют, чтобы полностью использовать напряжение. Количество элементов, из которых они состоят, зависит от необходимой величины выпрямленного тока. Подключают их в обе фазы электросети.
  • Используйте предохранители, когда включаете прибор в сеть. При помощи реостата можно регулировать напряжение.

Расчет выпрямителя

  • Определим переменное напряжение вторичной обмотки трансформатора:

    Uн - постоянное напряжение нагрузки, В;

    В - коэффициент, который зависит от тока нагрузки.

  • Определяем максимальный ток, протекающий через диоды:

    Iд = 0,5 С Iн,

    Iд – ток, идущий через диод,

    Iн - наибольшее значение тока,

    С - коэффициент, зависящий от нагрузки.

  • Определим обратное напряжение:

    Uобр = 1,5 Uн,

    Uобр - обратное напряжение,

    Uн - напряжение нагрузки.

  • Выберем диоды, у которых величина выпрямленного тока и обратного напряжения выше расчетных.
  • Найдем величину емкости конденсатора:

    Сф = 3200 Iн / Uн Kп,

    Сф - емкость конденсатора фильтра,

    Iн - максимальный ток нагрузки.;

    Uн - напряжение на нагрузке,

    Kп – коэффициент пульсации (10 -5 -10-2).

Сварочный выпрямитель

Сварочный выпрямитель ВД применяется в качестве источника питания при сварке любыми электродами. Его используют для исключения межтоковых перерывов при сварке, благодаря чему получается качественный сварочный шов.

  • Выпрямитель универсален, может использоваться в самых тяжелых условиях работы.
  • Нечувствителен к температурным колебаниям, изменению влажности, падению напряжения в сети, запыленности.
  • Надежен
  • Долговечен
  • Имеет небольшую стоимость и способен заменять дорогие установки.

Теперь вы знаете все о том, кто хочет знать, как сделать выпрямитель в домашних условиях. Это позволит вам решить проблемы по его отсутствию самостоятельно и с наименьшей затратой средств.