Трекеры для солнечных панелей своими руками. Устройство слежения за солнцем. Условия эксплуатации и преимущества "Коловрат-Р"

Канал “тяп-ляп” показал, как сделать самодельный солнечный трекер для панелей. Они будут автоматически поворачивается вслед за солнцем, увеличивая КПД энергетической установки.

Понадобятся две солнечные батареи мощностью по по 3,5 ватт. На на выходе у одной более 6 вольт, что при последовательном соединении двух батарей даст более 12 вольт. На обратной стороне USB гнездо. Три выхода из трех сегментов батареи. Каждый из которых генерируют по 2 вольта. То есть при необходимости можно подключиться соответствующим образом и получить 2, 4, 6 вольт.

Следующий важный узел – два сервопривода. Один будет поворачивать солнечную батарею по горизонтальной оси, а другой по вертикальной. Эти приводы непростые, их не так просто заставить вращаться. Необходима некоторая доработка. В наборе с каждым из двигателей идут пластиковые крестовины, диски, винты для крепления. Для двигателя приобретённые кронштейны. Также в наборе крепежные винты, подшипник и диски. Контроллер заряда. Он будет принимать энергию от солнечных батарей и передавать её в аккумулятор.

Начнем работу своими руками с электронной начинки. Схема трекера для солнечной панели ниже.

Электрическая схема, плата, программа для редактирования платы: https://cloud.mail.ru/public/DbmZ/5NBCG4vsJ
Схема очень простая и легкая для повторения. Она наиболее удачная из нескольких проверенных вариантов. Но даже ей автору пришлось немножко изменить. Пришлось изменить номиналы переменных и постоянных резисторов, была спроектирована схема печатной платы.

Для начала распечатаем схему печатной платы трекера на специальной бумаге. Это лазерно-утюжная технология. Бумага имеет глянцевый вид. С обратной стороны она обычная матовая. Печатать нужно на лазерном принтере на глянцевой стороне. После контакта с утюгом надо дать остыть и бумага легко отрывается от слоя.

Перед переносом текстолит обязательно нужно обезжирить. Лучше всего использовать мелкую наждачную бумагу. Прикладываем рисунок к плате и проглаживаем горячим утюгом 2 минуты.
Теперь нужно вытравить плату трекера. Можно использовать персульфат аммония. Продается в магазинах радиотоваров. Один и тот же раствор можно использовать несколько раз. Желательно перед применением подогрев жидкости до 45 градусов. Это сильно ускорит процесс травления. Через 20 минут правление успешно завершилось. Теперь нужно снять тонер. Опять используем наждачку или ацетон.

Теперь можно проделать отверстие в плате. Можно приступать к пайке деталей.

Сердце солнечного трекера – операционный усилитель lm324n. Два транзистора типа 41c, типа 42c. Один керамический конденсатор 104. Многие детали автор разработки заменил на smd тип. Вместо диодов 5408 использованные их аналоги smd типа. Главное использовать не менее 3 ампер. Один резистор на 15 килоом, 1 на 47 килоом. Два фоторезистора. 2 подстроечных резисторов на 100 и 10 килоом. Последний отвечает за чувствительность фото датчика.

На европейской части России солнце, наконец, стало светить достаточно ярко и долго, чтобы иметь возможность поддерживать свою автономную систему без привлечения внешней энергетики- электросетей и генераторов. Но есть несколько хитростей, позволяющих при небольших модификациях уже имеющейся системы собрать немного больше энергии. Первая - слежение за солнцем, вторая - слежение за точкой максимальной мощности солнечных батарей. Начнем с первого и самого интересного - солнечного трекера.

«Мопед не мой», но для понимания принципа действия очень наглядно.

Указанный выше трекер можно даже приобрести на Ebay . Стоит он порядка 52 000 рублей на конец апреля 2015 года в России, а способен удержать всего пару панелей, суммарной мощностью до 600 Вт. И так как с окупаемостью солнечной энергетики вопрос стоит очень тяжело, то с добавлением в смету такого трекера солнечная энергетика будет окупаться довольно долго. Поэтому крайне велика популярность самодельных трекеров с различным управлением.

Следует сделать ремарку и оценить целесообразность монтажа солнечного трекера. Такое устройство позволяет увеличить выработку энергии при том же количестве солнечных панелей в 1,6 раза за счет более длительного воздействия солнца на панели и оптимального угла установки СП относительно солнца.

Стоит выделить основные задачи, которые придется решать при слежении за солнцем:
1. Создать достаточно крепкую платформу, которая будет не только выдерживать вес самих панелей, но и порывы ветра. Трекер с 4-6 и более панелями можно считать большим парусом.
2. Создать механику поворота тяжелой платформы с высокой парусностью.
3. Создать логику управления механикой, для слежения за солнцем.

Начнем с первого пункта. Целесообразно размещать массивы батарей таким образом, чтобы они не затеняли друг друга и крепились кратно необходимому напряжению.

Для такого трекера необходим мощный фундамент и крепкое железо. Из всех испытанных устройств, для управления поворотной платформой, лучше всего подходят актуаторы. Хорошо видна механика управления на следующем снимке.

Данный трекер позволяет управлять положением солнечных панелей в двух плоскостях. Впрочем, можно сделать управление только по горизонтали, а по вертикали менять угол пару раз в году (весной и осенью).

Что касается логики всей системы, то можно пойти несколькими путями:
1. Слежение за максимально яркой точкой
2. Поворот и наклон по таймеру (восход и заход солнца известны и постоянны для каждого дня)
3. Гибридный вариант, сочетающий постоянный угол поворота и поиск максимальной яркости

Первый способ можно реализовать самостоятельно или купить у китайцев готовый девайс. Первый для управления трекером в одной плоскости

Второй для управления трекером в двух плоскостях

Грубо говоря, для слежения за максимальной яркостью в одной точке китайцы хотят 100$. Понятно, что данные системы не представляют большой сложности для человека, разбирающегося в принципах работы контроллеров, поэтому аналогичную систему можно собрать в 10 раз дешевле.
Выглядеть это будет так

Ну а детали проекта и реализацию можно прочитать . Проект не мой, поэтому я не буду заниматься плагиатом.
Детальнее о самостоятельном изготовлении солнечного трекера можно почитать на профильном форуме , где опытным путем вычислили оптимальные конструкции и лучшее оборудование для выполнения этой задачи.

Слежение за точкой максимальной мощности солнечных батарей (MPPT)
Во второй части своего цикла я рассказывал про два различных типа солнечных контроллеров. MPPT (Maximum Power Point Tracking) контроллер тоже следит за солнцем, но с другой позиции всей системы. Для простого объяснения приведу график и после разъяснение.

На графике видно, что максимум снимаемой мощности можно получить при нахождении в точке максимальной мощности, которая неизменно будет на зеленой линии. Обычный ШИМ контроллер просто не может этого делать. Кроме того, MPPT контроллер позволяет подключать сборку последовательно соединенных солнечных панелей. Такой способ подключения заметно снижает потери энергии при транспортировке от солнечных батарей до аккумуляторов. Экономическая целесообразность приобретения MPPT контроллера появляется, если мощность установленных СП больше 300-400 Вт. Опираясь на свой опыт, могу сказать, что стоит приобретать солнечный контроллер «на вырост», если только сразу не создается мощная энергетическая система, которая с запасом перекрывает потребности дома. Методом последовательного наращивания количества солнечных батарей я пришел к мощности в 800 Вт - это не много, но этого вполне хватит для дачного дома в летний период, чтобы вообще не обращаться к электросетям. Согласно калькулятору моя энергосистема усредненно будет приносить с апреля по август по 4 кВт*ч электроэнергии в день. Если не пользоваться электроплитой и микроволновкой для приготовления пищи, то такого количества энергии хватит для комфортной жизни семье из 4 человек. Но есть еще мощный пожиратель электроэнергии в частном доме в виде бойлера для приготовления горячей воды. Для подогрева 80 литрового бойлера потребуется как раз около 4.5 кВт*ч электроэнергии. Таким образом, автономка должна окупаться хотя бы на нагреве воды или обслуживании других потребителей.
В прошлой статье я рассказал о гибридном инверторе, который может использовать энергию с приоритетом от солнечных батарей и лишь недостающее забирать из сети. Как это относится к солнечному контроллеру? Дело в том, что российская компания МикроАрт с недавнего времени начала выпускать собственные MPPT-контроллеры , которые могут быть связаны с инверторами этого же производителя по общей шине. Ну а поскольку гибридный инвертор у меня уже установлен, с новым сезоном я решил испытать новый контроллер.

Надо сказать, что выглядит он брутально относительно двух предыдущих контроллеров, которые я уже имею в своем хозяйстве. Металлический корпус, радиаторы по сторонам (китайские модели имеют радиаторы на задней стенке), темно-серый стальной корпус. В последнее время мне стало нравиться, что в моем хозяйстве контроллеры начинают «общаться» со мной на русском языке. Раньше были пиктограммы, цифры и английские надписи. Можно это считать капризом, но это приятно. Сравнивать в этой статье новый контроллер с предыдущими моделями я не буду, а вынесу тестирование с китайскими моделями в отдельный текст. Пожалуй, там же рассмотрю целесообразность приобретения более или менее мощного контроллера, особенности работы и надежность.
Самое большое достоинство этого контроллера для меня - это возможность подкачки нужного количества энергии, чтобы не происходило заимствование энергии от аккумулятора, которое снижает его ресурс. Из трех моделей, которые представлены производителем, я выбрал самый популярный и оптимальный по соотношению напряжение\ток - Контроллер ECO Энергия MPPT Pro 200/100 . Опираясь на характеристики устройства можно сказать, что контроллер поддерживает входное напряжение до 200 В и выходной ток до 100А. С учетом того, что моя сборка аккумуляторов на 24 В (поддерживается напряжение аккумуляторов 12/24/48/96 В), контроллер позволит выдать максимальную мощность в 2400 Вт, то есть у меня есть двукратный запас по наращиванию солнечных батарей. Максимальная же мощность контроллера составляет 11 кВт при 110В на аккумуляторах (буферное напряжение). Контроллер поддерживает связь с гибридным инвертором МАП SIN Энергия Pro HYBRID v.1 24В по шине I2C и может мгновенно добавлять мощности, когда инвертор выдает информацию о повышении потребления энергии. Взаимодействие двух устройств одной фирмы - это, как правило, система отработанная, поэтому все сводится к включению одного шнурка в нужные разъемы устройств и активации нужных параметров. Мне же было интересно заявление производителя этого контроллера о том, что данный MPPT-контроллер может так же мгновенно добавлять мощность при использовании инвертора любого другого производителя. Стало интересно, как это реализовано. Все оказалось крайне просто:


Датчик тока вешается на плюсовой провод, ведущий к инвертору (вот почему неважен производитель инвертора) и используя эффект Холла контроллер вычисляет потребляемую мощность. Тут уже вступает в работу логика самого солнечного контроллера и он подкачивает нужное количество энергии. Все известные мне контроллеры опираются на напряжение аккумулятора, и только учитывая его, повышают ток заряда.
Продолжая исследование возможностей контроллера, я столкнулся с тем, что он оснащен тремя реле, срабатывание которых можно запрограммировать. К примеру, при достаточно солнечной погоде и отсутствии потребления домом электроэнергии, можно начать подогрев дополнительного бойлера или бассейна. Рассмотрим и обратный вариант: солнца нет, напряжение аккумуляторов снизилось до критичного уровня, когда инвертор может просто отключиться, а потребление энергии продолжается. Тогда можно запустить отдельный бензо\дизель генератор, просто замкнув реле. Но для этого генератор должен иметь сухой контакт запуска или отдельную систему автоматического пуска или САП (также называется АВР - Автоматический Ввод Резерва). Поскольку у меня, как и у большинства дачников, имеется простой китайский генератор, но со стартером, я посмотрел в сторону автоматизации его запуска и обрадовался, узнав, что МикроАрт уже давно выпускает свою автоматику .
Вернемся к контроллеру. Его монтаж стандартен: сначала подключаются клеммы аккумулятора, потом подключаются клеммы солнечных батарей и производится настройка параметров. Подключив внешний датчик тока, можно наблюдать, какую мощность потребляет инвертор в режиме реального времени.
Итак, разматываем провода, монтируем контроллер и начинаем экономить. На следующей фотографии демонстрируется работа инвертора в гибридном режиме, когда только часть энергии потребляется от сети, а основная - от солнечных батарей.

Солнечный контроллер специально подключен через внешний датчик тока для демонстрации работы с любым другим инвертором, выпущенным сторонним производителем.

Итог
Солнечный контроллер соответствует заявленным характеристикам и действительно подкачивает энергию, даже буду подключенным к «чужому» инвертору посредством датчика тока. Гибридный инвертор действительно подкачивает в сеть энергию от солнечных батарей (на фотографии из 200 потребляемых Ватт половина, то есть 100 Вт поступает от солнца. Минимальные 100 Вт контроллер всегда будет забирать из сети, а остальное брать от солнца - это особенность работы устройства). Проще говоря, комплект с момента подключения начал себя окупать. К сожалению, весна резко сменилась метелью, и в ближайшее время вряд ли удастся наблюдать высокую эффективность комплекта (гибридный инвертор+солнечный контроллер), но с мая я рассчитываю на практически полное покрытие своих энергетических нужд за счет солнца.

Анонс
В следующей, заключительной статье, я сравню три имеющиеся у меня солнечных контроллера и постараюсь ответить на все вопросы, которые возникли за время этого цикла материалов. Если осталась нераскрытой какая-либо тема и она будет интересна большому количеству Хаброчитателей, тогда я постараюсь собраться и выдать отдельный материал. А теперь я готов отвечать на вопросы. Да прибудет с вами Сила Солнце!

Солнечная установка "Коловрат-Р" явилась решением по максимальной оптимизации и удешевлению с сохранением тех возможностей, которые были реализованы в установке автоматического слежения за солнцем "Коловрат".
В первую очередь - это удешевление самой несущей конструкции. За счёт отказа от автоматики существенно снижена её стоимость.
Второе, - применение новейших высокоэффективных солнечных батарей с КПД до 19% против 13-14% как у большинства нынешних. Применение таких солнечных модулей позволяет сократить площадь батарей, их вес, а следовательно нагрузку на треккер. Данный треккер не рассчитан на установку большого количества солнечных модулей. И такая "прибавка" весьма существенна. Ведь каждый дополнительный ватт установленной мощности будет использоваться с максимальной эффективностью за счёт поворота модулей.
Представьте сами. Если ранее на наш треккер можно было установить солнечных батарей максимум на 800 Вт, то теперь это - 975 Вт, - почти киловатт!!! Соответственно, если ранее суточная выработка могла составлять от 4 до 5,6 кВт/час, то теперь - от 4,9 до 6,8 кВт/час. Это в средней полосе России, а в южных районах - до 10 кВт/ час в сутки. Для дачного дома или небольшого коттеджа - это практически полная автономия!

Условия эксплуатации и преимущества "Коловрат-Р"

Данная утановка реализует все основные возможности автоматического солнечного треккера:
1) Возможность изменения угла наклона солнечных батарей от зимы к лету.
2) Возможность поворота по азимуту. При этом, угол поворота по азимуту у данной установки даже больше чем у автомата. Поворачивать солнечные батареи можно на 360 град. А у автоматичского треккера угол поворота несколько меньше 180-ти градусов. При этом известно, что в летнее время движение солнца от восхода до заката над горизонтом происходит в секторе большем 180 град. и такая возможность может оказаться совсем не лишней.

Итак, есть два варианта эксплуатации установки "Коловрат-Р".
Первый, - выставив оптимальный для данного времени года угол наклона солнечных батарей и задав направление на юг, оставить их в этом положении. Будет реализован вариант монтажа солнечных батарей на крыше, только с более точной юстировкой, поскольку плоскость крыши находится не всегда в оптимальном положении по отношению к солнцу.
Второй вариант, - проделав операции указанные выше, несколько раз в день (хотя бы раз-два) повернуть вручную солнечные батареи вслед за солнцем. Вследствии этого эффективность их работы резко вырастет.

Таким образом, для обеспечения себя электроэнергией на любом объекте Вам не придётся искать и дырявить крышу, карабкаться на неё. Не придётся думать достаточно ли хорошо плоскость крыши развёрнута к солнцу. Не нужно думать куда спрятать провода и как их протянуть от солнечных батарей до места установки аккумуляторов, чтобы это расстояние было небольшим. Поскольку само место установки батарей можно выбрать оптимально близко к аппаратной. Об эффективности работы батарей я уже и не говорю.

Несколько слов о монтаже установки

Монтируется установка на земле, в любом удобном освещённом месте рядом со строением. Площадь занимает минимальную, так как растяжек не требуется, в землю опускается только труба, а солнечные батареи располагаются на высоте, не мешая проходу.
При установке мачты не обойтись без бетонирования, но оно минимально, вполне доступно выполнения своими силами.

Отдельно стоит вопрос доставки. Ведь тут речь идёт не о коробках и рейках, а о металоконструкциях, причём довольно длинных. Этот вопрос нужно оговаривать. Мы же, со своей стороны, можем предложить полный комплекс услуг по доставке и монтажу. При этом мы можем доставить оборудование на объекты подъезд к которым на обычном легковом или грузовом транспорте затруднён.

Теперь о цене

Без учёта дополнительного оборудования (аккумуляторов и инвертора) цена установки будет составлять - 125 000 руб. (цена может быть скорректирована на момент времени заказа).

Попросил недавно друг собрать ему "гелиостат" для ориентации солнечной панели за солнцем, под использование небольших моторов. Схема была взята из просторов интернета, проверена авторская плата, работает. Но я нарисовал также свою печатную плату, покомпактней, в которой резисторы и конденсаторы можно ставить планарного типа SMD.

Далее идёт описание схемы от автора. Это устройство использует импульсное регулирование и автоматически способно ориентировать солнечную батарею по наилучшей освещенности. Принципиальная схема состоит из тактового генератора (DD1.1, DD1.2), двух интегрирующих цепей (VD1R2C2, VD2R3C3), такого же числа формирователей (DD1.3, DD1.4), цифрового компаратора (DD2), двух инверторов (DD1.5, DD1.6) и транзисторного коммутатора (VT1—VT6) направления вращения электродвигателя М1, управляющего поворотом платформы, на которой установлена солнечная батарея.

С подачей питания (от самой солнечной батареи или от аккумулятора) генератор на элементах DD1.1, DD1.2 начинает вырабатывать тактовые импульсы, следующие с частотой около 300 Гц. При работе устройства сравниваются длительности импульсов, сформированных инверторами DD1.3, DD1.4 и интегрирующими цепями VD1R2C2, VD2R3C3. Их крутизна меняется в зависимости от постоянной времени интегрирования, которая, в свою очередь, зависит от освещенности фотодиодов VD1 и VD2 (ток зарядки конденсаторов С2 и СЗ пропорционален их освещенности).

Сигналы с выходов интегрирующих цепей поступают на формирователи уровня DD1.3, DD1.4 и далее — на цифровой компаратор, выполненный на элементах микросхемы DD2. В зависимости от соотношения длительностей импульсов, поступающих на входы компаратора, сигнал низкого уровня появляется на выходе элемента DD2.3 (вывод 11) или DD2.4 (вывод 4). При равной освещенности фотодиодов на обоих выходах компаратора присутствуют сигналы высокого уровня.

Инверторы DD1.5 и DD1.6 необходимы для управления транзисторами VT1 и VT2. Высокий уровень сигнала на выходе первого инвертора открывает транзистор VT1, на выходе второго — VT2. Нагрузками этих транзисторов являются ключи на мощных транзисторах VT3, VT6 и VT4, VT5, которые коммутируют напряжение питания электродвигателя М1. Цепи R4C4R6 и R5C5R7 сглаживают пульсации на базах управляющих транзисторов VT1 HVT2. Направление вращения двигателя меняется в зависимости от полярности подключения к источнику питания. Цифровой компаратор не позволяет одновременно открыться всем ключевым транзисторам, и, таким образом, обеспечивает высокую надежность системы.

С восходом солнца освещенность фотодиодов VD1 и VD2 окажется различной, и электродвигатель начнет поворачивать солнечную батарею с запада на восток. По мере уменьшения разницы в длительностях импульсов, вырабатываемых формирователями, будет уменьшаться длительность результирующего импульса, и скорость поворота солнечной батареи плавно замедлится, что обеспечит ее точное позиционирование. Таким образом, при импульсном управлении вращение вала электродвигателя можно передавать платформе с солнечной батареей непосредственно, без применения редуктора.

В течение дня платформа с солнечной батареей будет поворачиваться вслед за движением солнца. С наступлением сумерек длительности импульсов на входе цифрового компаратора окажутся одинаковыми, и система перейдет в дежурный режим. В этом состоянии потребляемый устройством ток не превышает 1,2 мА (в режиме ориентации он зависит от мощности двигателя).

Аккумулятор гелиостата используется для накопления энергии, вырабатываемой солнечной батареей, и питания самого электронного блока. Поскольку электродвигатель включается лишь для поворота батареи (на короткое время), выключатель питания не предусмотрен. Данная схема ориентирует солнечную батарею в горизонтальной плоскости. Однако при ее позиционировании следует учитывать географическую широту местности и время года. Если дополнить конструкцию блоком вертикального отклонения, собранным по аналогичной схеме, можно полностью автоматизировать ориентацию батареи в обеих плоскостях.

Для защиты фотодиодов от избыточного облучения применен зеленый светофильтр. Между фотодатчиками помещают непрозрачную шторку. Ее закрепляют перпендикулярно плате с таким расчетом, чтобы при изменении угла освещения она затеняла один из фотодиодов. Подробнее читайте в статье в прилагаемом архиве . Общий вид печатной платы:

После сборки проверил работу прибора - всё срабатывает как надо, при засвете одного и второго светодиода срабатывает мотор по часовой и против часовой стрелки.

Радиатор несколько великоват, столь большого размера не требуется, но другу такой понравился, потом сказал порежет на две половины для двух готовых плат, тестирует пока, поскольку с мощностью моторов ещё не определился.

Эти радиаторы всё сняты с блоков питания , у меня их много накопилось, а люди всё несут и несут. Разработка - И. Цаплин . Сборка и испытание схемы - Igoran .

Обсудить статью КОНТРОЛЛЕР ПОВОРОТА СОЛНЕЧНОЙ ПАНЕЛИ

Солнечные электростанции все увереннее входят в повседневную жизнь жителей различных уголков нашей страны и многих других государств.
Для того, чтобы повысить КПД использования солнечных панелей, конструкторы и инженеры, разрабатывают новые устройства и приспособления, одним из которых является солнечный трекер.

Что это такое и зачем он нужен

Солнечный трекер – это устройство, позволяющее следить за движением солнца по небосводу, и перемещать солнечную панель в положение, в котором поглощение солнечных лучей происходит наиболее эффективно.

Достоинства солнечного трекера

Достоинства установки трекера можно сформулировать следующим образом:

  • КПД солнечных панелей возрастает на 40 -45%. Увеличение достигается за счет того, что наиболее эффективная работа панелей происходит, когда солнечные лучи падают под углом 90* на фотоэлементы панели;
  • За счет установки трекера КПД солнечных панелей значительно повышается, количество вырабатываемой электрической энергии, увеличивается.
  • В связи с увеличением производительности отдельно взятой панели, отпадает необходимость в установке дополнительных панелей, что в свою очередь, снижает стоимость всего комплекта солнечной электростанции.

Принцип работы

По своей сути, солнечный трекер, это комплексная система, следящая за местоположением солнца.

Для того, чтобы выполнить эту задачу, трекер должен выполнить следующие функции:

  1. Определить месторасположение солнца, относительно солнечной панели;
  2. Выполнить перемещение солнечной панели, в положение, в котором поглощение солнечных лучей будет максимальным.

За определение расположения Солнца отвечает электронная система, состоящая из GPS приемника, определяющего месторасположение солнца в месте установки солнечной электростанции, а также время текущих суток. В зависимости от полученного сигнала со спутника системы GPS-навигатора, электронная система дает ту, или иную команду на систему перемещения солнечных панелей.

В системе перемещения панелей устанавливается серводвигатель, позволяющий изменять направление вращения вала, что позволяет перемещать панель в разные стороны. Конструкция системы перемещения может быть различного типа, в зависимости с которой, солнечные трекера разделяются на два вида.

Виды трекеров

В зависимости от конструкции, трекера подразделяются на:

  • С одной осью вращения – одноосные, устройства, обладающие одной степенью свободы. У данного вида трекеров степень свободы определяется осью вращения, которая ориентируется с севера на юг.
  1. С горизонтальной осью вращения – ось вращения находится в горизонтальной плоскости по отношению к поверхности земли;
  2. С вертикальной осью вращения – ось вращения расположена в вертикальной плоскости по отношению к поверхности земли;
  3. С наклонной осью вращения – ось вращения расположена в промежутке между вертикально и горизонтально расположенными осями, по отношению к поверхности земли;
  4. С полярно ориентированной осью вращения – ось устанавливается в соответствии с расположением полярной звезды. Для каждого конкретного случая, угол наклона, при данном расположении оси вращения, определяется индивидуально и зависит от широты месторасположения устройства.
  • С двумя осями вращения – двуосные, устройства обладающий двумя степенями свободы. У данного вида трекеров, имеются две оси вращения, которые определяют степень свободы устройства. Оси вращения работают не зависимо друг от друга, но увязаны в общий комплекс устройств, приводящий трекер в движение, в соответствии с заданными параметрами.
  • Трекер с двумя осями вращения и опорной плоскостью.

Данный вид подразделяется на:

  1. С двумя осями вращения на несущем столбе – несущие конструкции солнечных панелей монтируются на столбовой конструкции. В этом случае, в верхней части столба устраивается площадка, на которой монтируется поворотный механизм, при помощи которого осуществляется поворот несущих конструкций панелей в плоскости поверхности земли. Вторая степень свободы осуществляется как у одноосных трекеров.
  2. С двумя осями вращения и опорной плоскостью – несущие конструкции солнечных панелей монтируются на плоскости, которая в свою очередь крепится на круглой платформе или кольце, в виде направляющего рельса. Поворот осуществляется аналогично повороту на столбчатой конструкции, разница лишь в том, что на опорной плоскости можно смонтировать большее количество солнечных панелей, нежели на опорном столбе. Минус этой конструкции в том, что требуется большая площадь поверхности земли для монтажа подобного типа механизмов.

Средние цены

В зависимости от вида, комплектации, фирмы производителя и технических характеристик, стоимость трекеров может составлять:

ООО «Энергосистемы» г. Пенза, предлагает к реализации комплект трекера с двумя осями вращения и опорной плоскостью - стоимостью 1450000,00 рублей.

Технические характеристики данного комплекта:

  1. Осей вращения — 2 (горизонтальная и вертикальная);
  2. Рабочая поверхность – 96,0 м2;
  3. Максимальная рабочая поверхность – 108,0 м2;
  4. Электрическая мощность – 13,76 кВт;
  5. В составе комплекта предусмотрена метеостанция;
  6. Несущая рама — V-образная конструкция на опорно-поворотном устройстве;
  7. Вес, без солнечных панелей и основания — 3000 кг;
  8. Максимальный вес монтируемых солнечных панелей — 1300 кг;
  9. Системой автоматики предусмотрена защита солнечных панелей от тяжелых осадков (перевод панелей в вертикальное положение);
  10. Габариты — по высоте до 9,4 м, по вертикальной оси вращения — 12 м.

ООО «Экологичные технологии» (ООО «ЭкоТех») г. Ростов-на-Дону предлагает к реализации следующие модели трекеров:
Модель ED-8000 dual – стоимостью 667000,00 рублей.

Технические характеристики:

  1. Тип – с двумя осями вращения;
  2. Количество монтируемых модулей (размером 1580х808 мм) – до 60 шт.;
  3. Мощность электрического привода (2 привода) – 100 Вт.
Модель ED-5000 dual 0 стоимостью 490000,00 рублей.

Технические характеристики:

  1. Тип – с двумя осями вращения;
  2. Количество монтируемых модулей (размером 1580х808 мм) – до 42 шт.;
  3. Мощность электрического привода (2 привода) – 50 Вт.
Модель ED-3500 dual – стоимостью 397000,00 рублей.

Технические характеристики:

  1. Тип – с двумя осями вращения;
  2. Количество монтируемых модулей (размером 1580х808 мм) – до 30 шт.;
  3. Мощность электрического привода (2 привода) – 30 Вт.

Модель ED-5000 – стоимостью 299000, рублей.

Технические характеристики:

  1. Тип – с одной осью вращения;
  2. Количество монтируемых модулей (размером 1580х808 мм) – до 36 шт.;
Модель ED-2500 – стоимостью 235000,00 рублей.

Технические характеристики:

  1. Тип – с одной осью вращения;
  2. Количество монтируемых модулей (размером 1580х808 мм) – до 18 шт.;
  3. Мощность электрического привода – 5,0 Вт.
Модель ED-1500 – стоимостью 175000,00 рублей.

Технические характеристики:

  1. Тип – с одной осью вращения;
  2. Количество монтируемых модулей (размером 1580х808 мм) – до 12 шт.;
  3. Мощность электрического привода – 5,0 Вт.

Из приведенных выше примеров видно, что при необходимости, можно выбрать необходимое устройство по виду, техническим характеристикам и стоимости.

Где купить

Как и прочие, сложные и дорогостоящие технические устройства, солнечные трекера лучше приобретать у представителей компаний производителей данного оборудования.

Также можно воспользоваться услугами в специализированных организациях, занимающихся продажей солнечных электростанций и комплектующих к ним. В таких организациях можно получить квалифицированную консультацию по выбору устройства и способу его монтажа.

Для того, чтобы избежать лишних трат времени и финансов, всегда необходимо ознакомиться с отзывами покупателей, уже воспользовавшихся услугами тех либо иных производителей и торгующих организаций.

Как сделать своими руками схема

Для того, чтобы собрать солнечный трекер своими руками, необходимо изготовить все составные элементы этого устройства:

  • Основание (каркас) – несущая конструкция. которую можно изготовить из металлического профиля различных сечений.
  • Устройство обеспечивающее поворот каркаса и осуществляющее контроль за процессом поворота.
  • Защитные элементы. Детали, защищающие солнечные панели от непогоды.
  • Система автоматического управления работой трекера.
  • Устройство, обеспечивающее преобразование энергии (питание серводвигателей осуществляется от солнечных панелей).

Последовательность изготовления трекера своими руками:

  1. Несущую конструкцию (каркас), можно изготовить из металлического профиля различных сечений. Размер конструкции определяет количество монтируемых на ней солнечных панелей. Этот элемент, определяет вид трекера, т.е. количество подвижных осей и их расположение в пространстве.
    Для изготовления металлоконструкций необходимо уметь работать с электрическим ручным инструментом и сварочными устройствами.
  2. Для обеспечения поворота трекера в горизонтальной плоскости, используется серводвигатель, обеспечивающий вращения в разные стороны. Для управления серводвигателем необходимо собрать электронную схему управления, в основу работы которой, заложена работа фоторезисторов. При необходимости установки более сложной схемы, лучшим вариантом будет – приобрести готовое устройство.
  3. Для обеспечения поворота вокруг вертикальной оси можно воспользоваться часовым механизмом механических часов, припаяв электрические контакты к стрелке часов (подвижный контакт) и к часовым отметкам на циферблате (неподвижные контакты). Сделав такой 1 контакт (на 12 часах циферблата), двигатель будет включаться 1 раз в час. Сделав еще один неподвижный контакт на отметке в 6 часов, двигатель будет включаться через 30 минут. Работа (включение) двигателя привода включается в следующей последовательности: длинная стрелка поворачивается и проходит через двенадцать часов, контакты замыкаются, цепь управления двигателем привода замыкается, двигатель поворачивает панель.
    Для поворота в горизонтальной оси, также можно использовать принцип водяных часов. В этом случае, солнечная панель устанавливается горизонтально (используется горизонтальная ось вращения), с одной стороны к панели прикрепляется утяжеление (любой предмет с постоянной массой), с другой стороны прикрепляется емкость с водой, того же веса, что и утяжеление с противоположной стороны. В емкости с водой делаются отверстия, вода вытекает, под действием утяжеления солнечная панель поворачивается. Количество отверстий и их диаметр, необходимо определить опытным путем.
  4. Защитные элементы от дождя, града и прочих атмосферных явлений каждый выбирает индивидуально.
  5. Наличие системы автоматики определяется схемой управления, о которой писалось выше. Для создания безопасных условий работы установки, и способности работы в автоматическом режиме, можно приобрести блок управления трекером заводского производства.
  6. Устройство для преобразования энергии – инвертор. Данный электронный элемент лучше приобрести промышленного изготовления, хотя при наличии знаний в области электроники и умении работы с паяльником, изготовить своими руками тоже возможно.