Установка частотника. Что такое частотный преобразователь

1.1. Автоматический выключатель (или быстродействующие предохранители). Применение обязательно в соответствие с требованиями руководства по эксплуатации (РЭ) VFD-CP2000 .
1.2. Сетевой и моторный дроссель. Необходимость применения в соответствие с требованиями и рекомендациями РЭ.
1.3. Датчик давления . Двухпроводный датчик с питанием 24В DC и выходом 4…20мА, например, MBS1700 .

Схема подключения частотного преобразователя CP2000 с датчиком давления

2. Пробный пуск (без обратной связи) преобразователя частоты

Примечание: В данной инструкции подразумевается, что все не указанные здесь параметры должны иметь заводские значения. Иначе, предварительно выполните сброс на заводские настройки (00-02 = 9).

2.1. Выполните подключение преобразователя в соответствие с вышеприведенной схемой. Удостоверьтесь в правильности подключения и подайте на частотник питание. Убедитесь, что привод готов к работе (светится светодиод STOP и FWD, а на дисплее показание F 60.00 (или 50.00) Гц.)
С помощью кнопок MENU и ENTER войдите в меню программирования параметров и проверьте, что параметры Pr.01-01, Pr.01-02, Pr.05-01, Pr.05-02, Pr.05-03, Pr.05-04 имеют значения, соответствующие параметрам подключенного двигателя (значения параметров двигателя приведены на его паспортной табличке или в документации), в случае необходимости скорректируйте. Выйдите из режима программирования параметров (кнопкой ESC ) и установите частоту, например, F 30.00 Гц. Кнопками ⇑ ⇓ установить курсор напротив строки F и нажать ENTER. Младший разряд задания частоты начнет мигать. Кнопками ⇐ ⇒ выбрать нужный разряд, кнопками ⇑ ⇓ установить его значение. После всех установок нажать ESC. Задание частоты перестанет мигать.

2.2. Нажатием кнопки RUN запустите двигатель, при этом светодиод, расположенный над этой кнопкой должен начать светиться. Для остановки двигателя нажмите кнопку STOP . Индикаторы состояния будут отображать выбранный режим работы частотника.

2.3. Проконтролируйте ток нагрузки преобразователя (индикация Axx.xx. Нажать кнопку ⇑, при этом на верхней строке дисплея появится индикация тока (строка А)). Проконтролируйте давление с помощью внешнего манометра (если имеется). Если двигатель вращается в обратную сторону, то остановите привод кнопкой STOP , снимите с ПЧ питание и поменяйте местами две фазы моторного кабеля (клеммы U, V, W).

2.4. Если привод не вышел на заданную частоту или отключился, запишите код отключения, выполните действия описанные в главе «Информация об ошибках» РЭ или обратитесь к поставщику за консультацией.

2.5. Если пробный пуск прошел успешно, остановите привод кнопкой STOP и переходите к процедуре настройки и пуска частотного преобразователя с обратной связью.

3. Рабочий пуск привода (с обратной связью).

3.1. Войдите в режим программирования параметров, активизируйте ПИД-регулятор и настройте параметры:
00-03 = 2 – отображения многофункционального дисплея
00-04 = 10 – отображение обратной связи в %
00-20 = 0 – источник задания уставки давления – цифровой пульт
00-21 = 0 – управление (пуск/стоп) с цифрового пульта (00 - 21 = 1 – при использовании внешних кнопок - пуск/стоп с внешних терминалов)
00-23 = 1 – блокировка реверса
00-25 = 0162HEX – 16 – означает отображение единиц давления в барах, 2 – количество знаков после запятой
00-26 = 10.00 –задание и обратная связь находятся в диапазоне 0…10,00 бар (при использовании датчика давления с диапазоном 0-10бар)
03-00 = 0 – аналоговый вход AVI1 (нет функции)
03-01 = 5 – сигнал обратной связи ПИД-регулятора - это сигнал на входе ACI
03-02 = 0 – аналоговый вход AVI2 (нет функции)
08-00 = 1 – отрицательная обратная связь со входа ACI

3.2. Снимите с преобразователя напряжение питания и через 1 мин. подайте вновь. Установите заданное давление (например, F2.00 bar) и запустите привод кнопкой RUN .

3.3. Контролируйте выходной давление в системе (по манометру или на дисплее ПЧ «b XX.XX bar»). Если на дисплее появилось какое-либо сообщение об ошибке, и привод отключился, запишите код отключения, выполните действия, описанные в главе 9 РЭ, или обратитесь к поставщику за консультацией.

3.4. Если привод работает, но слишком медленно выходит на заданное значение, то увеличьте пропорциональный коэффициент ПИД-регулятора (параметр 08-01), но при слишком больших значениях возможно перерегулирование и автоколебания.

3.5. Если привод не выходит на заданное давление, т.е. сохраняется статическая погрешность, то увеличьте интегральный коэффициент ПИД-регулятора (параметр 08-02), но при слишком больших значениях возможно перерегулирование и снижение быстродействие системы. Подробнее о настройке ПИД-регулятора см. в РЭ.

4. Прочее

4.1. При необходимости использования в системе спящего режима, когда насос должен отключаться (засыпать) при небольшой производительности, обратитесь к параметрам 08-10… 08-12. Например,
08-10 = 30.00 Гц – частота входа в спящий режим
08-11 = 35.00 Гц – частота выхода из спящего режима
08-12 = 15.0 сек – задержка входа в спящий режим

4.2. При необходимости пуска привода одновременно с подачей сетевого напряжения нужно установить следующие параметры: 00-31=1, 02-35=1, - и установить перемычку (выключатель) между клеммами FWD и DCM преобразователя. Данный режим пуска не рекомендуется применять при необходимости частых пусков привода (чаще 1 раза в час), т.к. это может привести к повреждению преобразователя частоты.

4.3. Для реализации косвенной защиты от сухого хода нужно настроить параметры: 08-09=1, 08-13=10-50, 08-14=10-20 сек.

4.4. При необходимости реализации других режимов работы частотного преобразователя см. РЭ или обращайтесь к поставщику за консультацией.

5. Пояснения по настройке частотного преобразователя для работы в режиме многодвигательного управления насосами с переменным мастером

5.1. В этом режиме частотник CP2000 может управлять от 1 до 4 двигателей, последовательно разгоняя их и подключая напрямую к сети, если выходная частота преобразователя достигла значения, указанного в параметре 12-06 и держится в течение времени задержки переключения (параметр 12-05). Параметр 12-03 определяет задержку для подключения следующего двигателя к ПЧ. Ниже показаны диаграммы работы данного режима.

5.2. Настроечные параметры:
12-00=2 Каскадное управление с переменным мастером.
12-01=2…4 Задается кол-во двигателей (до 4-х)
12-03=1.0 Временная задержка переключения двигателя (сек)
12-04=1.0 Временная задержка перед выключением двигателя (сек)
12-05=10.0 Временная задержка перед переключением двигателя на прямое питание от сети (сек)
12-06=50.00 Выходная частота, при которой произойдет переключения в каскадном режиме (Гц)

5.3. На нижеприведенном рис. показан пример подключения 4-х электродвигателей (R6AA – опциональная плата релейных выходов, которая заказывается отдельно).

Став счастливым обладателем частотного преобразователя HYUNDAI серии N700E покупатели иногда испытывают некоторые трудности при первом включении и настройке. В связи с этим, мы решили написать пошаговую инструкцию подкрепленную видеорядом по настройке частотных преобразователей HYUNDAI. Данная инструкция применима к самой распространенной серии N700E, для 1 и 3-х фазных ЧП мощностью от 0,4кВт и до 3,7кВт

Подключние питающих и моторных проводов.

Управление частотным преобразователем через дискретные клеммы

Первое включение и программирование частотного преобразователя

Включение преобразователя происходит после подачи питабщего напряжения. Для входа в меню необходимо нажать кнопку "Func ", перемещение по параметрам осуществляется нажатием кнопок "вверх" или "вниз", выбрав необходимую группу переменных, необходимо нажать кнопку "Func " и далее стрелочками выбрав параметр который хотим изменить, снова нажимаем "Func ", стрелочками задаем новое значение и обязательно нажимаем кнопку "STR " (иначе изменения не сохранятся в памяти).

Выбор источников задания управляющих сигналов

На гарячую линию, нам не редко поступают звонки от покупателей со словами "я включил частотный преобразователь, но двигатель не крутится, а сам частотник не реагирует на регулировку потенциометра на панели управления". Все верно, дело в том, что на заводе изготовителе по умолчанию задается источник управляющих сигналов с дискретных клемм, если необходимо управлять инвертором с лицевой панели, то для этого надо изменить следующие параметры:
А01 (источник задания частоты) значение "1" меняем на "0" и нажимаем кнопку "STR", над потенциометром загорится светодиод информирующий нас о том, что частота вращения двигателя задается с потенциометра расположенного на панели управления.
А02 (запуск двигателя), если планируется запускать частотный преобразователь с панели управления то значение "1" меняем на "0" и нажимаем кнопку "STR". Над кнопкой "RUN" загорится светодиод, теперь двигатель будет включаться и выключаться с панели управления.

Задание основных параметров

А03 - частота питающей сети, устанавливаем 50Гц
А04 - максимальная выходная частота, можно задавать до 400 Гц. Выбирается в зависимости от типа двигателя и конкретных задач, по умолчанию 50Гц, но например, если подключается фрезерный шпиндель, то частота задается как правило 400Гц.
Н03 - задается номинальная мощность двигателя.
Н04 - указываем количество полюсов двигателя, как правило 4.
Н05 - задается номинальный ток двигателя (берется из паспорта двигателя).
Выше мы привели основные параметры которые необходимо задать при первом включении частотного преобразователя, со значениями остальных параметров и их назначениями Вы сможете прочитать в инструкции поставляемой с ЧП.

Настройка ПИД-регулирования

Частотные преобразователи HYUNDAI серии N700E имеют функцию ПИД-регулирования, которая позволяет поддерживать заданный параметр, например: Расход или давление.
Для включения функции ПИД-регулирования, устанавливаем в параметре А46 значение "1", время отклика задается в F02 и F03 (время разгона и время торможения). Посмотреть работу функции ПИД-регулирования можно в видеоролике с 4.33.

Видеоинструкция к частотному преобразователю HYUNDAI N700E

Одним из главных недостатков асинхронных двигателей является сложность регулировки частоты вращения. Изменять её можно тремя способами: изменением количества пар полюсов, изменением скольжения и изменением частоты. В последнее время для регулирования скорости вращения асинхронного короткозамкнутого двигателя частоту тока меняют с помощью частотных преобразователей для электродвигателя.

В последнее время на производстве стали широко использоваться высокочастотники, у многих неопытных новичков, встречающих их на практике, часто возникает вопрос, что такое частотный преобразователь и для чего он нужен. Достоинствами частотного привода для электродвигателя являются:

  • снижение электропотребления двигателем;
  • улучшение показателей работы: плавность запуска и регулировки скорости вращения;
  • исключение возможных перегрузок.

Плавность пуска обеспечивается преобразователем благодаря снижению с его помощью пускового тока, который без частотника превышает номинальный ток в 5–7 раз.

Основными частями в устройстве преобразователя являются инвертор и конденсаторы. Инвертор обычно выполнен из диодных мостов. Его задача - выпрямить напряжение на входе, которое может принимать значение 220В или 380В в зависимости от количества фаз, но сохранить при этом пульсации. Затем конденсаторы выпрямленное напряжение сглаживают и фильтруют.

Потом постоянный ток отправляется на микросхемы и выходные мостовые IGBT-ключи. Обычно мостовой IGBT-ключ - это шесть транзисторов, соединённых по мостовой схеме. Защиту от пробоя напряжения обратной полярности осуществляют диоды. В более ранних схемах вместо транзисторов были использованы тиристоры, значительными недостатками которых были некоторая замедленность в работе и помехи.

Благодаря этим устройствам возникает широтно-импульсная последовательность с необходимой частотой. На выходе частотника импульсы напряжения имеют прямоугольный вид. А после того как они проходят через обмотку статора, вследствие её индуктивности, принимают синусоидальный вид.

Чтобы понять, зачем нужен инвертор, необходимо уяснить, что ток бывает постоянным и переменным. И если преобразователи частоты используются при работе с переменным током, то для управления электромотором постоянного тока необходим электропривод постоянного тока. Он называется инвертором и его назначением в схеме является контроль тока возбуждения. И он также независимо от изменений нагрузки может поддерживать скорость вращения ротора в требуемых пределах и осуществлять его торможение.

При выборе частотника наиболее низкая стоимость определена набором минимальных функций. Рост стоимости пропорционален их увеличению.

Первоначально преобразователи классифицируют по мощности . Не менее важными параметрами являются перегрузочная способность и тип исполнения.

Мощность частотника должна быть не меньше максимальной мощности установки. Для оперативного ремонта или замены в случае поломки частотного привода для электромотора желательно, чтобы сервис-центр был расположен в непосредственной близости.

При выборе преобразователя немаловажным фактором является его напряжение. Если подобрать частотник определённого напряжения, а в сети оно окажется более низким, то он будет отключаться. Если же напряжение сети будет длительно допускать допустимое напряжение, то это приведёт к его повреждению и невозможной дальнейшей работе. С учётом этих рисков нужно выбирать частотники с большим интервалом допустимого напряжения.

Существует два типа управления преобразователей: векторное и скалярное.

При скалярном управлении удерживается постоянство между значением напряжения и частоты на выходе. Это наиболее простой тип частотников, и, вследствие этого, более дешёвый.

При векторном управлении из-за снижения статической ошибки управление осуществляется более точно. Но и стоимость асинхронного преобразователя частоты с этим видом управления более высока в сравнении со скалярным управлением.

Зона регулирования частоты тока должна быть в необходимых пределах. Для диапазонов с регулировкой по частоте более, нежели в 10 раз лучше выбрать векторное управление.

Количество вводов должно быть оптимальным, потому как при слишком большой их численности цена прибора для изменения частоты будет неоправданно завышена, а также могут возникнуть некоторые сложности при его настройке.

Необходимо учесть перегрузочные способности частотника по току и мощности. Ток частотника должен быть чуть больше, нежели номинальный ток двигателя. В случае возникновения ударных нагрузок необходим запас по пиковому току, который должен быть не менее 10% от ударного тока.

Расчёт частотника для электродвигателя

Для того чтобы преобразователь частоты имел возможность работать надёжно и соблюдать заданные значения, необходимо рассчитать его основные параметры:

  • тип исполнения;
  • мощность.

Расчёт тока преобразователя производится по формуле:

где Р – номинальная мощность двигателя, квт;

U – напряжение, В

сosφ – значение коэффициента мощности

Правильный выбор мощности прибора для изменения частоты сказывается на эффективности работы установки. При заниженной мощности частотного преобразователя производительность оборудования будет невысокой. Длительные перегрузки при работе могут привести к поломке преобразователя частоты.

При завышенной мощности частотного преобразователя и скачках напряжения или перегрузке не сработает защита электродвигателя, что приведёт к его повреждению. U

Мощность частотника должна быть больше номинальной мощности соответствующего двигателя на 15%.

Частотники для двигателя мощностью около 3 КВт являются наиболее распространёнными ввиду компактности, относительно невысокой цены, простоты установки и обслуживания

Собирать вручную частотники для двигателей мощностью 3 КВт и больше нет смысла - они будут довольно дорогими по цене и не всегда обеспечивать необходимую точность в работе.

Для двигателей мощностью 3 КВт преобразователи частоты находят применение:

  • в системах вентиляции для контроля скорости вращения вентилятора;
  • для одновременности работы принимающего и подающего конвейеров;
  • для подачи сырья с контролем его объёма;
  • для управления несколькими насосами;
  • для контроля работы погружным насосом;
  • для регулировки скорости подачи сырья в дробилках.

Частотники для двигателей большей мощности отличаются величиной максимальной выходной частоты, наличием фильтра электромагнитной совместимости (ЕМС), видом режима управления.

Например, у частотного привода для электродвигателя мощностью 15 КВт максимальная выходная частота меньше, нежели у преобразователя для двигателя мощностью 3 КВт. ЕМС фильтр для такого двигателя не предусмотрен. Режим управления только скалярный.

Имеет ряд настроек, позволяющих задать необходимый режим разгона и торможения электродвигателя. В статье мы расскажем, какими параметрами можно управлять и как их оптимизировать, чтобы избежать поломки оборудования.

Основные параметры разгона/торможения двигателя

Минимальная выходная частота. Параметр, определяющий значение частоты, при котором начинается вращение двигателя. Повышенная минимальная частота во многих случаях позволяет уменьшить нагрев двигателя при разгоне.

Нижний предел выходной частоты. Этот параметр ограничивает частоту на выходе преобразователя. Нижний предел не может быть меньше минимальной выходной частоты. Данная настройка необходима для обеспечения защиты двигателя и механизмов в случае ошибочной установки минимальной рабочей частоты.

Максимальная выходная частота. Параметр ограничивает выходную частоту сверху. Причем заданное (номинальное) значение частоты может быть меньше, либо равным максимальной выходной частоте. Данное значение используется для расчета теоретического времени разгона, а также привязывается к максимальному значению управляющих сигналов на аналоговых входах.

Частота максимального напряжения (номинальная частота двигателя). Этот параметр задается в соответствии со значением, указанным на шильдике электродвигателя. Как правило, оно равно 50 Гц. При такой частоте на двигателе действует максимально возможное для данного преобразователя напряжение. Если данный параметр выставить меньше необходимого, то двигатель будет работать с перегрузкой и никогда не разгонится до номинальной частоты.

Время разгона. Основной параметр, определяющий расчетное время, за которое электродвигатель разгонится от нулевой до максимальной выходной частоты. Темп нарастания, как правило, линейный, если не задано квадратичное изменение частоты. В случае, если нарастание задается в промежуточном диапазоне (не от нулевой и не до максимальной частоты), реальное время будет меньше заданного. Это обстоятельство нужно учитывать при проектировании оборудования.

Например, если минимальная выходная частота равна нулю, а максимальная – 50 Гц, то при установке времени разгона 10 сек и максимальной выходной частоте 25 Гц фактическое время разгона будет в 2 раза меньше, т.е. 5 сек. То же относится и к торможению.

Инерция нагрузки

На реальное время разгона и замедления также влияют различные механические и электрические параметры системы электропривода. Например, при установке очень малого времени разгона или торможения фактическое время может быть больше из-за инерции нагрузки на валу двигателя.

Инерция нагрузки при разгоне может привести к перегрузке по току, при этом преобразователь частоты выходит в ошибку. Чтобы такого не произошло, время разгона нужно выбирать по нескольким критериям. Если данный параметр не принципиален, можно выставить автоматический разгон. В этом случае преобразователь будет выбирать максимальный скоростной режим разгона или замедления, чтобы избежать ошибки перегрузки по току (разгон) или перенапряжению на звене постоянного тока (замедление).

Когда время торможения должно быть минимальным, применяют тормозные резисторы для выделения «лишней» энергии, полученной в результате торможения.

Дополнительная инерция при разгоне и торможении может проявляться также при аналоговом способе задания выходной частоты. Это происходит, когда на аналоговом входе устанавливается низкочастотный фильтр для уменьшения помех, либо в настройках выставлена большая инерционность задающего аналогового сигнала.

Во многих ПЧ имеется несколько вариантов времени разгона и торможения, которые можно применить для различных этапов технологического процесса. Переключение производится посредством подачи сигнала на соответственно запрограммированный дискретный вход.

Компания Контроль Системс занимается такой работой как и поставляет к ним комплектующие. Помимо этого мы осуществляем техническую поддержку по таким вопросам, как подключение подключение частотных преобразователей , оказываем комплекс услуг по ремонту, обслуживанию оборудования с выездом на предприятие заказчика. Наши специалисты готовы выполнить шеф-монтажные (в т.ч. связанные с установкой преобразователей частоты ) и пуско-наладочные работы, а также провести обследование оборудования на объекте заказчика (где проведено подключение преобразователя частоты ), а также поставить к нему комплектующее.

Частотный преобразователь устанавливается в хорошо вентилируемом помещении, а в случае необходимости собирается дополнительная система климат-контроля. Для монтажа устройства необходима ровная устойчивая поверхность, сам же преобразователь располагается вертикально и на достаточном расстоянии от других предметов. В помещении, где устанавливается частотный преобразователь, необходимо создать следующие условия:

температуру окружающей среды в диапазоне от -10 до 45o C;
отсутствие в непосредственной близости горючих жидкостей или легковоспламеняющихся материалов;
относительную влажность воздуха менее 90 %;
отсутствие вибрации, электромагнитных помех и прямых солнечных лучей.

Установка, настройка и обслуживание преобразователя должна производиться только квалифицированным техническим персоналом. Небрежное обращение может привести к повреждению преобразователя. Запрещается бросать преобразователь, подвергать его ударам и тряске при переноске.

Указания по технике безопасности при монтаже :

  1. Прикосновение к токоведущим частям может привести к смертельному исходу, даже если оборудование отключено от сети. При работе с токоведущими частями убедитесь, что отключены входы напряжения: как сетевого питания, так и любые другие (подключение промежуточной цепи постоянного тока), отсоединен кабель электродвигателя (если двигатель вращается).

Имейте в виду, что высокое напряжения в цепи постоянного тока может сохраняться, даже если светодиоды погасли. Прежде чем прикасаться к потенциально опасным токоведущим частям приводов мощностью до 7,5 кВт включительно, подождите не менее 4 минут. Подождите не менее 15 минут, прежде чем начать работу с приводами мощностью свыше 7,5 кВт.

  1. должен быть заземлен надлежащим образом. Ток утечки на землю превышает 3,5 мА. Запрещается использовать нулевой провод в качестве заземления.
  2. Кнопка на пульте оператора не выполняет функции защитного выключателя. Она не отключает преобразователь частоты от сети и не гарантирует пропадание напряжения между преобразователем и двигателем.

Проверка соответствия компонентов перед началом монтажа.

  1. Сверьте кодовый номер преобразователя с тем, что было заказано.
  1. Убедитесь, что входное напряжение, указанное на , совпадает с напряжением питающей сети, к которой планируется подключение. В случае, если напряжение питающей сети ниже входного напряжения , то устройство будет работать с пониженными характеристиками, или будет работать с ошибкой. Подключение устройства к питающей сети с напряжением, превышающим входное напряжение , указанное на информационной табличке, не допускается!
  2. Проверьте, что номинальное напряжение электродвигателя не превышает значения выходного напряжения . Номинальное напряжение электродвигателя в большинстве случаев определяется схемой соединения, поэтому убедитесь, подключен ли двигатель «звездой» или «треугольником», и какие значения напряжения соответствуют данной схеме подключения (указано на табличке двигателя).
  3. Номинальный ток двигателя в большинстве случаев не должен превышать номинальный выходной ток преобразователя частоты, в противном случае привод не сможет развить номинальный момент.

Проверка условий установки преобразователя частоты.

Проверка условий установки . Внешние условия должны соответствовать степени защиты корпуса – стандартное исполнение преобразователя – IP20 не защищает от попадания пыли или капель жидкости внутрь устройства. Исполнение корпуса IP54 защищает от пыли и влаги при соблюдении требований монтажа (использовании сальников, кабель-вводов и т.д. Убедитесь, что возле вентиляторов чисто, нет пыли и грязи.

  1. Место установки должно быть сухим (максимальная относительная влажность воздуха 95%, при отсутствии конденсации).
  2. Рабочая температура окружающей среды 0–40 °С. При температуре от -10 до 0 °С и свыше +40 °С работа будет происходить с пониженными характеристиками. Не рекомендуется эксплуатировать при температурах ниже -10 и свыше +50 °С, так как это может привести к сокращению срока службы изделия.
  3. Максимальная высота установки устройства над уровнем моря для работы без снижения характеристик 1000 м.
  4. Проверьте наличие возможности осуществлять вентиляцию преобразователя частоты. Допускается монтаж преобразователей «стенка к стенке» (корпусы IP 20 и 54), однако обязательно должно быть предусмотрено воздушное пространство 100 мм сверху/снизу устройства для преобразователя частоты мощностью до 30 кВт, 200мм для преобразователя частоты мощностью от 30 до 90 кВт и 225 мм для мощности 90 кВт.

Уточнить необходимую информацию об установке и подключении оборудования, а также о порядке проведения шеф-монтажных работ, связанных с установкой, можно по телефону в Екатеринбурге +7 902 870 59 24