Устройство задержки прямоугольных импульсов. Прямоугольный импульс

Формирование прямоугольных импульсов заданной длительности

Формирование импульсов по фронту или спаду входного сигнала осуществляется одновибраторами. Схемы таких формирователей, выполненные на ЛЭ, представлены на рис. 5.2. Импульсы одновибраторов, собранных по схемам 5.2 а и б , создаются за счет собственной задержки переключения ЛЭ.

Рисунок 5.2 – Одновибраторы с заданием длительности импульса временем задержки ЛЭ

В схеме рис. 5.2 а выходной импульс формируется в момент появления положительного перепада сигнала на входе запуска и заканчивается, когда через время n t з (n – нечетное число последовательно включенных инверторов, t з – время задержки переключения одного ЛЭ) на втором входе элемента DD1.4 появляется уровень логического нуля. Выходной импульс формируется на уровне логического нуля (отрицательный импульс) и имеет длительность n t з . Показанная на рис. 5.2 б схема с триггером улучшает форму выходного импульса. По перепаду сигнала на синхровходе из 1 в 0 JK -триггер устанавливается в единицу. С выхода логический ноль через элементы DD1 DDn поступает на инверсный вход асинхронной установки триггера в 0 и возвращает триггер в исходное состояние. Если для создания задержки используется нечетное число ЛЭ, то вход DD1 следует подключить не к выходу , а к выходу Q .

Для формирования импульсов, длительность которых существенно превышает время t з , используют времязадающие RC -цепи и пороговые свойства ЛЭ. Схемы таких формирователей на ЛЭ ТТЛ даны на рис. 5.2 в , г .

Рисунок 5.3 – Одновибраторы с времязадающими RC-цепями

Одновибратор, собранный по схеме 5.3 а , запускается перепадом сигнала на входе из 1 в 0. Пока ток заряда конденсатора С создает на резисторе R падение напряжения, превышающее пороговое напряжение единицы ЛЭ, на выходе формируется отрицательный импульс. В момент достижения U пор , при длительности выходного импульса t и , превышающей длительность запуска, ЛЭ DD1.1 и DD1.2 выходит в активную область передаточной характеристики и схема за счет положительной обратной связи переключается в исходное состояние. Аналогичным образом работает одновибратор, выполненный по схеме 5.2 б , но здесь перезаряд конденсатора происходит от нулевого напряжения до напряжения на входе DD1.2 , равного пороговому напряжению нуля U пор . Длительности выходных импульсов этих одновибраторов находятся как .

При построении формирователей длительности импульсов с использованием времязадающих RC -цепей на ЛЭ КМОПТЛ по рассмотренным схемам, между общей точкой R и C и входом ЛЭ следует включить резистор сопротивлением 1…10 кW для ограничения тока через защитные диоды ЛЭ при восстановлении заряда конденсатора по окончании импульса.

Широкими функциональными возможностями генерации одиночных прямоугольных импульсов заданной длительности обладают специальные ИС одновибраторов. Микросхема К155АГ1, условное обозначение которой при запуске спадом импульса показанo на рис. 5.4, представляет собой одноканальный одновибратор.

Рисунок 5.4 – Микросхема К155АГ1

Длительность генерируемого импульса задается RC -цепочкой. Может использоваться либо внутренний резистор R вн = 2 kW, либо навесной резистор R , сопротивление которого выбирается в пределах R . Емкость навесного конденсатора С до 10 μF, а если к стабильности выходных импульсов нет высоких требований, может достигать 1000 μF. При С 10 pF длительность выходных импульсов описывается формулой . Если навесные элементы отсутствуют, формируются импульсы t и – 30…35 ns. Для восстановления одновибратора к началу следующего импульса период входных сигналов должен отвечать условию t и 0,9 Т вх при R = 40 k Wи t и 0,67 Т вх при R = 2 kW. Запуск одновибратора производится перепадами из 1 в 0 по входам А1 и А2 или из 0 в 1 по входу В . Режимы работы ИС К155АГ1 приведены в табл. 5.1. Для уверенного запуска крутизна фронтов на входах А должна быть не менее 1 V/μs, по входу В не менее 1 V/s.

Таблица 5.1

Входы Выходы Режим
А1 А2 B
x x x Устойчивое состояние
х х Запуск

Микросхема К155АГ3 содержит два одновибратора с возможностью повторного перезапуска во время формирования выходного импульса.

Рисунок 5.5 – Микросхема К155АГ3

Длительность выходного импульса задается установкой внешних резистора и конденсатора. Максимальная емкость конденсаторане лимитирована, сопротивление берется в пределах . Если одновибратор работает в режиме с перезапуском, то t u отсчитывается от последнего запускающего импульса. Для реализации режима работы без перезапуска необходимо соединить вход А с выходом Q либо вход В с выходом Q , тогда выходные сигналы, пришедшие на входы В или А во время формирования импульса, не окажут влияния на его длительность. Во всех случаях формирование импульса может быть прервано подачей 0 на вход SR .

При необходимости получить импульсы со стабильной длительностью от долей микросекунд до сотен секунд с выходными токами до 200 mА и уровнями логических переменных, согласованными с уровнями ТТЛ и КМОПТЛ элементов, применяют одновибраторы на таймере типа 1006 ВИ1 с внешними времязадающими элементами.

Рисунок 5.6 – Сигнализатор освещенности на таймере 1006ВИ1

На рис. 5.6 рассмотрено применение таймера в качестве сигнализатора освещенности объекта. При малой освещенности сопротивление фоторезистора R 3 велико и сигнализатор работает в режиме мультивибратора, вырабатывая прямоугольные импульсы длительностью с паузой между ними . При большой освещенности на выходе сигнализатора устанавливается напряжение логического нуля при выходном сопротивлении около 10 W. Сопротивление выбирают в пределах 1 kW…10 МW с учетом того, чтобы ток через транзистор VТ1 не превосходил 100 mА. Емкость конденсатора должна на несколько порядков превосходить входную емкость, и не рекомендуется устанавливать ее меньше 100 pF при формировании точных временных интервалов.

Сопротивление R 2 рассчитывают, исходя из обеспечения на выводе 4 таймера напряжения, меньшего 0,4 V при сильно освещенном фотосопротивлении R 3 . Чтобы мультивибратор генерировал колебания при большой освещенности фоторезистора, следует поменять местами резисторы R 2 и R 3 .

Сигнализатор может быть использован и при других типах датчиков, вырабатывающих непосредственно уровни сигналов 0 и 1.

Схемы задержки цифровых сигналов требуются для временно го согласования распространения сигналов по различным путям цифрового устройства. Временные рассогласования прохождения сигналами заданных путей могут привести к критическим временным состязаниям, нарушающим работу устройств. На время прохождения влияют параметры элементов, через которые передаются цифровые сигналы. Изменяя эти параметры, можно изменять время распространения сигналов. Для изменения времени задержки используют электромагнитные линии задержки, цепочки логических элементов, RC -цепочки. Используя такие элементы, можно получить сужение, расширение сигналов, сужение со сдвигом относительно фронта входного импульса и т. д.

Для изменения длительности и смещения импульса относительно фронта часто используют естественную инерционность логических элементов. Одна из схем, использующих инерционные свойства логических элементов, представлена на рис. 12.8. (Подобная схема приводилась на рис.3.25 в п.п. 3.2.3)

Рис. 12.8. Формирователь короткого импульса с задержкой относительно переднего фронта (а) и временная диаграмма (б)

Каждый логический элемент создает временную задержку, поэтому при появлении входного сигнала изменение уровня выходного сигнала после первого логического элемента U 1 происходит через время t зд.р. Аналогично, через интервал временной задержки изменяются выходные сигналы других инверторов (U 2 ,U 3). Изменение состояния четвертого элемента нужно анализировать с учетом того, что здесь входы раздельные. До поступления входного сигнала на верхнем входе логического элемента DD 4 была логическая 1, а на нижнем входе – логический 0. Поэтому в установившемся состоянии на выходе схемы был высокий потенциал (логическая 1).

После появления входного сигнала на нижнем входе элемента DD 4 устанавливается логическая единица, на верхнем также пока еще действует 1. Поэтому на выходе схемы через время t зд.р установится логический 0. Пройдя через три логических элемента, входной сигнал изменит значение U 3 c 1 на 0 (это верхний вход элемента DD 4). Выходное напряжение схемы с учетом t зд.р в элементе DD 4 снова станет равно 1. Следовательно, схема формирует из переднего фронта входного сигнала короткий импульс длительностью 3t зд.р со сдвигом относительно переднего фронта на t зд.р. Задний фронт входного сигнала изменения состояния схемы на выходе не вызывает, поскольку к моменту появления 1 на верхнем входе элемента DD 4 на нижнем уже существует 0. Поэтому 1 на выходе сохраняется до появления следующего входного импульса. Происходящие процессы без учета длительности фронтов импульсов представлены на временной диаграмме (рис. 12.8, б ). Формируемый схемой сигнал имеет низкий уровень.

Если конъюнктор DD 4 в схеме (рис. 12.8, а ) заменить на дизъюнктор, а число инверторов сделать четным, то схема будет расширять входные импульсы на временной интервал, равный n t зд.р, где n – число инверторов в цепи задержки. Схема расширителя импульсов и временная диаграмма его работы представлены на рис. 12.9.

Рис. 12.9. Схема расширителя импульсов (а ) и временная диаграмма (б )

Из временной диаграммы видно, что длительность выходного импульса больше длительности входного на 4t зд.р.

Рассмотрены кратко лишь несколько схем последовательных формирователей импульсов. Дополнительные сведения можно найти в .

Литература: [Л.1], с 77-83

[Л.2], с 22-26

[Л.3], с 39-43

Во многих радиотехнических задачах часто возникает необходимость сравнения сигнала и его копии, сдвинутой на некоторое время . В частности такая ситуация имеет место в радиолокации, где отраженный от цели импульс поступает на вход приемника с задержкой во времени. Сравнение этих сигналов между собой, т.е. установление их взаимосвязи, при обработке позволяет определять параметры движения цели.

Для количественной оценки взаимосвязи сигнала и его сдвинутой во времени копии вводится характеристика

, (2.57)

Которая называется автокорреляционной функцией (АКФ).

Для пояснения физического смысла АКФ приведем пример, где в качестве сигнала выступает прямоугольный импульс длительностью и амплитудой . На рис. 2.9 изображены импульс, его копия, сдвинутая на интервал времени и произведение . Очевидно, интегрирование произведения дает значение площади импульса, являющегося произведением . Это значение при фиксированном можно изобразить точкой в координатах . При изменении мы получим график автокорреляционной функции.

Найдем аналитическое выражение . Так как

то подставляя это выражение в (2.57), получим

. (2.58)

Если осуществлять сдвижку сигнала влево, то аналогичными вычислениями нетрудно показать, что

. (2.59)

Тогда объединяя (2.58) и (2.59), получим

. (2.60)

Из рассмотренного примера можно сделать следующие важные выводы, распространяющиеся на сигналы произвольной формы:

1. Автокорреляционная функция непериодического сигнала с ростом убывает (необязательно монотонно для других видов сигналов). Очевидно, при АКФ также стремиться к нулю.

2. Своего максимального значения АКФ достигает при . При этом, равна энергии сигнала. Таким образом, АКФ является энергетической характеристикой сигнала. Как и следовало ожидать при сигнал и его копия полностью коррелированны (взаимосвязаны).

3. Из сравнения (2.58) и (2.59) следует, что АКФ является четной функцией аргумента , т.е.

.

Важной характеристикой сигнала является интервал корреляции . Под интервалом корреляции понимают интервал времени , при сдвижке на который сигнал и его копия становятся некоррелированными.

Математически интервал корреляции определяется следующим выражением

,

или поскольку – четная функция

. (2.61)

На рис. 2.10 изображена АКФ сигнала произвольной формы. Если построить прямоугольник, по площади равный площади под кривой при положительных значениях (правая ветвь кривой), одна сторона которого равна , то вторая сторона будет соответствовать .

Найдем интервал корреляции для прямоугольного импульса. Подставляя (2.58) в (2.60) после несложных преобразований, получим:

,

что и следует из рис. 2.9.

По аналогии с автокорреляционной функцией степень взаимосвязи двух сигналов и оценивается взаимной корреляционной функцией (ВКФ)

. (2.62)

Найдем взаимную корреляционную функцию двух сигналов: прямоугольного импульса с амплитудой и длительностью

и треугольного импульса той же амплитуды и длительности

Воспользовавшись (2.61) и вычисляя интегралы отдельно для и , получим:

Графические построения, иллюстрирующие вычисления ВКФ, приведены на рис. 2.11

Здесь пунктирными линиями показано исходное (при ) положение треугольного импульса.

При выражение (2.61) преобразуется в (2.57). Отсюда следует, что АКФ является частным случаем ВКФ при полностью совпадающих сигналах.

Отметим основные свойства ВКФ.

1. Так же, как и автокорреляционная функция, ВКФ является убывающей функцией аргумента . При ВКФ стремиться к нулю.

2. Значения взаимной корреляционной функции при произвольных представляют собой значения взаимной энергии (энергии взаимодействия) сигналов и .

3. При взаимная корреляционная функция (в отличие от автокорреляционной) не всегда достигает максимума.

4. Если сигналы и описываются четными функциями времени, то ВКФ тоже четна. Если же хотя бы один из сигналов описывается нечетной функцией, то ВКФ так же нечетна. Первое утверждение легко доказать, если вычислить ВКФ двух прямоугольных импульсов противоположной полярности

и

Взаимная корреляционная функция таких сигналов

, (2.63)

является четной функцией аргумента .

Что же касается второго утверждения рассмотренный пример вычисления ВКФ прямоугольного и треугольного импульсов доказывает его.

В некоторых прикладных задачах радиотехники используют нормированную АКФ

, (2.64)

и нормированную ВКФ

, (2.65)

где и – собственные энергии сигналов и . При значение нормированной ВКФ называют коэффициентом взаимной корреляции . Если , то коэффициент взаимной корреляции

.

Очевидно, значения лежат в пределах от -1 до +1. Если сравнить (2.65) с (1.32), то можно убедиться, что коэффициент взаимной корреляции соответствует значению косинуса угла между векторами и при геометрическом представлении сигналов.

Рассчитаем коэффициент взаимной корреляции для рассмотренных выше примеров. Так как энергия сигнала прямоугольного импульса составляет

,

а треугольного импульса

,

то коэффициент взаимной корреляции в соответствии с (2.62) и (2.65) будет равен . Что же касается второго примера, то для двух прямоугольных импульсов одинаковой амплитуды и длительности, но противоположной полярности, .

Экспериментально АКФ и ВКФ могут быть получены с помощью устройства, структурная схема которого изображена на рис. 2.12

При снятии АКФ на один из входов перемножителя поступает сигнал , а на второй – этот же сигнал, но задержанный на время . Сигнал, пропорциональный произведению , подвергается операции интегрирования. На выходе интегратора формируется напряжение, пропорциональное значению АКФ при фиксированном . Изменяя время задержки, можно построить АКФ сигнала.

Для экспериментального построения ВКФ сигнал подается на один из входов перемножителя, а сигнал – на устройство задержки (входящие цепи показаны пунктиром). В остальном, устройство работает аналогичным образом. Отметим, что описанное устройство называется коррелятором и широко используется в различных радиотехнических системах для приема и обработки сигналов.

До сих пор мы проводили корреляционный анализ непериодических сигналов, обладающих конечной энергией. Вместе с тем, необходимость подобного анализа часто возникает и для периодических сигналов, которые теоретически обладают бесконечной энергией, но конечной средней мощностью. В этом случае АКФ и ВКФ вычисляются усреднением по периоду и имеют смысл средней мощности (собственной или взаимной соответственно). Таким образом, АКФ периодического сигнала:

, (2.66)

а взаимная корреляционная функция двух периодических сигналов с кратными периодами:

, (2.67)

где – наибольшее значение периода.

Найдем автокорреляционную функцию гармонического сигнала

,

где – круговая частота, – начальная фаза.

Подставляя это выражение в (2.66) и вычисляя интеграл с использованием известного тригонометрического соотношения:

.

Из рассмотренного примера можно сделать следующие выводы, справедливые для любого периодического сигнала.

1. АКФ периодического сигнала является периодической функцией с тем же периодом.

2. АКФ периодического сигнала является четной функцией аргумента .

3. При значение представляет собой среднюю мощность, которая выделяется на сопротивлении в 1 Ом и имеет размеренность .

4. АКФ периодического сигнала не содержит информации о начальной фазе сигнала.

Следует также отметить, что интервал корреляции периодического сигнала .

А теперь вычислим взаимную корреляционную функцию двух гармонических сигналов одинаковой частоты, но отличающихся амплитудами и начальными фазами

и .

Воспользовавшись (2.67) и проводя несложные вычисления, получим

,

где – разность начальных фаз сигналов и .

Таким образом, взаимная корреляционная функция двух рассматриваемых сигналов содержит информацию о разности начальных фаз. Это важное свойство широко используется при построении различных радиотехнических устройств, в частности, устройств синхронизации некоторых систем радиоавтоматики и других.

Схемы временной задержки импульсов обеспечивают задержку импульсных сигналов во времени и применяются для временной селек­ции, импульсных измерений, согласования работы импульсных устройся и т.д. Временная задержка может быть получена при помощи линий задержки, электронных схем задержки и фазовращателей.

Линии задержки подразделяются на электрические и ультразву­ковые.

Применение линий задержки (Л.З.) основано на использовании постоянства скорости распространения электромагнитных или акус­тических колебаний вдоль линии. Применение того или иного типа Л.З. зависит от требуемого времени задержки. Для задержки от до­лей до десятков микросекунд используют линии (кабель), искусствен­ные электрические линии с распределенными параметрами (спираль­ные)

(рис. 8.1, слайд 138, 21 ) и искусственные цепочечные линии ИЦЛ (рис. 8.2, слайды 22 ) (будут изучаться в дальнейшем).

Для задержки от единиц и сотен микросекунд до нескольких миллисекунд применяют акустические (ультразвуковые) линии задерж­ки. Их принцип работы основан на различии скорости распростране­ния электрических и механических колебаний.

Действие ультразвуковой Л.З. заключается в преобразовании электрического сигнала в звуковое колебание, распространяющееся по звукопроводу. В ультразвуковых линиях с пьезоэлектрическим преобразователями преобразование осуществляется пластиной кварца (рис. 8.3, слайды139, 23 ).

В качестве звукопровода применяется ртуть (t З = 6.7 мкс/см; затухание d = 0.083 дб/см), плавленый кварц (t З = 1.8 мкс/см; Б = 0,007 дб/см), магниевые сплавы (t З = 1.7 мкс/см; б = 0.01-0.2 дб/см).

Для увеличения задержки используется звукопроводы с многократными отражениями (рис.8.4, слайды 140, 24 ).

Электронные схемы задержки позволяют получить задержку от нескольких микросекунд до нескольких секунд. Достоинства таких схем – их простота и возможность регулирования задержки в широких пределах, недостаток – малая по сравнению с линиями стабильность. В качестве электронной схемы задержки можно использовать амплитудный компаратор с входным напряжением, изменяющимся по линейному закону. Изменением уровня сравнения регулируется время задержки. Временная нестабильность таких схем G = Dt З / t З может быть снижена до 0,1 – 0,05%.

Временная задержка может быть получена также при помощи спусковых схем (рис. 8.5, слайды 141,25 ) и фантастронов .

Для этой цели выходной импульс указанных схем дифференцируется. Импульс, полученный при дифференцировании среза, будет задержан относительно входного на величину t З = T U . Регулированием длительности импульса можно изменять время задержки. Нестабильность задержки спусковой схемы d= 1-5 %, фантастрона d = 0,1-1 %. Схемы задержки применяются для задержки запуска индикаторов с целью по­учения режима кольцевого обзора, а также для синхронизации работы ручных устройств.



Второй учебный вопрос.

ОП ИСАНИЕ

ИЗОБРЕТЕНИЯ

Союз Советских

Социалистических

Государственный комитет

СССР по делам изобретений и открытий

А.В. Козлов (71) Заявитель (54) УСТРОЙСТВО ЗАДЕРЖКИ ПРЯМОУГОЛЬНЫХ ИМПУЛЬСОВ

Изобретение относится к измери- . тельнОй и вычислительной технике и может быть использовано, в частности, в экстремальных корреляционных системах для определения скорости передвижения, в корреляционных расходомерах, в импульсных устройствах автоматики.

Известно устройство задержки импульсов, содержащее генератор импульсов, входной управляющий триггер, элемент И, управляемый делитель частоты (1 j.

Недостатком устройства является то, что при задержке импульсов не сохраняется их длительность.

Известно также устройство задержки импульсов, содержащее генератор импульсов, три элемента И, два управляющих триггера, реверсивный счетчик, управляемый делитель частоты, дешифратор нуля f 2 .

Однако устройство имеет достаточно сложную схему управления из-за применения реверсивного счетчика.

Наиболее близким по технической сущности к предлагаемому является устройство задержки прямоугольных импульсов, содержащее генератор импульсов, регистр времени задержки,уп-, равляемый делитель частоты, состоящий из двоичного счетчика., схемы сброса и записи и двух элементов И, 5 первые и вторые входы которых соединены соответственно с выходами регистра времени задержки и первым выходом схемы сброса и установки, а выходы элементов подключены к установочным S-входам счетчика, первые и вторые элементы И и RS-триггеры, двоичный счетчик и схема сравнения, выход которой подключен к входам сброса RS-триггеров, а ее входы сое динены с информационными выходами двоичного счетчика и управляемого делителя частоты, выход которого соединен с установочным входом второго

RS-триггера, выход которого подключен к входу схемы сброса и записи и является выходом устройства, генератор импульсов через первые входы элементов И подключен к управляющим входам двоичного счетчика и управляемого делителя частоты, соответственно, входы сброса которых соединены с вторым выходом схемы сброса и записи, источник входного сигнала подсоединен к второму входу второго элемента И и к установочному входу первого R5, -триггера, выход которого сое1003321 динен со вторым входом первого элемента И (3).

Недостатком устройства является то, что оно не обеспечивает задержку входного импульса в случае, когда время между окончанием предыдущего входного импульса и началом следующего импульса меньше времени задержки, так как при этом условии устройство еще не сформировало задержанный предыдущий импульс и поэтому не может принять следующий входной импульс. Действительно, если формирование предыдущего задержанного импульса не окончено, то при поступлении на вход устройства следующего импульса он не изменит состояния первого ВБ-триггера, так как последний уже находится в состоянии "1", но откроет второй элемент И. При этом. в двоичный счетчик поступит от гене- Щ ратора количество импульсов, пропорциональное длительности этого входного импульса. Код двоичного счетчика станет пропорционален сумме длительностей предыдущего и последующе- 75 го входных импульсов,т.о. длительность сформированного:;ыходного импульса будет равна суммарной длительности, что является нарушением работы устройства задержки. Задача задержки импульсов с переменной длительностью при описанном выше условии возникает в экстремальных корреляционных системах измерения скорости, в корреляционных расходомерах и других импульсных устройствах. Названные устройства синхрониэируются перестраиваемой тактовой частотой.

В каждом такте формируется только один прямоугольный импульс, длительность которого определяет измеряе- 4О мый параметр в этом такте. Этот импульс требуется задержать на время одного т кта. При этом передний фронт импульса совпадает с началом такта, поэтому, чтобы задержать импульс на,45 такт необходимо и достаточно задерживать только задний фронт импульса, так как его передний фронт связан с началом такта и определяется импульсом тактовой частоты. Время между 50 двумя прямоугольными импульсами. в таких названных устройствах всегда меньше времени задержки, равного переоду тактовой частоты, поэтому ставится задача усовершенствования рас- 55 смотренного устройства задержки прямоугольных импульсов для выполнения указанного требования °

Цель изобретения — расширение функциональных возможностей устройст-6О ва задержки прямоугольных импульсов.

Поставленная цель достигается тем, что в устройство задержки прямоугольных импульсов, содержащее генератор импульсов, управляемый делитель час- g5 тоты, два элемента И, два RS-триггера, регистр времени задержки, выход которого соединен с информационным входом управляемого делителя частоты, выход генератора импульсов соединен с первыми входами элементов И, выход первого RS-триггера соединен с вторым входом первого элемента И, выход которого соединен с управляющим входом управляемого делителя частоты, а выход второго RS-триггера является выходом устройства, введены коммутатор, формирователь, вход которого является входом устройства, а выход формирователя соединен с входом коммутатора, третий RS -триггер, выход которого подключен к второму входу второго элемента И, элемент ИЛИ, выход которого соединен с R-входом второго RS-триггера, второй и третий управляемые делители частоты, информационные входы которых оединены с выходом регистра времени задержки,выходы первого и второго управляемых делителей частоты подключены к входам элемента

HJIH ooT eT T e o K R-входам первого и третьего RS-триггеров, S-входы которых соединены с соответствующими выходами коммутатора, выход генератора импульсов соединен с управляющим входом третьего управляемого делителя частоты, выход которого подключен к управляющему входу коммутатора и

S-входу второго R 5 -триггера, выход второго элемента И соединен с управляющим входом второго управляемого делителя частоты.

Действительно, введение новых элементов и новых связей позволяет осуществлять задержку прямоугольных имб пульсов на время, равное периоду перестраиваемой тактовой частоты, при этом время между двумя задерживаемыми импульсами меньше времени задержки.

Для исключения влияния последующего импульса на формирование задержанного предыдущего импульса используются коммутатор, два RS-триггера, два элемента И, два управляемых делителя частоты. Коммутатор в каждый такт работы устройства подключает по очередности либо один, либо другой

RS-триггер, поэтому короткий импульс, соответствующий заднему фронту задерживаемого импульса, с выхода формирователя поступает по очереди на указанные RS- триггеры, и задержка импульсов осуществляется по очереди на первом и на втором управляемых делителях частоты. Это устраняет влияние последующего входного импульса на формирование предыдущего задержанного импульса и делает возможным задержку последующего импульса.

На фиг. 1 приведена структурная схема предлагаемого устройства задержки прямоугольных импульсов; на

1003321 фиг. 2 — временные диаграммы, поясняющие работу устройства задержки.

Устройство содержит формирователь

1, коммутатор 2, генератор импульсов

3, R5 -триггеры 4 и 5, элементы И 6 и 7, управляемые делители 8-10 часто- 5 ты, регистр 11 времени задержки, элемент ИЛИ 12, выходной RS-триггер 13.

Вход формирователя 1 является входом устройства, а его выход соединен с входом коммутатора 2, выход которо- 10 (го соединен соответственно с S-входами R5 -триггеров 4 и 5, выход генератора импульсов 3 соединен с управляющим входом управляемого делителя

8 частоты и первыми входами элементов15

И б и 7, выходы которых подключены соответственно к управляющим входам управляемых делителей частоты 9 и

10, выходы которых соединены соответственно с R -входами R5-триггеров

4 и 5 и с входами элемента ИЛИ, выход которого подключен к R-входу

RS-триггера 13, выход регистра 11 времени задержки соединен с информационными входами управляемых делителей 8-10 частоты, выход управляемого делителя 8 частоты подключен к управляемому входу коммутатора 2 и к

5-входу RS-триггера 13, выход которого является выходом устройства задержки.

Формирователь 1 предназначен для формирования короткого импульса, который соответствует заднему фронту входного задерживаемого импульса, Ç5 поступаюшего на его вход. Коммутатор 2 по очереди подключает выход формирователя 1 к S -входам RS-триггеров 4 и 5. Импульсы с генератора 3, проходя через делитель 8, формируют 40 импульсы тактовой частоты, период которой равен времени задержки и определяется кодом регистра 11. Импульсы тактовой частоты подаются на управляющий вход коммутатора и S-вход45

RS-триггера 13, что обеспечивает коммутацию импульсов с выхода формирователя с частотой, равной тактовой частоте, и формирование переднего фронта задержанного импульса íà Выхо-50 де RS-триггера 13 по импульсу такто- вой частоты, т.е. с начала следуницего такта. Делители 9 и 10 формируют импульс, задержанный на период тактовой частоты, элемент ИЛИ 12 осуществляет операцию объединения выходов делителей 9 и 10, поэтому каждый задержанный импульс.с выходов делителей 9 и 10 поступает íà R-âõñä

RS-триггера 13, при этом на его выходе формируется задний фронт задер- 60 жанного импульса.

Устройство работает следующим образом.

Выходные импульсы тактовой частоты, формйрующиеся на выходе делите- g5 ля 8, синхронизируют работу не только устройства задержки, но и всего прибора, в котором используется данное устройство. На вход устройства задержки 1 поступают прямоугольные импульсы, которые необходимо задержать на время одного такта. Передние фронты всех импульсов совпадают с началом тактов, поэтому импульсы тактовой частоты подают на 5-вход RS триггера 13, при этом на его выходе формируются задержанные импульсы,передние фронты которых совпадают с началом тактов. Импульсы с выхода формирователя 1, проходя через коммутатор 2, поочередно, через такт, поступают на S-входы триггеров 4 и 5.

С приходом такого импульса на этих триггерах (поочередно в каждом такте) при помощи элемента И 6 или 7 и делителя 9 или 10 формируются прямоугольные импульсы, длителъность которых равна периоду тактовой частоты, так как коэффициенты деления делителей 8-10 равны и определяются кодом регистра.11 времени задержки. Задние фронты этих импульсов совпадают с выходными короткими импульсами делителей 9 и 10, так как эти короткие импульсы поступают на R-входы RS-триггеров 4 и 5 и устанавливают на их выходах сигнал "0", прекращая.прохождение импульсов с генератора 3 поочередно в каждом такте через элементы

И б или 7 на входы делителей 9 или

10. Импульсы с выходов делителей и 10, проходя через элемент ИЛИ, суммируются и подаются на R -вход RQ— триггера 13, который до прихода этих импульсов в каждом такте находится в состоянии "1" .Поступающие íà R -вход импульсы переводят этот триггер в состояние ".0", формируя задний фронт задержанных импульсов. Таким образом, на выходе RS-триггера 13 формируется последовательность прямоугольных импульсов, задержанная на время одного такта по сравнению с последовательностью входных импульсов.

Пр длагаемое устройство задержки прямоугольных импульсов расширяет функциональные возможности прототипа, обеспечивая задержку импульсов при условии, что время между двумя входными импульсами меньше, чем требуемое время задержки, которое может изменяться с изменением кода регистра времени задержки. Оно может быть использовано в корреляционных измерителях скорости, расхода и других подобных импульсных устройствах ° При этом тактовая частота и генератор импульсов используются для синхронизации работы всего измерителя. Кроме того, схема задержки значительно упрощается, так как устраняются операции измерения, запоминания и восста.новления длительности задерживаемо1003321

Формула изобретения

ro входного импульса. Снижение затрат при использовании предлагаемого устройства в названных измерителях зависит от требуемой точности и дискретности изменения времени, задержки, определяемой количеством разрядов управляемых делителей частоты. В прототипе это требование влияет на количество разрядов двоичного счетчика, в котором фиксируется длительность задерживаемого импульса. Этот счетчик!О со схемой измерения длительности отсутствует в предлагаемом устройстве, которое возможно было бы заменить двумя схемами прототипа с дополнительными элементами в названных изме-15 рителях. Использование этого устройст. ва вместо двух схем прототипа позволяет сократить количество микросхем, что обеспечивает снижение затрат. (Также уменьшается в два раза погреш- gg ность задержки импульса, так как задерживается только задний фронт импульса, а передний совпадает с тактовыми импульсами, поэтому погрешность задержки импульсов опреде" 25 ляется только погрешностью задержки заднего фронта.

Устройство задержки прямоугольных импульсов, содержащее генератор импульсов, управляемый делитель частоты, два элемента И, два RS-триггера, регистр времени. задержки, выход которого соединен с информационным входом управляемого делителя частоты, выход генератора импульсов соединен с первыми входами элементов И, выход первого RS-триггера соединен со 40 вторым входом первого элемента И,выход которого соединен с управляющим входом управляемого делителя частоты, а выход второго k5 -триггера является выходом устройства, о т л и ч а ю— щ е е с я тем, что, с целью расширения функциональных возможностей устройства, в него введены коммутатор, формирователь, вход которого является входом устройства, а выход формирователя соединен с входом коммутатора, третий g5-триггер, выход которого подключен ко второму входу второго элемента И, элемент ИЛИ, выход которого соединен с

A-входом второго R5-триггера, второй и третий управляемые делители частоты, информационные входы которых соединены с выходом регистра времени задержки, выходы первого и второго управляемых делителей частоты подключены к входам элемента ИЛИ и соответственно к R -входам первого и третьего к3-триггеров, 5 -входы которых соединены с соответствующими выходами коммутатора, выход генератора импульсов соединен с управляющим входом третьего управляемого делителя частоты, выход которого подключен к управляющему входу коммутатора и.5-входу второго 95-триггера, выход второго элемента И соединен с управ" ляющим входом второго управляемого делителя частоты.

Источники информации, принятые во внимание при экспертизе

Р 308499, кл. Н 03 К 5/1 3, 1969.

Р 396822, кл. Н 03 К 5/153, 1971.

Р 479234, кл. Н 03 К 5/153, 1973 (прототип).

ВНИИПИ Заказ 1588 44 Ти аж 934 Подписное е

Филиал ППП "Патент", г.Ужгород, Ул.Проектная,4