Задачи сегментации изображения с помощью нейронной сети Unet. Пороговые методы сегментации

Пороговая обработка, вероятно, самый простой метод сегментации, что привлекает к нему большое внимание специалистов. Метод ориентирован на обработку изображений, отдельные однородные участки которых различаются средней яркостью. Простейшим и вместе с тем часто применяемым видом сегментации является бинарная сегментация, когда имеется только два типа однородных участков. При этом преобразование каждой точки исходного изображения в выходное выполняется по правилу:

(7.1)

где - единственный параметр обработки, называемый порогом. Уровни выходной яркости и , могут быть произвольными, они лишь выполняют функции меток, при помощи которых осуществляется разметка получаемой карты - отнесение ее точек к классам или соответственно. Если образуемый препарат подготавливается для визуального восприятия, то часто их значения соответствуют уровням черного и белого. Если существует более двух классов, то при пороговой обработке должно быть задано семейство порогов, отделяющих яркости различных классов друг от друга.

Центральным вопросом пороговой сегментации является определение порогов, которое должно выполняться автоматически. Применяемые в настоящее время методы автоматического определения порогов подробно описаны в обзоре . Разнообразие методов очень велико, однако в основном они базируются на анализе гистограммы исходного изображения.

Пусть , - гистограмма исходного цифрового изображения. Примем, что его диапазон яркостей заключен в пределах от 0 (уровень черного) до 255 (уровень белого). Первоначальная идея гистограммного метода определения порога основывалась на предположении о том, что распределения вероятностей для каждого класса унимодальны (содержат по одному пику), а точки границ, разделяющих участки разных классов на изображении, малочисленны. Этим предположениям должна отвечать гистограмма, которая имеет многомодальный характер. Отдельные моды соответствуют различным классам, а разделяющие их впадины - малочисленным по количеству входящих в них точек граничным областям. Пороги сегментации находятся при этом по положению впадин. Рис. 7.1 иллюстрирует сказанное выше применительно к случаю двух классов. В действительности воспользоваться такими простыми соображениями для выбора порога удается крайне редко. Дело в том, что реальные гистограммы обычно сильно изрезаны, что иллюстрирует приводимый па рис.7.2, в результат эксперимента. Это служит первым препятствием для определения точек минимума. Вторым препятствием является то, что границы между однородными участками на изображении бывают размыты, вследствие чего уровень гистограммы в тех ее частях, которые отображают точки границы, возрастает. Очевидно, это приводит к уменьшению провалов в гистограмме или даже их исчезновению.

Рис.7.1.К выбору порога бинарной сегментации

Один из эффективных путей преодоления этих трудностей состоит и определении порога на основе так называемого дискриминантного критерия. Рассмотрим этот подход применительно к двум классам, поскольку обобщение на случай большего числа классов не составляет принципиальной проблемы. Итак, считаем, что распределение ,построено для изображения, содержащего два типа участков, причем существует оптимальная граница , разделяющая их наилучшим образом в некотором смысле. Для определения оптимального порога строим дискриминантную функцию , , аргумент которой имеет смысл пробного порога. Его значение, максимизирующее функцию , является оптимальным порогом . Рассмотрим построение дискриминантной функции.

Пусть - гипотетическое значение порога, разбивающее распределение , на два класса. При этом обычно не играет большой роли, к какому из классов будут отнесены точки изображения, имеющие яркость , в силу малочисленности граничных точек, разделяющие участки разных классов. Вероятность того, что наугад взятая точка кадра принадлежит классу , равна

(7.2)

Аналогично вероятность ее принадлежности к классу определяется формулой

(7.3)

причем в силу нормировки распределения вероятностей имеет место равенство

Далее считаем, что участок распределения , , ограниченный точкой , описывает часть изображения, принадлежащую , а участок , - принадлежащую . Это позволяет ввести в рассмотрение два распределения и , соответствующих и , конструируя их из распределения при помощи выражений:

Здесь делением на вероятности и обеспечивается нормировка вводимых условных распределений.

Для образованных таким образом распределений вероятностей могут быть найдены моменты. Выражения для математических ожиданий и имеют вид

(7.4)

где - ненормированное математическое ожидание для , - математическое ожидание для всего кадра.

Аналогично, дисперсия дня всего кадра определяется выражением

(7.6)

Для построения дискриминантной функции дополнительно вводим еще один энергетический параметр , называемый межклассовой дисперсией:

Безразмерная дискриминантная функция определяется выражением

(7.8)

Оптимальным, как говорилось выше, считается порог, отвечающим требованию

(7.9)

Поясним смысл критерия (7.9). Знаменатель в выражении (7.8) является дисперсией всего кадра и, следовательно, от величины пробного порога , разбивающего изображение на классы, не зависит. Поэтому точка максимума выражения (7.8) совпадает с точкой максимума числителя, т.е. определяется характером зависимости межклассовой дисперсии (7.7) от порога . При его стремлении к нулю вероятность , как следует из (7.2), также стремится к нулю. Поскольку при этом все изображение относится к классу , имеет место тенденция . Следовательно, оба слагаемых в (7.7) становятся равными нулю. Это же наблюдается и при другом крайнем значении порога =255. В силу неотрицательности величин, входящих в (7.7) и (7.9), и равенства функции нулю на краях области определения, внутри этой области существует максимум, абсцисса которого и принимается за оптимальный порог. Следует отметить качественный характер этих соображений. Более детальные исследования показывают, например, что при обработке некоторых изображений дискриминантная функция имеет несколько максимумов даже при наличии на изображении только двух классов. Это, в частности, проявляется, когда суммарные площади участков, занятых классами и ,существенно различны. Поэтому задача в общем случае несколько усложняется необходимостью определить абсолютный максимум функции .

С вычислительной точки зрения для выполнения алгоритма необходимо найти для всего изображения математическое ожидание и дисперсию . Далее при каждом значении определяются вероятности и с использованием (7.2) и (7.3) (или условия нормировки), а также математические ожидания классов и при помощи соотношений (7.4), (7.5). Найденные таким образом величины дают возможность определить значение .

Объем вычислений можно сократить, если выполнить некоторые преобразования формулы (7.7) для межклассовой дисперсии. Используя формулы (7.2)...(7.5), нетрудно получить соотношение для математических ожиданий:

(7.11)

Выражая из (7.10) величину и подставляя ее в (7.11), окончательно находим:

(7.12)

В соотношение (7.12), используемое в качестве рабочего, входят лишь две величины - вероятность и ненормированное математическое ожидание , что существенно уменьшает объем вычислений при автоматическом отыскании оптимального порога.

На рис. 7.2 приведены результаты эксперимента, иллюстрирующие описанный метод автоматической бинарной сегментации. На рис.7.2, а показан аэрофотоснимок участка земной поверхности "Поле", а на рис.7.2, б – результат его бинарной сегментации, выполненной на основе автоматического определения порога при помощи дискриминантного метода. Гистограмма распределения исходного изображения показана на рис.7.2, в, а дискриминантная функция , вычисленная по полученной гистограмме - на рис. 7.2, г. Сильная изрезанность гистограммы, порождающая большое количество минимумов, исключает возможность непосредственного определения единственного информационного минимума, разделяющего классы друг от друга. Функция же является существенно более гладкой и к тому же в данном случае унимодальной, что делает определение порога весьма простой задачей. Оптимальный порог, при котором получено сегментированное изображение, =100. Результаты показывают, что описанный метод нахождения порога, являясьразвитием гистограммного подхода, обладает сильным сглаживающим действием по отношению к изрезанности самой гистограммы.

Коснемся вопроса о пороговой сегментации нестационарных изображений. Если средняя яркость изменяется внутри кадра, то пороги сегментации должны быть также изменяющимися. Часто в этих случаях прибегают к разбиению кадра на отдельные области, в пределах которых изменениями средней яркости можно пренебречь. Это позволяет применять внутри отдельных областей принципы определения порогов, пригодные для работы со стационарными изображениями. На обработанном изображении наблюдаются в этом случае области, на которые разбито исходное изображение, отчетливо видны границы между областями. Это – существенный недостаток метода.

Более трудоемка, но и более эффективна процедура, использующая скользящее окно, при которой каждое новое положение рабочей области отличается от предыдущего только на один шаг по строке или по столбцу. Находимый на каждом шаге оптимальный порог относят к центральной точке текущей области. Таким образом, при этом методе порог изменяется в каждой точке кадра, причем эти изменения имеют характер, сопоставимый с характером нестационарности самого изображения. Процедура обработки, конечно, существенно усложняется.

Компромиссной является процедура, при которой вместо скользящего окна с единичным шагом применяют "прыгающее" окно, перемещающееся на каждом этапе обработки на несколько шагов. В "пропущенных" точках кадра порог может определяться с помощью интерполяции (часто применяют простейшую линейную интерполяцию) по его найденным значениям в ближайших точках.

Рис.7.2.Пример бинарной сегментации с автоматическим определением порога

Оценивая результативность пороговой сегментации по рис. 7.2, б, следует отметить, что данный метод дает возможность получить определенное представление о характере однородных областей, образующих наблюдаемый кадр. Вместе с темочевидно его принципиальное несовершенство, вызванное одноточечным характером принимаемых решений. Поэтому в последующих разделах обратимся к статистическим методам, позволяющим учитывать при сегментации геометрические свойства областей – размеры, конфигурацию и т.п. Отметим сразу же, что соответствующие геометрические характеристики задаются при этом своими вероятностными моделями и чаще всего в неявном виде.

1

Рассматриваются математические методы сегментации изображений стандарта Dicom. Разрабатываются математические методы сегментации изображений стандарта Dicom для задач распознавания медицинских изображений. Диагностика заболеваний зависит от квалификации исследователя и требует от него визуально проводить сегментацию, а математические методы по обработке растровых изображений являются инструментом для данной диагностики. Обработка полученных аппаратным обеспечением медицинских изображений без предварительной обработки графических данных в большинстве случаев дает неверные результаты. Выполнялись процедуры выделения контуров объектов методом Canny и дополнительными алгоритмами обработки растровых изображений. Результаты исследований позволяют вычислить необходимые для дальнейшего лечения пациента морфометрические, геометрические и гистограммные свойства образований в организме человека и обеспечить эффективное медицинское лечение. Разработанные принципы компьютерного автоматизированного анализа медицинских изображений эффективно используются для оперативных задач медицинской диагностики специализированного онкологического учреждения, так и в учебных целях.

распознавание образов

сегментация объектов интереса

медицинские изображения

1. Власов А.В., Цапко И.В. Модификация алгоритма Канни применительно к обработке рентгенографических изображений // Вестник науки Сибири. – 2013. – № 4(10). – С. 120–127.

2. Гонзалес Р., Вудс Р. Цифровая обработка изображений. – М.: Техносфера, 2006. – С. 1072.

3. Кулябичев Ю.П., Пивторацкая С.В. Структурный подход к выбору признаков в системах распознавания образов // Естественные и технические науки. – 2011. – № 4. – С. 420–423.

4. Никитин О.Р., Пасечник А.С. Оконтуривание и сегментация в задачах автоматизированной диагностики патологий // Методы и устройства передачи и обработки информации. – 2009. – № 11. – С. 300–309.

5. Canny J. A Computational approach to edge detection // IEEE Transactions on pattern analysis and machine intelligence. – 1986. – № 6. – P.679–698.

6. DICOM – Mode of access: http://iachel.ru/ zob23tai-staihroe/ DICOM

7. Doronicheva A.V., Sokolov A.A., Savin S.Z. Using Sobel operator for automatic edge detection in medical images // Journal of Mathematics and System Science. – 2014. – Vol. 4, № 4 – P. 257–260.

8. Jähne B., Scharr H., Körkel S. Principles of filter design // Handbook of Computer Vision and Applications. Academic Press. – 1999. – 584 p.

Одним из приоритетных направлений развития медицины в России является переход на собственные инновационные технологии электронной регистрации, хранения, обработки и анализа медицинских изображений органов и тканей пациентов. Это вызвано увеличением объемов информации, представленной в форме изображений, при диагностике социально значимых заболеваний, прежде всего онкологических, лечение которых в большинстве случаев имеет результат только на ранних стадиях.

При проведении диагностики изображений стандарта DICOM определяется патологическая область, при подтверждении ее патологического характера решается задача классификации: отнесение к какому-либо из известных видов или выявление нового класса. Очевидная сложность - дефекты получаемого изображения, обусловленные как физическими ограничениями оборудования, так и допустимыми пределами нагрузки на организм человека. В результате именно на программные средства ложится задача дополнительной обработки изображений с целью повысить их диагностическую ценность для врача, представить в более удобном виде, выделить главное из больших объемов получаемых данных.

Цель исследования . Разрабатываются математические методы сегментации изображений стандарта Dicom для задач распознавания медицинских изображений. Диагностика заболеваний зависит от квалификации исследователя и требует от него визуально проводить сегментацию, а математические методы по обработке растровых изображений являются инструментом для данной диагностики. Обработка полученных аппаратным обеспечением медицинских изображений без предварительной обработки графических данных в большинстве случаев дает неверные результаты. Это связано с тем, что изначально изображения получены неудовлетворительного качества.

Материал и методы исследования

В качестве материала исследований используются компьютерные томограммы пациентов специализированного клинического учреждения. Прежде чем анализировать реальные графические данные, необходимо изображение подготовить или произвести предобработку. Этот этап решает задачу улучшения визуального качества медицинских изображений. Полезно разделить весь процесс обработки изображений на две большие категории: методы, в которых как входными данными, так и выходными являются изображения; методы, где входные данные - изображения, а в результате работы выходными данными выступают признаки и атрибуты, выявленные на базе входных данных. Этот алгоритм не предполагает, что к изображению используется каждый из вышеприведенных процессов. Регистрация данных - первый из процессов, отраженный на рис. 1.

Рис. 1. Основные стадии цифровой обработки графических данных

Регистрация может быть достаточно простой, как в примере, когда исходное изображение является цифровым. Обычно этап регистрации изображения предполагает предварительную обработку данных, к примеру, увеличение масштаба изображения. Улучшение изображения входит в число наиболее простых и впечатляющих направлений предварительной обработки. Как правило, за методами улучшения информативности изображений определена задача поиска плохо различимых пикселей или увеличения контрастности на исходном изображении . Одним из часто используемых методов улучшения информативности изображений является усиление контраста изображения, так как усиливаются границы объекта интереса. Нужно учесть, что улучшение качества изображения - это в определенной степени субъективная задача в обработке изображений. Восстановление изображений - это задача также относится к повышению визуального качества данных. Методы восстановления изображений опираются на математические и вероятностные модели деформации графических данных. Обработку изображений как этап следует отделять от понятия обработки изображения как всего процесса изменений изображения и получения некоторых данных. Сегментация или процесс выделения объектов интереса делит изображение на составляющие объекты или части. Автоматизированное выделение объектов интереса является в определенной степени сложной задачей цифровой обработки изображений. Слишком детализированная сегментация делает процесс обработки изображения затруднительным, если необходимо выделить объекты интереса. Но некорректная или недостаточно детализированная сегментация в большинстве задач приводит к ошибкам на заключительном этапе обработки изображений. Представление и описание графических данных, как правило, следуют за этапом выделения объектов интереса на изображении, на выходе которого в большинстве случаев имеются необработанные пиксели, образующие границы области или формируют все пиксели областей. При таких вариантах требуется преобразование данных в вид, доступный для компьютерного анализа. Распознавание образов является процессом, который определяет к какому-либо объекту идентификатор (например, «лучевая кость») на основании его описаний . Определим взаимосвязь базы знаний с модулями обработки изображений. База знаний (то есть информация о проблемной области) некоторым образом зашифрована внутри самой системы обработки изображений. Это знание может быть достаточно простым, как, например, детальное указание объектов изображения, где должна находиться зона интереса. Такое знание дает возможность ограничения области поиска. База знаний управляет работой каждого модуля обработки и их взаимодействием, что отражено на рис. 1 стрелками, направленными в две стороны между модулями и базой знаний. Сохранение и печать результатов часто также требует использования специальных методов обработки изображений. Недостаток этих этапов обработки изображения в системе обработки медицинских изображений заключается в том, то, что ошибки, созданные на первых этапах обработки, к примеру при вводе или выделения объектов интереса на изображении, могут привести к невозможности корректной классификации. Обработка данных производится строго последовательно, и в большинстве случаев отсутствует возможность возвращения на предыдущие этапы обработки, даже если ранее были получены некорректные результаты . Методы на этапе предварительной обработки достаточно разнообразны - выделение объектов интереса, их масштабирование, цветовая коррекция, корректировка пространственного разрешения, изменение контрастности и т.п. Одно из приоритетных действий на этапе предварительной обработки изображения - это корректировка контрастности и яркости. При использовании соответствующих масок возможно объединить два этапа (фильтрация и предварительная обработка) для увеличения скорости анализа данных. Заключительный результат анализа изображений в большинстве случаев определен уровнем качества сегментации, а степень детализации объектов интереса зависит от конкретной поставленной задачи . По этой причине не разработан отдельный метод или алгоритм, подходящий для решения всех задач выделения объектов интереса. Оконтуривание областей предназначено для выделения на изображениях объектов с заданными свойствами. Данные объекты, как правило, соответствуют объектам или их частям, которые маркируют диагносты. Итогом оконтуривания является бинарное или иерархическое (мультифазное) изображение, где каждый уровень изображения соответствует определенному классу выделенных объектов. Сегментация - это сложный этап в обработке и анализе медицинских данных биологических тканей, поскольку необходимо оконтуривать области, которые соответствуют разным объектам или структурам на гистологических уровнях: клеткам, органоидам, артефактам и т.д. Это объясняется высокой вариабельностью их параметров, низким уровнем контрастности анализируемых изображений и сложной геометрической взаимосвязью объектов. В большинстве случаях для получения максимально эффективного результата необходимо последовательно использовать разные методы сегментации объектов интереса на изображении. К примеру, для определения границ объекта интереса применяется метод морфологического градиента, после которого для областей, которые подходят незначительным перепадам характеристик яркости, проводится пороговая сегментация . Для обработки изображений, у которых несвязанные однородные участки различны по средней яркости, был выбран метод сегментации Canny, исследования проводятся на клиническом примере. При распознавании реальных клинических изображений моделирование плохо применимо. Большое значение имеет практический опыт и экспертные заключения об итоге анализа изображений. Для тестового изображения выбран снимок компьютерной томографии, где в явном виде присутствует объект интереса, представленный на рис. 2.

Рис. 2. Снимок компьютерной томографии с объектом интереса

Для реализации сегментирования используем метод Canny . Такой подход устойчив к шуму и демонстрирует в большинстве случаев лучшие результаты по отношению к другим методам. Метод Canny включает в себя четыре этапа:

1) предобработка - размытие изображения (производим уменьшение дисперсии аддитивного шума);

2) проведение дифференцирования размытого изображения и последующее вычисление значений градиента по направлениям x и y;

3) реализация не максимального подавления на изображении;

4) пороговая обработка изображения .

На первом этапе алгоритма Canny происходит сглаживание изображения с помощью маски фильтром Гаусса. Уравнение распределения Гаусса в N измерениях имеет вид

или в частном случае для двух измерений

(2)

где r - это радиус размытия, r 2 = u 2 + v 2 ; σ - стандартное отклонение распределения Гаусса.

Если используем 2 измерения, то эта формула задает поверхность концентрических окружностей, имеющих распределение Гаусса от центральной точки. Пиксели с распределением, отличным от нуля, используются для задания матрицы свертки, применяемого к исходному изображению. Значение каждого пикселя становится средневзвешенным для окрестности. Начальное значение пикселя принимает максимальный вес (имеет максимальное Гауссово значение), а соседние пиксели принимают минимальные веса, в зависимости от расстояния до них . Теоретически распределение в каждой точке изображения должно быть ненулевым, что следует расчету весовых коэффициентов для каждого пикселя изображения. Но практически при расчёте дискретного приближения функции Гаусса не учитываются пиксели на расстоянии > 3σ, поскольку оно достаточно мало. Таким образом, программе, обрабатывающей изображение, необходимо рассчитать матрицу ×, чтобы дать гарантию достаточной точности приближения распределения Гаусса .

Результаты исследования и их обсуждение

Результат работы фильтра Гаусса при данных равных 5 для размера маски гаусса и 1,9 значении параметра σ - стандартного отклонения распределения Гаусса, представлен на рис. 3. Следующим шагом осуществляется поиск градиента области интереса при помощи свертки сглаженного изображения с производной от функции Гаусса в вертикальном и горизонтальном направлениях вектора.

Применим оператор Собеля для решения данной задачи . Процесс базируется на простом перемещении маски фильтра от пикселя к пикселю изображения. В каждом пикселе (x, y) отклик фильтра вычисляется с предварительно определённых связей. В результате происходит первоначальное выделение краев. Следующим шагом происходит сравнение каждого пикселя с его соседями вдоль направления градиента и вычисляется локальный максимум. Информация о направлении градиента необходима для того, чтобы удалять пиксели рядом с границей, не разрывая саму границу вблизи локальных максимумов градиента, которое значит, что пикселями границ определяются точки, в которых достигается локальный максимум градиента в направлении вектора градиента. Такой подход позволяет существенно снизить обнаружение ложных краев и обеспечивает толщину границы объекта в один пиксель, что эмпирически подтверждается программной реализацией алгоритма сегментирования среза брюшной полости на снимке компьютерной томографии, представленного ниже на рис. 4.

Следующий шаг - использование порога, для определения нахождения границы в каждом заданном пикселе изображения. Чем меньше порог, тем больше границ будет находиться в объекте интереса, но тем более результат будет восприимчив к шуму, и оконтуривать лишние данные изображения. Высокий порог может проигнорировать слабые края области или получит границу несколькими областями. Оконтуривание границ применяет два порога фильтрации: если значение пикселя выше верхней границы - он принимает максимальное значение (граница считается достоверной), если ниже - пиксель подавляется, точки со значением, попадающим в диапазон между порогов, принимают фиксированное среднее значение. Пиксель присоединяется к группе, если он соприкасается с ней по одному из восьми направлений. Среди достоинств метода Canny можно считать то, что при обработке изображения осуществляется адаптация к особенностям сегментирования. Это достигается через ввод двухуровневого порога отсечения избыточных данных. Определяются два уровня порога, верхний - p high и нижний - p low , где p high > p low . Значения пикселей выше значения p high обозначаются как соответствующие границе (рис. 5).

Рис. 3. Применение фильтра Гаусса на компьютерной томограмме с объектом интереса

Рис. 4. Подавления не-максимумов на сегментируемом изображении

Рис. 5. Применение алгоритма сегментации Canny c разными значениями уровней порога

Практика показывает, что имеется некоторый интервал на шкале уровней порога чувствительности, при котором значение площади объекта интереса фактически неизменимое, но при этом существует определенный пороговый уровень, после которого отмечается «срыв» метода оконтуривания и итог выделения областей интереса становится неопределенным . Этот недостаток алгоритма, который можно компенсировать объединением алгоритма Canny с преобразованием Хафа для поиска окружностей. Сочетание алгоритмов позволяет максимально четко выделять объекты исследования, а также устранять разрывы в контурах .

Выводы

Таким образом, решена задача формулирования типовых характеристик патологических объектов на медицинских изображениях, что даст возможность в дальнейшем проводить оперативный анализ данных по конкретным патологиям. Важными параметрами для определения оценки качества сегментации являются вероятности ложной тревоги и пропуска - отказа. Эти параметры определяют применение автоматизации метода анализа. Сегментация при решении задачи классификации и распознавания объектов на изображениях является одной из первостепенных. Достаточно хорошо исследованы и применяются методы оконтуривания, базирующиея на сегментировании границ областей - Sobel, Canny, Prewit, Laplassian. Такой подход определен тем, что концентрация внимания человека при анализе изображений фокусируется зачастую на границах между более или менее однородными по яркости зонами. Исходя из этого, контуры часто выполняют задачу основы определения различных характеристик для интерпретирования изображений и объектов на них. Основная задача алгоритмов сегментирования зон интересов - это построение бинарного изображения, которое содержит замкнутые структурные области данных на изображении. Относительно к медицинским изображениям данными областями выступают границы органов, вены, МКЦ, а также опухоли. Разработанные принципы компьютерного автоматизированного анализа медицинских изображений эффективно используются как для оперативных задач медицинской диагностики специализированного онкологического учреждения, так и в учебных целях.

Исследовано при поддержке программы «Дальний Восток», грант № 15-I-4-014o.

Рецензенты:

Косых Н.Э., д.м.н., профессор, главный научный сотрудник, ФГБУН «Вычислительный центр» ДВО РАН, г. Хабаровск;

Левкова Е.А., д.м.н., профессор, ГОУ ВПО «Дальневосточный государственный университет путей сообщения», г. Хабаровск.

Библиографическая ссылка

Дороничева А.В., Савин С.З. МЕТОД СЕГМЕНТАЦИИ МЕДИЦИНСКИХ ИЗОБРАЖЕНИЙ // Фундаментальные исследования. – 2015. – № 5-2. – С. 294-298;
URL: http://fundamental-research.ru/ru/article/view?id=38210 (дата обращения: 06.04.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

обработка изображений: сегментация

Понятие сегментации, данное выше, является обобщенным понятием. Вообще говоря, изображение для наблюдателя часто представлено в виде некоторых однородных участков, отличающихся друг от друга различными характеристиками. Количество таких типов (или же классов) обычно невелико. Все изображение можно разбить на некоторое количество непересекающихся областей, каждая из которых является изображением одного из типов (классов). При анализе таких изображений целью любой системы является определение этих областей и указания их номера типа. Обработка изображения, позволяющая получить такую совокупность сведений о нем, и называется сегментацией . Иными словами, предполагается, что области изображения соответствуют реальным объектам или же их частям.

Однако существуют изображения, в которых вся картина разбита на области, не отличающиеся друг от друга ни по каким характеристикам. Тогда вся информация представляет в данном случае совокупность границ между этими областями. Простой пример: кирпичная или плиточная кладка.

Методы сегментации изображений делятся на два класса:

Автоматические, то есть такие методы, которые не требуют взаимодействия с пользователем;

Интерактивные или же ручные методы, использующие введенные пользовательские данные во время работы.

Задача сегментации изображения, как правило, применяется на некотором этапе обработки изображения, чтобы получить более точные и более удобные представления этого изображения для дальнейшей работы с ним.

Методов сегментации существует великое множество, и разные методы ориентированы на разные свойства разбиения изображения. Поэтому при выборе метода сегментации в той или иной задаче следует руководствоваться тем, какие же свойства разбиения действительно важны и какими свойствами обладает исходное изображение. Также необходимо решить, какая степень детализации, до которой доводится разделение на классы, оказывается приемлемой. Все зависит от каждой конкретной решаемой задачи. Например, при анализе микросхем задачей выделения объектов может быть выделение блоков микросхем и радиодеталей, а может быть обнаружение трещин на этих радиодеталях. Тогда логично, что в первом случае необходимо ограничиться более крупной детализацией.

Алгоритмы сегментации также делятся, как правило, на два класса:

1) основанные на базовом свойстве яркости: разрывности;

2) основанные на базовом свойстве яркости: однородности .

В первом случае изображение разбивается на области на основании некоторого изменения яркости, такого как, например, перепады яркости на изображении. Во втором случае используется разбиение изображение по критериям однородности областей. Примером первой категории может служить пороговая обработка или же пороговая классификация, а второй - выращивание областей, слияние и разбиение областей. О сегментации первого типа, а именно о пороговой обработке, и пойдет дальше речь.

Сегментация в цветовом пространстве RGB

Обычно пороговая сегментация изображений сводится к задаче сегментации полутоновых изображений. Действительно, выбор порога, как правило единственного, и сегментация на его основе и осуществляют переход от изображения в цветовом пространстве RGB к полутоновому, несмотря на то, что непосредственно предобработки перевода цветного изображения в полутоновое нет. Однако, иногда «цветная сегментация» все же применяется.

Предположим, что на RGB изображении необходимо выделить объекты, цвет которых лежит в определенном диапазоне. Задача сегментации в таком случае состоит в том, чтобы классифицировать каждый пиксель изображения в соответствии с тем, попадает ли его цвет в заданный диапазон или нет. Для этого в цветовом пространстве вводится мера сходства, как правило, евклидово расстояние . Евклидово расстояние между точками и определяется выражением

где, - RGB компоненты вектора, а, - вектора.

Идею применения такой обработки можно в общих чертах увидеть в разделе 2.6 пояснительной записки.

В данной работе в основном рассматривались и сегментировались изображения на основе одного порога, то есть осуществлялся переход к полутоновым изображениям. Причиной тому является тот факт, что задачи сегментации в цветовом пространстве RGB являются узконаправленными, и для каждого изображения в таком случае необходимо знать норму расстояния для каждой компоненты R,G и B, определить которые возможно лишь путем долгих экспериментов на конкретной предметной задаче.

Редактирование изображений и создание коллажей было бы весьма захватывающим процессом, если бы не приходилось тратить бо́льшую часть времени на кропотливую разметку объектов. Задача еще усложняется, когда границы объектов размыты или присутствует прозрачность. Инструменты “Photoshop”, такие как «магнитное лассо» и «волшебная палочка», не очень интеллектуальны, поскольку ориентируются лишь на низкоуровневые признаки изображения. Они возвращают жёсткие (Hard) границы, которые затем нужно исправлять вручную. Подход Semantic Soft Segmentation от исследователей Adobe помогают решить эту непростую задачу, разделяя изображение на слои, соответствующие семантически значимым областям, и добавляя плавные переходы на краях.

«Мягкая» сегментация

Группа исследователей из лаборатории CSAIL в MIT и швейцарского университета ETH Zürich, работающая под руководством Ягыза Аксоя, предложила подойти к этой проблеме, основываясь на спектральной сегментацией, добавив к ней современные достижения глубокого обучения. С помощью текстурной и цветовой информации, а также высокоуровневых семантических признаков, извлечённых , по изображению строится граф специального вида. Затем по этому графу строится матрица Кирхгофа (Laplacian matrix). Используя спектральное разложение этой матрицы, алгоритм генерирует мягкие контуры объектов. Полученное с помощью собственных векторов разбиение изображения на слои можно затем использовать для редактирования.

Обзор предложенного подхода

Описание модели

Рассмотрим метод создания семантически значимых слоёв пошагово:

1. Спектральная маска. Предложенный подход продолжает работу Левина и его коллег, которые впервые использовали матрицу Кирхгофа в задаче автоматического построения маски. Они строили матрицу L, которая задаёт попарное сходство между пикселями в некоторой локальной области. С помощью этой матрицы они минимизируют квадратичный функционал αᵀLα с заданными пользователем ограничениями, где α задаёт вектор значений прозрачности для всех пикселей данного слоя. Каждый мягкий контур является линейной комбинацией K собственных векторов, соответствующих наименьшим собственным значениям L, которая максимизирует так называемую разреженность маски.

2. Цветовая близость. Для вычисления признаков нелокальной цветовой близости исследователи генерируют 2500 суперпикселей и оценивают близость между каждым суперпикселем и всеми суперпикселями в окрестности радиусом 20% размера изображения. Использование нелокальной близости гарантирует, что области с очень похожими цветами останутся связными в сложных сценах, подобных изображённой ниже.

Нелокальная цветовая близость

3. Семантическая близость. Эта стадия позволяет выделять семантически связные области изображения. Семантическая близость поощряет объединение пикселей, которые принадлежат одному объекту сцены, и штрафует за объединение пикселей разных объектов. Здесь исследователи используют предыдущие достижения в области распознавания образов и вычисляют для каждого пикселя вектор признаков, коррелирующий с объектом, в который входит данный пиксель. Векторы признаков вычисляются с помощью нейросети, о чём мы поговорим далее более подробно. Семантическая близость, как и цветовая, определяется на суперпикселях. Однако, в отличие от цветовой близости, семантическая близость связывает только ближайшие суперпиксели, поощряя создание связных объектов. Сочетание нелокальной цветовой близости и локальной семантической близости позволяет создать слои, которые покрывают разъединённые в пространстве изображения фрагмента одного семантически связанного объекта (например, растительность, небо, другие типы фона).

Семантическая близость

4. Создание слоёв. На этом шаге с помощью вычисленных ранее близостей строится матрица L. Из этой матрицы извлекаются собственные векторы, соответствующие 100 наименьшим собственным значениям, а затем применяется алгоритм разреживания, который извлекает из них 40 векторов, по которым строятся слои. Затем количество слоёв ещё раз уменьшается с помощью алгоритма кластеризации k-means при k = 5. Это работает лучше, чем простое разреживание 100 собственных векторов до пяти, поскольку такое сильное сокращение размерности делает задачу переопределённой. Исследователи выбрали итоговое число контуров равным 5 и утверждают, что это разумное число для большинства изображений. Тем не менее, это число можно изменить вручную в зависимости от обрабатываемого изображения.


Мягкие контуры до и после группировки

5. Семантические векторы признаков. Для вычисления семантической близости использовались векторы признаков, посчитанные с помощью нейросети. Основой нейросети стала DeepLab-ResNet-101, обученная на задаче предсказания метрики. При обучении поощрялась максимизация L2-расстояния между признаками разных объектов. Таким образом, нейросеть минимизирует расстояние между признаками, соответствующими одному классу, и максимизирует расстояние в другом случае.

Качественное сравнение со схожими методами

Изображения, приведённые ниже, показывают результаты работы предложенного подхода (подписанные как «Our result») в сравнении с результатами наиболее близкого подхода мягкой сегментации - спектрального метода построения маски - и двумя state-of-the-art методами семантической сегментации: методом обработки сцен PSPNet и методом сегментации объектов Mask R-CNN.


Качественные сравнения мягкой семантической сегментации с другими подходами

Можно заменить, что PSPNet и Mask R-CNN склонны ошибаться на границах объектов, а мягкие контуры, построенные спектральным методом, часто заходят за границы объектов. При этом описанный метод полностью охватывает объект, не объединяя его с другими, и достигает высокой точности на краях, добавляя мягкие переходы, где это требуется. Однако стоит заметить, что семантические признаки, использованные в данном методе, не различают два разных объекта, принадлежащих к одному классу. В результате множественные объекты представлены на одном слое, что видно на примере изображений жирафов и коров.

Редактирование изображений с помощью мягких семантических контуров

Ниже приведено несколько примеров применения мягких контуров для редактирования изображений и создания коллажей. Мягкие контуры можно использовать для применения конкретных изменений к разным слоям: добавления размытия, изображающего движение поезда (2), раздельной цветовой коррекции для людей и для фона (5, 6), отдельной стилизации для воздушного шара, неба, ландшафта и человека (8). Конечно, то же самое можно сделать с помощью созданных вручную масок или классических алгоритмов выделения контура, но с автоматическим выделением семантически значимых объектов такое редактирование становится значительно проще.

Использование мягкой семантической сегментации для редактирования изображений

Заключение

Данный метод автоматически создаёт мягкие контуры, соответствующие семантически значимым областям изображения, используя смесь высокоуровневой информации от нейронной сети и низкоуровневых признаков. Однако у этого метода есть несколько ограничений. Во-первых, он относительно медленный: время обработки изображения с размерами 640 x 480–3–4 минуты. Во-вторых, этот метод не создаёт отдельные слои для разных объектов одного класса. И в-третьих, как показано ниже, этот метод может ошибиться на начальных этапах обработки в случаях, когда цвета объектов очень похожи (верхний пример), или во время объединения мягких контуров возле больших переходных областей (нижний пример).

Случаи ошибок алгоритма

Тем не менее, мягкие контуры, созданные с помощью описанного метода, дают удобное промежуточное представление изображения, позволяющее тратить меньше времени и сил при редактировании изображений.

Одной из главных целей компьютерного зрения при обработке изображений является интерпретация содержимого на изображении. Для этого необходимо качественно отделить фон от объектов. Сегментация разделяет изображение на составляющие части или объекты. Она отделяет объект от фона, чтобы можно было легко обрабатывать изображения и идентифицировать его содержимое. В данном случае выделение контуров на изображении является фундаментальным средством для качественной сегментации изображения. В данной статье предпринята попытка изучить производительность часто используемых алгоритмов выделения контуров для дальнейшей сегментации изображения, а также их сравнение при помощи программного средства MATLAB.

Введение

Сегментация изображений — огромный шаг для анализа изображений. Она разделяет изображение на составляющие части или объекты. Уровень детализации разделяемых областей зависит от решаемой задачи. К примеру, когда интересуемые объекты перестают сохранять целостность, разбиваются на более мелкие, составные части, процесс сегментации стоит прекратить. Алгоритмы сегментации изображений чаще всего базируются на разрыве и подобии значений на изображении. Подход разрывов яркости базируется на основе резких изменений значений интенсивности, подобие же — на разделение изображения на области, подобные согласно ряду заранее определенных критериев. Таким образом, выбор алгоритма сегментации изображения напрямую зависит от проблемы, которую необходимо решить. Обнаружение границ является частью сегментации изображений. Следовательно, эффективность решения многих задач обработки изображений и компьютерного зрения зависит от качества выделенных границ. Выделение их на изображении можно причислить к алгоритмам сегментации, которые базируются на разрывах яркости.

Процесс обнаружения точных разрывов яркости на изображении называется процессом выделение границ. Разрывы — это резкие изменения в группе пикселей, которые являются границами объектов. Классический алгоритм обнаружения границ задействует свертку изображения с помощью оператора, который основывается на чувствительности к большим перепадам яркости на изображении, а при проходе однородных участков возвращает нуль. Сейчас доступно огромное количество алгоритмов выделения контуров, но ни один из них не является универсальным. Каждый из существующих алгоритмов решает свой класс задач (т.е. качественно выделяет границы определенного типа). Для определения подходящего алгоритма выделения контуров необходимо учитывать такие параметры, как ориентация и структура контура, а также наличие и тип шума на изображении. Геометрия оператора устанавливает характерное направление, в котором он наиболее чувствителен к границам. Существующие операторы предназначены для поиска вертикальных, горизонтальных или диагональных границ. Выделение границ объектов — сложная задача в случае сильно зашумленного изображения, так как оператор чувствителен к перепадам яркости, и, следовательно, шум также будет считать некоторым объектом на изображении. Есть алгоритмы, позволяющие в значительной мере избавиться от шума, но в свою очередь, они в значительной мере повреждают границы изображения, искажая их. А так как большинство обрабатываемых изображений содержат в себе шум, шумоподавляющие алгоритмы пользуются большой популярностью, но это сказывается на качестве выделенных контуров.

Также при обнаружении контуров объектов существуют такие проблемы, как нахождение ложных контуров, расположение контуров, пропуск истинных контуров, помехи в виде шума, высокие затраты времени на вычисление и др. Следовательно, цель заключается в том, чтобы исследовать и сравнить множество обработанных изображений и проанализировать качество работы алгоритмов в различных условиях.

В данной статье предпринята попытка сделать обзор наиболее популярных алгоритмов выделения контуров для сегментации, а также реализация их в программной среде MATLAB. Второй раздел вводит фундаментальные определения, которые используются в литературе. Третий — предоставляет теоретический и математический и объясняет различные компьютерные подходы к выделению контуров. Раздел четыре предоставляет сравнительный анализ различных алгоритмов, сопровождая его изображениями. Пятый раздел содержит обзор полученных результатов и заключение.

Сегментация изображений

Сегментация изображения — это процесс разделения цифрового изображения на множество областей или наборов пикселей. Фактически, это разделение на различные объекты, которые имеют одинаковую текстуру или цвет. Результатом сегментации является набор областей, покрывающих вместе все изображение, и набор контуров, извлеченных из изображения. Все пиксели из одной области подобны по некоторым характеристикам, таким как цвет, текстура или интенсивность. Смежные области отличаются друг от друга этими же характеристиками. Различные подходы нахождения границ между областями базируются на неоднородностях уровней интенсивности яркости. Таки образом выбор метода сегментации изображения зависит от проблемы, которую необходимо решить.

Методы, основанные на областях, базируются на непрерывности. Данные алгоритмы делят все изображение на подобласти в зависимости от некоторых правил, к примеру, все пиксели данной группы должны иметь определенное значение серого цвета. Эти алгоритмы полагаются на общие шаблоны интенсивности значений в кластерах соседних пикселей.

Пороговая сегментация является простейшим видом сегментации. На ее основе области могут быть классифицированы по базовому диапазону значений, которые зависят от интенсивности пикселей изображения. Пороговая обработка преобразовывает входное изображение в бинарное.

Методы сегментации, основанные на обнаружении областей, находят непосредственно резкие изменения значений интенсивности. Такие методы называются граничными методами. Обнаружение границ — фундаментальная проблема при анализе изображений. Техники выделения границ обычно используются для нахождения неоднородностей на полутоновом изображении. Обнаружение разрывов на полутоном изображении — наиболее важный подход при выделении границ.

Алгоритмы выделение границ

Границы объектов на изображении в значительной степени уменьшают количество данных, которые необходимо обработать, и в то же время сохраняет важную информацию об объектах на изображении, их форму, размер, количество. Главной особенностью техники обнаружения границ является возможность извлечь точную линию с хорошей ориентацией. В литературе описано множество алгоритмов, которые позволяют обнаруживать границы объектов, но нигде нет описания того, как оценивать результаты обработки. Результаты оцениваются сугубо индивидуально и зависят от области их применения.

Обнаружение границ — фундаментальный инструмент для сегментации изображения. Такие алгоритмы преобразуют входное изображение в изображение с контурами объектов, преимущественно в серых тонах. В обработке изображений, особенно в системах компьютерного зрения, с помощью выделения контура рассматривают важные изменения уровня яркости на изображении, физические и геометрические параметры объекта на сцене. Это фундаментальный процесс, который обрисовывает в общих чертах объекты, получая тем самым некоторые знания об изображении. Обнаружение границ является самым популярным подходом для обнаружения значительных неоднородностей.

Граница является местным изменением яркости на изображении. Они, как правило, проходят по краю между двумя областями. С помощью границ можно получить базовые знания об изображении. Функции их получения используются передовыми алгоритмами компьютерного зрения и таких областях, как медицинская обработка изображений, биометрия и тому подобные. Обнаружение границ — активная область исследований, так как он облегчает высокоуровневый анализ изображений. На полутоновых изображениях существует три вида разрывов: точка, линия и граница. Для обнаружения всех трех видов неоднородностей могут быть использованы пространственные маски.

В технической литературе приведено и описано большое количество алгоритмов выделения контуров и границ. В данной работе рассмотрены наиболее популярные методы. К ним относятся: оператор Робертса, Собеля, Превитта, Кирша, Робинсона, алгоритм Канни и LoG-алгоритм.

Оператор Робертса

Оператор выделения границ Робертса введен Лоуренсом Робертсом в 1964 году. Он выполняет простые и быстрые вычисления двумерного пространственного измерения на изображении. Этот метод подчеркивает области высокой пространственной частоты, которые зачастую соответствуют краям. На вход оператора подается полутоновое изображение. Значение пикселей выходного изображения в каждой точке предполагает некую величину пространственного градиента входного изображения в этой же точке.

Оператор Собеля

Оператор Собеля введен Собелем в 1970 году. Данный метод обнаружения границ использует приближение к производной. Это позволяет обнаруживать край в тех местах, где градиент самый высокий. Данный способ обнаруживает количество градиентов на изображении, тем самым выделяя области с высокой пространственной частотой, которые соответствуют границам. В целом это привело к нахождению предполагаемой абсолютной величине градиента в каждой точке входного изображения. Данный оператор состоит из двух матриц, размером 3×3. Вторая матрица отличается от первой только тем, что повернута на 90 градусов. Это очень похоже на оператор Робертса.

Обнаружение границ данным методом вычислительно гораздо проще, чем методом Собеля, но приводит к большей зашумленности результирующего изображения.

Оператор Превитта

Обнаружение границ данным оператором предложено Превиттом в 1970 году. Правильным направлением в данном алгоритме была оценка величины и ориентация границы. Даже при том, что выделение границ является весьма трудоемкой задачей, такой подход дает весьма неплохие результаты. Данный алгоритм базируется на использовании масок размером 3 на 3, которые учитывают 8 возможных направлений, но прямые направления дают наилучшие результаты. Все маски свертки рассчитаны.

Оператор Кирша

Обнаружение границ этим методом было введено Киршем в 1971 году. Алгоритм основан на использовании всего одной маски, которую вращают по восьми главным направлениям: север, северо-запад, запад, юго-запад, юг, юго-восток, восток и северо-восток. Маски имеют следующий вид:

Величина границы определена как максимальное значение, найденное с помощью маски. Определенное маской направление выдает максимальную величину. Например, маска k 0 соответствует вертикальной границе, а маска k 5 — диагональной. Можно также заметить, что последние четыре маски фактически такие же, как и первые, они являются зеркальным отражением относительно центральной оси матрицы.

Оператор Робинсона

Метод Робинсона, введенное в 1977, подобен методу Кирша, но является более простым в реализации в силу использования коэффициентов 0, 1 и 2. Маски данного оператора симметричны относительно центральной оси, заполненной нулями. Достаточно получить результат от обработки первых четырех масок, остальные же можно получить, инвертируя первые.

Максимальное значение, полученное после применения всех четырех масок к пикселю и его окружению считается величиной градиента, а угол градиента можно аппроксимировать как угол линий нулей в маске, которые дают максимальный отклик.

Выделение контура методом Marr-Hildreth

Marr-Hildreth (1980) метод — метод обнаружения границ в цифровых изображениях, который обнаруживает непрерывные кривые везде, где заметны быстрые и резкие изменения яркости группы пикселей. Это довольно простой метод, работает он с помощью свертки изображения с LoG-функцией или как быстрая аппроксимация с DoG. Нули в обработанном результате соответствуют контурам. Алгоритм граничного детектора состоит из следующих шагов:

  • размытие изображение методом Гаусса;
  • применение оператора Лапласса к размытому изображению (часто первые два шага объединены в один);
  • производим цикл вычислений и в полученном результате смотрим на смену знака. Если знак изменился с отрицательного на положительный и значение изменения значения более, чем некоторый заданный порог, то определить эту точку, как границу;
  • Для получения лучших результатов шаг с использованием оператора Лапласса можно выполнить через гистерезис так, как это реализовано в алгоритме Канни.

Выделение контура методом LoG

Алгоритм выделения контуров Лаплассиан Гауссиана был предложен в 1982 году. Данный алгоритм является второй производной, определенной как:

Он осуществляется в два шага. На первом шаге он сглаживает изображение, а затем вычисляет функцию Лапласса, что приводит к образованию двойных контуров. Определение контуров сводится к нахождению нулей на пересечении двойных границ. Компьютерная реализация функции Лапласса обычно осуществляется через следующую маску:

Лаплассиан обычно использует нахождение пикселя на темной или светлой стороне границы.

Детектор границ Канни

Детектор границ Канни является одной из самых популярных алгоритмов обнаружения контуров. Впервые он был предложен Джоном Канни в магистерской диссертации в 1983 году, и до сих пор является лучше многих алгоритмов, разработанных позднее. Важным шагом в данном алгоритме является устранение шума на контурах, который в значительной мере может повлиять на результат, при этом необходимо максимально сохранить границы. Для этого необходим тщательный подбор порогового значения при обработке данным методом.

Алгоритм:

  • размытие исходного изображения f(r, c) с помощью функции Гаусса f^(r, c). f^(r, c)=f(r,c)*G(r,c,6);
  • выполнить поиск градиента. Границы намечаются там, где градиент принимает максимальное значение;
  • подавление не-максимумов. Только локальные максимумы отмечаются как границы;
  • итоговые границы определяются путем подавления всех краев, не связанных с определенными границами.

В отличии от операторов Робертса и Собеля, алгоритм Канни не очень восприимчив к шуму на изображении.

Экспериментальные результаты

В данном разделе представлены результаты работы описанных ранее алгоритмов обнаружения границ объектов на изображении.

Все описанные алгоритмы были реализованы в программной среде MATLAB R2009a и протестированы на фотографии университета. Цель эксперимента заключается в получении обработанного изображения с идеально выделенными контурами. Оригинальное изображение и результаты его обработки представлены на рисунке 1.

Рисунок 1 — Оригинальное изображение и результат работы различных алгоритмов выдеоения контуров


При анализе полученных результатов были выявлены следующие закономерности: операторы Робертса, Собеля и Превитта дают очень различные результаты. Marr-Hildreth, LoG и Канни практически одинаково обнаружили контуры объекта, Кирш и Робинсон дали такой же результат. Но наблюдая полученные результаты можно сделать вывод, что алгоритм Канни справляется на порядок лучше других.

Выводы

Обработка изображений — быстро развивающаяся область в дисциплине компьютерного зрения. Ее рост основывается на высоких достижениях в цифровой обработке изображений, развитию компьютерных процессоров и устройств хранения информации.

В данной статье была предпринята попытка изучить на практике методы выделения контуров объектов, основанных на разрывах яркости полутонового изображения. Исследование относительной производительности каждого из приведенных в данной статье методов осуществлялся с помощью программного средства MATLAB. Анализ результатов обработки изображения показал, что такие методы, как Marr-Hildreth, LoG и Канни дают практически одинаковые результаты. Но все же при обработке данного тестового изображения наилучшие результаты можно наблюдать после работы алгоритма Канни, хотя при других условиях лучшим может оказаться другой метод.

Даже учитывая тот факт, что вопрос обнаружения границ на изображении достаточно хорошо осветлен в современной технической литературе, он все же до сих пор остается достаточно трудоемкой задачей, так как качественное выделение границ всегда зависит от множества влияющих на результат факторов.

Список использованной литературы

1. Canny J.F. (1983) Finding edges and lines in images, Master"s thesis, MIT. AI Lab. TR-720.
2. Canny J.F. (1986) A computational approach to edge detection , IEEE Transaction on Pattern Analysis and Machine Intelligence, 8. — P. 679-714.
3. Courtney P, Thacker N.A. (2001) Performance Characterization in Computer Vision: The Role of Statistics in Testing and Design , Chapter in: Imaging and Vision Systems: Theory, Assessment and Applications , Jacques Blanc-Talon and Dan Popescu (Eds.), NOVA Science Books.
4. Hanzi Wang (2004) Robust Statistics for Computer Vision: Model Fitting, Image Segmentation and Visual Motion Analysis, Ph.D thesis, Monash University, Australia.
5. Huber P.J. (1981) Robust Statistics, Wiley New York.
6. Kirsch R. (1971) Computer determination of the constituent structure of biological images , Computers and Biomedical Research, 4. — P. 315–328.
7. Lakshmi S, Sankaranarayanan V. (2010) A Study of edge detection techniques for segmentation computing approaches , Computer Aided Soft Computing Techniques for Imaging and Biomedical Applications. — P. 35-41.
8. Lee K., Meer P. (1998) Robust Adaptive Segmentation of Range Images , IEEE Trans. Pattern Analysis and Machine Intelligence, 20(2). — P. 200-205.
9. Marr D, Hildreth E. (1980) Theory of edge detection , Proc. Royal Society of London, B, 207. — P. 187–217.
10. Marr D. (1982) Vision, Freeman Publishers.
11. Marr P., Doron Mintz. (1991) Robust Regression for Computer Vision: A Review , International Journal of Computer Vision, 6(1). — P. 59-70.
12. Orlando J. Tobias, Rui Seara (2002) Image Segmentation by Histogram Thresholding Using Fuzzy Sets , IEEE Transactions on Image Processing, Vol.11, No.12. — P. 1457-1465.
13. Punam Thakare (2011) A Study of Image Segmentation and Edge Detection Techniques , International Journal on Computer Science and Engineering, Vol 3, No.2. — P. 899-904.
14. Rafael C., Gonzalez, Richard E. Woods, Steven L. Eddins (2004) Digital Image Processing Using MATLAB, Pearson Education Ptd. Ltd, Singapore.
15. Ramadevi Y. (2010) Segmentation and object recognition using edge detection techniques , International Journal of Computer Science and Information Technology, Vol 2, No.6. — P. 153-161.
16. Roberts L. (1965) Machine Perception of 3-D Solids , Optical and Electro-optical Information Processing, MIT Press.
17. Robinson G. (1977) Edge detection by compass gradient masks , Computer graphics and image processing, 6. — P. 492-501.
18. Rousseeuw P. J., Leroy A. (1987) Robust Regression and outlier detection, John Wiley & Sons, New York.
19. Senthilkumaran N., Rajesh R. (2009) Edge Detection Techniques for Image Segmentation — A Survey of Soft Computing Approaches , International Journal of Recent Trends in Engineering, Vol. 1, No. 2. — P. 250-254.
20. Sowmya B., Sheelarani B. (2009) Colour Image Segmentation Using Soft Computing Techniques , International Journal of Soft Computing Applications, Issue 4. — P. 69-80.
21. Umesh Sehgal (2011) Edge detection techniques in digital image processing using Fuzzy Logic , International Journal of Research in IT and Management, Vol.1, Issue 3. — P. 61-66.
22. Yu, X, Bui, T.D. & et al. (1994) Robust Estimation for Range Image Segmentation and Reconstruction , IEEE trans. Pattern Analysis and Machine Intelligence, 16 (5). — P. 530-538.