Зарядное устройство для Li-Ion аккумулятора из барахла. Зарядное устройство для li-ion аккумуляторов. Схема и описание

Большинство современных гаджетов получают питание двумя способами: от сети, от батареек. Какой из них выберете вы? Наверное, второй, как наиболее удобный. Но тогда придется позаботиться об их регулярной зарядке. Для этого имеется специальное оснащение – зарядное устройство для литий-ионных аккумуляторов. Выбирая его, обычно интересуются скоростью заряда и количеством одновременно восстанавливаемых батарей.

Но при этом не стоит забывать о том, что оно должно быть оптимизировано для работы с конкретными аккумуляторами. Большинство зарубежных производителей батареек выпускают и собственные зарядные устройства, что избавляет вас от утомительных поисков подходящей модели. В чем состоит их отличие и как ориентироваться в этом море продукции? Сейчас мы расскажем более подробно.

Зарядка для пальчиковых батареек

Этот прибор является необходимым предметом для людей, предпочитающих активный образ жизни, которые перевели максимальное количество используемых гаджетов на работу от аккумуляторов. Одним из самых распространенных среди таких приборов является мобильный телефон.

Все они оснащены батареями на литиевой основе. Поэтому для них рекомендуют приобретать зарядное устройство для литиевого аккумулятора 18650. Так как попытка восстановить емкость батареи используя прибор неподходящей модели приведет к ее порче.

Обычно для зарядки аккумуляторов на литиевой основе используют устройства с маркировкой EP. В мобильном телефоне батарея считается самым уязвимым местом. И при использовании неподходящей зарядки срок ее службы может сократиться, она начнет быстро разряжаться, что доставим массу неудобных моментов. Чтобы избежать этого необходимо правильно подбирать оборудование для восстановления. Причем не обязательно приобретать готовую модель можно сделать зарядное устройство для литиевых аккумуляторов своими руками. Такой прибор обойдется дешевле, чем промышленное изделие.

Конструктивные особенности ЗУ

Классическая схема зарядного устройства для литиевого аккумулятора 18650 включает в себя две основные детали:

  • Трансформатор;
  • Выпрямитель.

Используется он для выработки постоянного тока с напряжением 14,4В. Такое значение параметра выбрано не случайно. Оно необходимо для того, чтобы ток смог проходить через разряженный аккумулятор. А так как в это время напряжение батареи составляет около 12В, то зарядить ее устройством, у которого на выходе такое же значение невозможно. Вот поэтому и была выбрана величина в 14,4В.

Принцип работы ЗУ

Восстановление емкости батареи начинается при включении ЗУ в сеть. При этом внутреннее сопротивление аккумулятора растет, а ток снижается. Как только напряжение на батарее достигнет отметки в 12В, ток приблизится к нулевой отметке. Такие параметры говорят о том, что зарядка аккумулятора выполнена успешно и устройство может быть отключено.

Кроме обычного процесса, занимающего довольно продолжительное время, существует и ускоренный. Стремительная зарядка значительно сокращает сроки, но в то же время негативно влияет на работу батареи, поэтому пользоваться этим методом специалисты не рекомендуют.

Критерии выбора прибора зарядки

Определить насколько качественным будет покупаемый прибор можно по следующим моментам:

  • Наличию независимых каналов заряда;
  • Току;
  • Функции разряда.

Рассмотрим каждый из них подробно. Начнем с самого значимого – независимых каналов заряда. Наличие их у выбранной модели говорит о том, что ее электронная начинка способна раздельно контролировать процесс зарядки и прекращать его, как только емкость аккумулятора будет восстановлена. Но при этом все остальные не успеют восстановить свое емкость, что при постоянном повторении такой ситуации ведет к быстрому выходу из строя батарей.

Пополнение энергии аккумулятора возможно тремя способами:

  1. Слабым током;
  2. Средним;
  3. Высоким.

Первый предполагает выбор зарядного устройства для литий-ионных аккумуляторов с учетом номинальной емкости батареи. При этом вырабатываемый им ток не должен превышать 10%. Такой способ зарядки самый медленный и щадящий. При его постоянном использовании срок службы аккумуляторов практически не сокращается.

Использование приборов, с током, составляющим меньше половины номинальной емкости батареи считают золотой серединкой. При нем аккумулятор практически не нагревается и время цикла не очень затянутое, как в первом случае.

Последний способ или зарядка большим током практически равным номинальной емкости – это в своем роде стресс для батареи, приводящий к весомому сокращению срока службы. При нем происходит сильный нагрев, требующий активного вентиляторного охлаждения. Его используют только в крайних случаях, когда требуется зарядить аккумулятор за пару часов.

Смотрим видеообзор зарядников для литьевых батарей:

Существуют и так называемые интеллектуальные устройства. Они используются для зарядки аккумуляторов профессиональными фотографами, используемых в осветительных приборах и других аналогичных случаях. Стоимость такого зарядного устройства для литий-ионных аккумуляторов достаточно велика, но если вам важна безупречная работа гаджета, то лучше инвестировать в покупку прибора, чем постоянно менять батареи.

У интеллектуальных зарядных устройств имеется функция разряда. Она необходима чтобы полностью разрядить аккумулятор, исключив тем самым эффект памяти. Это несколько удлиняет цикл зарядки, но тем самым продлевает срок службы батареи.

В некоторых моделях присутствует и функция тренировки. Ее используют для возвращения в рабочее состояние частично испорченных аккумуляторов.

Лучшие производители

Каждый продукт имеет свои особенности. Поэтому выбирая конкретную марку необходимо в первую очередь ориентироваться на количество и тип аккумуляторов, которые придется заряжать. Если предполагается работа с 4-мя батареями, то можно остановиться на модели Rodition Ecocharger. Это небольшое устройство, способное восстанавливать даже одноразовые щелочные батарейки. Включение этой функции производится тумблером, расположенным на боковой панели корпуса.

Прибор имеет четыре канала и способен контролировать уровень заряда каждого элемента в отдельности. На панели устройства имеется световая индикация, показывающая, какой из аккумуляторов уже восстановился. Купить такое устройство можно за 20 долларов.

Смотрим видео о продукции Rodition Ecocharger:

Одним из наиболее популярных и многофункциональных считается зарядное устройство для литиевых аккумуляторов марки La Crosse BC-700. Оно относится к продвинутым и рассчитано на восстановление пальчиковых баьаоеек форматов АА и ААА на основе никеля. Особенности прибора таковы, что он способен одновременно осуществлять зарядку 4 батарей разной емкости.

Устройства работает в нескольких режимах. Имеется регулятор тока, позволяющий выбирать наиболее оптимальную его величину для каждого случая.

Этапы зарядки

Процесс восстановления батареи специалисты рекомендуют начинать с ее полной разрядки. Если по каким-либо причинам приходится заряжать аккумулятор которые еще не полностью разрядился, то стоит выбирать продвинутую модель устройства.

Потерял в командировку родное зарядное устройство от цифрового фотоаппарата. Купить новое типа "лягушка". Жаба задавила, ведь я радиолюбитель и поэтому смогу сам спаять зарядку литиевых аккумуляторов своими руками, к тому же сделать это очень легко. Зарядное устройство абсолютно любого литиевого аккумулятора это источник постоянного напряжения на 5 вольт, отдающий ток заряда, равный 0.5-1.0 емкости батареи. Например, если емкость аккумулятора 1000 mAh , зарядное устройство должно выдавать ток не менее 500 mA.

Не верите, так попробуйте, а мы поможем.

Процесс заряда показан на графике. В первоночальный момент зарядный ток постоянен, при достижении уровня напряжения Umax на аккумуляторе, ЗУ переходит в режим, когда напряжение будет постоянным, а ток асимптотически стремится к нулю.


Зарядка литиевых аккумуляторов график процесса

Выходное напряжение литиевых аккумуляторов, обычно, составляет 4,2В, а номинальное напряжение составляет порядка 3,7В. Не рекомендуется заряжать эти батареи до полных 4,2В, так как это снижает их срок службы. Если снизить выходное напряжение до 4,1В, емкость упадет почти на 10%, но в тоже время количество циклов заряд-разряд возрастет почти в два раза. При эксплуатации этих батарей, крайне нежелательно доводить номинальное напряжение ниже уровня 3,4…3,3В.


Зарядка литиевых аккумуляторов схема на LM317

Как видим схема достаточно простая. Построена на стабилизаторах LM317 и TL431. Еще из радиокомпонентов присутствуют пару диодов, сопротивлений и конденсаторов. Устройство почти не требует регулировки, достаточно подстроечным сопротивлением R8 задаем напряжение на выходе устройства на номинале 4,2 вольта без подключенного аккумулятора. Сопротивлениями R4 и R6 устанавливаем зарядной ток. Для индикации работы конструкции предназначен светодиод "заряд", который при подключенной пустой батареи горит, а по мере зарядки он тухнет.

Приступаем к сборке конструкции для зарядки литиевых аккумуляторов. Находим подходящий корпус в нем можно разместить простой трансформаторный блок питания на пять вольт, и выше рассмотренную схему.

Для подключения заряжаемой батареи вырезал две латунные полоски и установил их на гнезда. Гайкой настраивается расстояние между контактами, которые подключаются к заряжаемой батареи.


Сделал, что-то вроде прищепки. Можно также установить переключатель, для смены полярности на гнездах зарядного устройства - в некоторых случаях это может сильно выручить. Печатную плату предлагаю изготовить по методу ЛУТ, рисунок в формате Sprint Layout забираем по ссылке выше.

При огромной массе положительных характеристик имеется у литиевых батарей и существенные недостатки, такие как высокая чувствительность к превышению напряжения заряда, что может повлечь за собой нагрев и интенсивное газообразование. А так как батарея имеет герметичную конструкцию, избыточное выделение газа привидеть к вздутию или взрыву. Кроме того литиевые батареи терпеть не могут перезаряд.

Благодаря использованию специализированных микросхем в фирменных зарядках, которые контролируют напряжение, такая проблема многим пользователям не знакома, но это не значит, что ее не существует. Поэтому для зарядки литиевых аккумуляторов нам нужно именно такое устройство, а схема рассмотренная выше является лишь его прототипом.


Зарядка литиевых аккумуляторов схема универсальная

Устройство позволяет заряжать литиевые батареи с напряжением 3,6В или 3,7В. На первом этапе заряд осуществляется стабильным током 245мА или 490мА (устанавливается вручную), при увеличении напряжения на батареи до уровня 4,1В или 4,2В заряд продолжается при поддержании стабильного напряжения и уменьшающемся значении зарядного тока, как только последний упадет до порогового значения (задается вручную от 20мА до 350мА) заряд батареи автоматически прекращается.

Стабилизатор LM317 поддерживает напряжение на сопротивлении R9 на уровне около 1,25В тем самым поддерживая стабильное значение тока идущего через него, а значит и через заряжаемый аккумулятор. Выходное напряжение ограничивается стабилизатором TL431, подключенного к управляющему входу LM317. Значение напряжения ограничения выбирается с помощью делителя на сопротивлениях R12…R14. Сопротивление R11 ограничивает ток питания TL431.

На операционном усилителе DA2.2 LM358, сопротивлениях R5…R8 и биполярном транзисторе VT2 построен преобразователь ток-напряжение. Напряжение на его выходе пропорционально току, протекающему через сопротивление R9 и вычисляется по формуле:

При значениях, на схеме коэффициент преобразования тока в напряжение равен 10, т.е. при токе через сопротивление R9 245мА напряжение на R5 равно 2,45В.

С R5 напряжение следует на неинвертирующий вход ОУ DA2.1. На инвертирующий вход компаратора поступает напряжение с регулируемого делителя на сопротивлениях R2…R4. Напряжение питания делителя стабилизируется LM78L05. Порог переключения компаратора устанавливается номиналом переменного сопротивления R3.

Зарядка литиевых аккумуляторов настройка схемы.

Вместо тумблера SB1 поставить перемычку и подав напряжение на схему, подбором сопротивлений R12…R14 сделать выходное напряжение 4,1В и 4,2В для разомкнутого и замкнутого состояния тумблера SA2.

Тумблером SA1 устанавливаем значение тока заряда (245мА или 490мА) . Тумблером SA2 выбираем максимальное значение напряжения, для аккумуляторов на 3,6В выбираем 4,1В, на 3,7В - 4,2В. Движком переменного сопротивления R3 задаем значение тока, при котором должен завершиться заряд батареи (ориентировочно 0,07…0,1С), подсоединяем аккумулятор и нажимаем тумблер SB1. Должен стартовать процесс заряда литиевой батареи и загорается индикатор на светодиоде VD2. При уменьшении тока заряда ниже порогового высокий уровень на выходе DA2.1 поменяется на низкий, полевой транзистор VT1 закрывается и катушка реле K1 отключается, разрывая своим фронтовым контактом K1 батарею от зарядного устройства.


Привожу рисунок печатной платы зарядного устройство и рекомендую ее изготовить своими руками по

Для возможности заряда литиевых аккумуляторов от мобильных телефонов и смартфонов был сделан универсальный адаптер:

Все аккумуляторы этого типа необходимо эксплуатировать в соответствии с определенными рекомендациями. Эти правила можно условно поделить на две группы: Не зависящие и зависящие от пользователя.

В первую группу попадают основополагающие правила заряда и разряда аккумуляторных батарей, которые контролируются специальным контроллером зарядного устройства:

Литиевый аккумулятор должен находиться в состоянии, при котором его напряжение не должно быть более 4.2 вольта и не опускаться ниже 2.7 вольта. Эти пределы являются уровнями максимального и минимального заряда. Минимальный уровень в 2,7 вольта актуален для батарей с электродами из кокса, однако современные литиевые аккумуляторы изготавливаются с электродами из графита. Для них минимальный предел равен 3 вольтам.
Количество энергии, отдаваемой батареей при изменении заряда от 100% до 0%, - это емкость аккумулятора . Ряд производителей ограничивает максимальное напряжение уровнем в 4.1 вольта, при этом литиевая батарея прослужит гораздо больше, но потеряет в емкости где-то на 10%. Иногда нижний предел повышается до 3.0 и даже 3.3 вольт, но также с снижением уровня емкости.
Наибольший срок эксплуатаии аккумуляторов бывает при 45% зхаряде, а при увеличении или уменьшении срок жизни сокращается. Если заряд находится в указанном выше диапазоне изменение срока эксплуатации не значительно.
Если напряжение на аккумуляторе выходит за пределы, указанные выше, даже на короткое время, срок его эксплуатации резко падает.
Контроллеры аккумуляторов зарядных устройств никогда не дают напряжению на аккумуляторе во время заряда стать выше 4.2 вольта, но могут по-разному ограничивать минимальный уровень при разряде.

Ко второй группе зависящих от пользователя входят следующие правила:

Старайтесь не разряжать аккумулятор до минимального уровня заряда и, тем более, до состояния, когда устройство само отключается, ну, а если это произошло, то желательно зарядить батарею как можно быстрее.
Не бойтесь частых подзарядок, в том числе и неполных литиевому аккумулятору это совершенно пофигу.
Емкость аккумулятора зависит от температуры. Так, при 100% уровне заряда при комнатной температуре, при выходе на мороз заряженность батареи упадет до 80%, что в принципе не опасно и не критично. Но может быть и наоборот если 100% заряженный аккумулятор положить на батарею, его уровень заряда увеличится до 110%, а это для него очень опасно и может резко сократить срок его жизни.
Идеальным условием для длительного хранения аккумулятора является нахождение вне девайса с зарядом около 50%
Если после приобретения батареи повышенной ёмкости через несколько дней эксплуатации. Устройство с батареей начинает глючить и виснуть или отключается зарядка аккумулятора, то скорей всего ваше зарядное устройство, которое отлично работало на старом аккумуляторе, просто не способно обеспечить необходимый ток зарядки для большой емкости.

Подборка оригинальных зарядок для телефонов состоящая только из простых и интересных радиолюбительских идей и разработок


Эта радиолюбительская конструкция предназначено для зарядки литиевых аккумуляторов от мобильных телефонов и типа 18650, а самое главное обеспечивает правильную зарядку аккумулятора. Устройство обладает светодиодным индикатором заряда. Красный цвет говорит о том, что батарея заряжается, зеленый - аккумулятор полностью заряжен. Умная зарядка получается благодоря применению специализированного контролера заряда на микросхеме BQ2057CSN.

В современных литиевых аккумуляторах чистый литий не используют. Поэтому получили распространены три основных разновидности литиевых аккумуляторов: Литий-ионные (Li-ion) Uном. - 3,6V; Литий-полимерные (Li-Po, Li-polymer или «липо»). Uном. - 3,7V; Литий-железо фосфатные (Li-Fe или LFP). Uном - 3,3V.

Недостатки

Основным недостатком Li-ion аккумуляторов, я бы выделил их пожароопасность из-за превышении напряжения или перегреве. Но, литий-железо-фосфатные аккумуляторы не имеют такого жирного минуса - они полностью пожаробезопасны.
Литиевые аккумуляторы очень чувствительны к холоду и быстро теряют свою ёмкость и перестают заряжаться.
Требуют обязательного наличия контроллера заряда
При глубоком разряде литиевые батареи теряют свои начальные свойства.
Если аккумулятор не будет "работать" продолжительное время, то сначала напряжение на нем упадет до порогового уровня, а затем начнётся глубокий разряди как только напряжение снизится до 2,5V, то это приведет к выходу его из строя. Поэтому время от времени подзаряжаем аккумуляторы ноутбуков, сотовых телефонов, mp3-плееров.

Представляем небольшой сборник хороших схем зарядных устройств для Li-Ion аккумуляторов. Все схемы собраны с надёжных интернет ресурсов и имеют отличные отзывы. Вначале немного теории. Для заряда Li-ion аккумуляторов используется метод постоянное напряжение и постоянный ток, суть которого заключается в ограничении напряжения на аккумуляторе. Для Li-ion аккумуляторов номинальное напряжение элемента 3,6 В, допуск на это напряжение (±0,05 В) и отсутствие медленного подзаряда по окончании полного заряда. Обычное максимальное напряжение заряда 4,2 или 4,1 вольта в зависимости от модели аккумулятора; напряжение окончания разряда 3,0 вольта; рекомендуемый ток заряда 0,5 С, ток разряда (нагрузки) - 1 С и меньше; если напряжение на аккумуляторе менее 2,9 вольта, то рекомендуемый ток заряда 0,1 С; глубокий разряд может привести к повреждению аккумулятора (т. е. должно соблюдаться общее правило - Li-ion аккумуляторы любят скорее находиться в заряженном состоянии, чем в разряженном, и заряжать их можно в любое время, не дожидаясь разряда); по мере приближения напряжения на аккумуляторе к максимальному значению, ток заряда уменьшается. Окончание разряда должно происходить при уменьшении тока заряда до (0,1 … 0,07) С в зависимости от модели аккумулятора. После окончания заряда ток заряда прекращается полностью. Приведенные данные могут отличаться в ту или иную сторону для аккумуляторов других производителей. Теперь перейдём непосредственно к схемотехнике ЗУ. Первая схема на специализированной микросхеме, питающаяся от USB порта ПК.

1. Зарядное устройство для li-ion аккумуляторов

С порта USB мы можем снять 500 или 100 миллиампер чистого тока под собственные нужды. «Умные» контроллеры порта нужно настраивать, чтобы забрать 500 мА. Без настройки можно отобрать до 100 мА. В некоторых конструкциях материнских плат и ноутбуков ток ничем не ограничивается, кроме предохранителя. Поэтому можно отобрать все 500 мА без настроек. Микросхема не знает, к какому варианту порта ее подключили, поэтому ограничивает ток заряда аккумулятора значением 100мА, чтобы не заморачиваться с настройкой порта. Однако у нее есть еще один вход – к нему можно подключить любой источник питания с напряжением от 4,3 до 7 вольт, включая китайский “кубик”, который просто втыкается в розетку, после чего начинает греться. В этом случае, ток заряда будет составлять уже 350мА. Если подключить сразу два источника – и USB и источник питания, то микросхема выберет последнее, в смысле не последнее подключенное, а источник питания. Светодиод VD2 горит до тех пор, пока батарея не заряжена. Светодиод VD1 индицирует наличие питания от USB порта. Плата сделана таким образом, что все компоненты, включая SMD светодиоды, расположены внизу при подключении ее в USB порт. Чтобы было видно «на просвет» необходимо выбрать тонкий стеклотекстолит либо изменить посадочные места под выводные 3мм светодиоды и впаять их с обратной стороны. Для защиты USB порта используется SMD самовосстанавливающийся предохранитель F1 с током удержания 200 мА. Вместо него можно применить резистор 0603 1 Ом или перемычку- но в случае ошибки в монтаже или при выходе из строя микросхемы возможен выход из строя порта. Батарея после окончания свечения светодиода еще продолжает некоторое время дозаряжаться маленьким током, но это составляет до 5 % емкости. Если напряжение элемента меньше 3 вольт, то микросхема его подзаряжает током 40 мА.

2. Зарядное устройство для li-ion аккумуляторов

Для того, чтобы Li-ion аккумуляторы долго служили, необходимо их правильно заряжать. К концу завершения зарядки, напряжение должно уменьшаться, а когда аккумулятор зарядился, т.е. ток заряда станет почти нулевой, зарядка должна остановиться. Данная схема полностью удовлетворяет этим требованиям. Подключенный к нему аккумулятор заряжается током ~300ма, к концу заряда ток уменьшается до 30ма и дальше загорается светодиод VD2, который сигнализирует о завершении зарядки. Светодиод VD1 сигнализирует о работе устройства, VD3 загорается при подключении аккумулятора. В схеме используется операционный усилитель LM358N, его можно заменить на КР574УД2, только расположение выводов у него отличается. Светодиоды красного, зеленого и желтого цветов. Схема после сборки наладки не требует и начинает работать сразу.

3. Зарядное устройство для li-ion аккумуляторов

Зарядное устроиство состоит из таких узлов-собственно стабилизатора на LM317T и TL431,на резисторах R3-R7 собран ограничитель и датчик тока.Работает схема следущим образом -при подключении аккамулятора согласно полярности и устороиства в сеть нажимаем кнопку SB1, начинает протекать ток заряда. При протекании тока через резисторы R3-R7 на нем падает напряжение около 3V срабатывает реле К2 которое своими контактами включает реле К1. Реле К1 своими конактами блокирует кнопку SB1.Светлодиод HL2 индицирует включение в сеть, а HL1 что идет зарядка. Налаживание заключаеться в установке на выходе LM317 напряжение согласно с аккамулятором, с максимальной возможной точностю. Реле К1 с напряжением срабатывания 12V током через контакты не менее 2A,К2 РЕС64А паспорт РС4,569,724. LM317T установить на радиатор. В моем варианте ток при котором срабатывает К2 примерно 300мА,ток отпускания 80мА. При замыкании выхода и нажатии кнопки SB1 ток не превысил 1,4A Которого недостаточно вывести LM317T из строя. Трансформатор 220/12V и ток 1-1,2A.Диодный мост на ток не менее 3-5A.

Здравствуйте, друзья! Как и обещал, выкладываю обзор миниатюрной зарядной платы. Она предназначена для заряда литий-ионных аккумуляторов. Основная ее фишка в том, что она не «привязана» в какому-либо конкретному типоразмеру - 186500, 14500 и т.д. Подойдет абсолютно любой литий-ионный аккумулятор, к которому можно подключить «плюс» и «минус».

Плата совсем миниатюрная.

Не смотря на наличие USB-micro входа для подачи питания, входные «плюс» и «минус» продублированы еще и клеммами.

Это очень даже неплохой плюс. Объясню почему.

Во-первых, можно взять какой-нибудь блок питания припаять провода напрямую к плате. Поможет в том случае, если USB-micro вход по каким-то причинам окажется неисправным.

Во-вторых, можно взять, скажем, 3 платы, соединить три входных плюса и три входных минуса (получится параллельное соединение), и тогда от одного блока питания можно будет заряжать одновременно 3 аккумулятора. А если хочется зарядить аккумуляторы побыстрее, то можно будет подключить второе и даже третье зарядное устройство.

Выходы на аккумулятор, кстати, тоже можно запараллелить.

Т.е., если соединить те же 3 платы не только на входе, но и на выходе, то можно получить очень мощное зарядное устройство для литий-ионных аккумуляторов. В данном случае это будет зарядка на 3А.

Но один достаточно смешной момент все-таки есть - отверстия на выходных плюсе и минусе - разного диаметра. Почему так - не знаю.

Ну да ладно, это мелочь. Главное чтоб она нормально работала. Кстати, именно этим мы сейчас и займемся - проверкой работоспособности данной платы.

Тест 1. Отсечка по факту полного заряда.

Этот тест я проводил на двух аккумуляторах - оригинальном Панасонике на 3400mAh и на фейковом ноунейме на 5000mAh (а если серьезно - 450mAh).

Синий огонек на плате свидетельствует о том, что заряд аккумулятора завершен. Мультиметр при этом показывает 4,23В. Да, я не спорю, 4,25В на заряженном аккумуляторе это как бы тоже в пределах нормы, но… Вообще выше 4,2В как бы не желательно. А может что-то изменится, если плату отключить?

Почти те самые идеальные 4,2В. Т.е. аккумулятор все-таки заряжен «без излишеств». Но что будет, если Вы забыли снять аккумулятор сразу после его полного заряда? Обратите внимание, на приведенном выше фото почти 6 часов вечера. Подключим зарядку обратно и оставим в таком состоянии на несколько часов.

(спустя 5 с чем-то часов)

Я снова отключил плату, чтоб она не мешала измерениям напряжения на аккумуляторе. И что в итоге?

Никакого повышения напряжения на аккумуляторе не произошло. Может дело в емкости аккумулятора? Что будет, если вместо оригинальных Панасоников зарядить фейковые ноунеймы на 450mAh реальной емкости? Так и сделал - сначала разрядил один такой аккумулятор, а потом поставил заряжаться. И уснул.

А на утро… Ну что ж, отключаем зарядную плату и…

Итак, мы выяснили, что отсечка заряда происходит при достижении напряжения в 4,2В. Но на фото напряжение ниже. Т.е. после окончания заряда никакой «дозаправки» не происходит. Поясню. Некоторые зарядные устройства после окончания заряда продалжают подавать небольшой ток (буквально 10-15mA) для того, чтоб компеенсировать саморазряд аккумулятора. Здесь этого не происходит. Но это не страшно. Избыточный заряд - гораздо страшнее.

Подведем черту:
- заряжает до напряжения 4,19В и производит отсечку
- компенсация саморазряда не производится.

Проще говоря, тест пройден с успехом.

Тест 2. Ток.

Китаяц обещал, что данная плата способна заряжать током до 1А. Проверим? Для этого я почти разрядил один из имеющихся Панасоников (примерно до 3,3В), а потом поставил на зарядку. И что мы имеем?

Наблюдательные спросят - «а зачем ты USB-тестер из цепи убрал? ты ему не доверяешь что ли?». Друзья, этот USB-тестер хорош для замера емкости аккумулятора, но для замера мощности зарядной платы он не подходит. И вот почему. Буквально сразу же я встроил uSB-тестер обратно в цепь и…

… и сила тока заряда упала на целых 200mA. Именно по этой причине я ВСЕГДА ставлю дизлайки к тем видео, где чувак берет USB-зарядку, втыкает туда такой тестер, дает нагрузку, токоотдача не соответствует заявленной (например, заявлено 2A, а отдача составляет 1,5A), а потом еще и диспут с продавцом открывает, мол, как это так, мне 1,5А мало, мне 2А подавай! Я не знаю, с чем это связано, но после того, как я сделал эти 2 фото, я снова убрал USB-тестер из цепи и ток заряда восстановился до 1А.

Так что данной характеристике плата полностью соответствует.

Тест 3. Нагрев.

Ну тут все просто - подождал 10 минут, а потом «снял» температуру с помощью пирометра.

Я не буду разбираться нормально это или нет. Я просто добавлю к ней алюминиевый радиатор охлаждения.

Тест 4. Поведение при работе с избыточно заряженными аккумуляторами.

Друзья, параллельно с обзором на эту зарядную плату, я отщелкиваю еще и обзор на панасоники. Поэтому в этих двух обзорах несколько фотографий будет одинаковыми. Так вот. Ради теста я разрядил один из Панасоников до недопустимо низкого напряжения.

И вот сейчас у любителей данных Панасоников сердце облилось кровь. Ведь они ожидали увидеть разряд до 2,4В, может даже 2,2В, но никак не 1,77В.

Я обнулил счетчик тестера и поставил заряжаться. И вот тут я был приятно удивлен. Я ожидал, что из-за малого сопротивления аккумулятора ток будет запредельно высоким, что даже с USB-тестером ток будет ближе к 2А, что зарядная плата будет работать в бешеных перегрузках, почти на коротком замыкании, и прочую драму, которая заставляет радиолюбителей сидеть и трястись от мыслей вроде «да что ж ты делаешь, ублюдок!» Ничего подобного.

Всего 80mA (ОК, округлим до 100) - так называемый «восстановительный» ток. Фантастика! Т.е. эта плата умеет работать еще и с избыточно разряженными аккумуляторами!

А может она просто глючит? Не думаю. Спустя некоторое время, когда аккумулятор принял в себя примерно 35mAh, ток зашкалил за 1А.

Пока включил цифровик, пока настроил, пока туда-сюда, аккумулятор принял в себя 50mAh. Именно их мы и вычтем из итоговой емкости, которую нам покажет USB-тестер. Но это уже совсем другая история.

Друзья, учитывая цену в 50р - данная микросхема достойна аплодисментов.

Мудрость: чем сильнее бабушка любит внука - тем круче этот внук отыгрывается на своих родителях.

Кинокомпания «Разоблачение» представляет… Триллер «Кабелерез». В главных ролях:


Как сделать для li-ion аккумуляторов своими руками из подручных материалов практически даром. Собираем простое зарядное для Литий-ионных аккумуляторов, практически из хлама.


Накопилось у меня большое количество аккумуляторов от ноутбучных аккумуляторов, формата 18650. Обдумывая как их заряжать, я решил не заморачиваться с китайскими модулями, да и закончились они у меня к тому времени. Решил собрать воедино две схемы. Датчик тока и плата BMS с аккумулятора мобильного телефона. Проверено на практике. Хоть и схема примитивная, но она работает и успешно, ни одного аккумулятора не пострадало.

Схема зарядного устройства

Материалы и инструменты

  • шнур USB;
  • крокодильчики;
  • плата защиты BMS;
  • пластиковое яйцо от киндера;
  • два светодиода разного цвета;
  • транзистор кт361;
  • резисторы на 470 и 22 ома;
  • двухватный резистор 2.2 ома;
  • один диод IN4148;
  • инструменты.

Изготовление зарядного устройства

Шнур USB разбираем и снимаем разъем. У меня это от какого-то аипада.


К крокодилам припаиваем провода.


Глубокую часть пластикового киндера утяжеляем, я залил гайку М6 термоклеем.


Спаиваем нашу простую схемку. Все сделано навесным монтажом и распаяно на плате BMS. Светодиод я применил сдвоенный, но можно два одноцветных. Транзистор выпаял из старой советской радио-аппаратуры.


Провода продеваем в отверстие второй, мелкой, половинке пластикового киндера. Припаиваем схему.


Все компактно запихиваем в пластиковое яйцо. Для светодиода делаем отверстие.


Подключаем к USB порту пк или китайской зарядке, у них тока все равно мало.
Во время зарядки горит оранжевым цвет. Т.е. горят оба светодиода.

Когда заряд окончен, горит зеленый, тот который подключен через диод IN4148.
Можно проверить схему, отключив от аккумулятора, загорится светодиод зеленого цвета, свидетельствующий об окончании заряда.