Конденсатор в помощь аккумулятору авто. Cамодельный ионистор - суперконденсатор делаем своими руками. Тонкости выбора источника питания

Можно ли на транспорте применять конденсаторы, вместо капризных, недолговечных и требующих ухода аккумуляторов? Оказывается можно, и приемуществ у конденсатора перед аккумуляторной батареей достаточно, что бы отказаться от батарей, и если не полностью, то хотя бы дополнить ёмкость аккумулятора, сильно снижающуюся на морозе, ёмкостью конденсатора. О преимуществах и недостатках обоих источников электроэнергии, мы и поговорим в этой статье.

Всего несколько лет назад, конденсаторы в одну или две фарады ёмкости, считались экзотикой и их показывали только на выставках богатых меломанов. Сейчас эти конденсаторы можно купить в любом ларьке автоакустики, а конденсаторы ещё большей ёмкости, не сложно найти в специализированных магазинах, продающих сверхмощные Hi-Fi аудиосистемы (о музыке на автомобиле или мотоцикле ).

А что мне особенно радостно, так это то, что в настоящее время российская промышленность, всё таки опередив на несколько лет как восточных, так и западных производителей, освоила мелкосерийный выпуск супер конденсаторов новейшего типа, ёмкость которых составляет десятки тысяч фарад!

Немного теории.

Как известно, конденсатор состоит из разделённых зарядов — положительных, на одном пластинчатом электроде и отрицательных зарядов на другом. Сильно не вдаваясь в подробности, лишь отмечу, что энергия (ёмкость) которую способен взять конденсатор, напрямую зависит от площади пластин электродов, а так же от расстояния между ними. И чем больше эта площадь и меньше расстояние между пластинами, тем благоприятнее для накопления большего заряда.

Из этого следует, что увеличивая первое условие, и уменьшая второе, успеха в этом деле можно добиться. Но это на словах так просто. А как всё на деле? В новейших конденсаторах, для изготовления отрицательного электрода используется углеродный пористый материал, и вот в нём то и весь прикол. Благодаря этому материалу, у казалось бы обычной плоской пластины, благодаря её пористой структуре — как бы появляется второе измерение (увеличивается площадь пластин). От этого, площадь накопления зарядов существенно возрастает!

Увеличения площади пластин добились, осталось поработать с расстоянием. Новое название новейших супер конденсаторов — это конденсаторы с двойным электрическим слоем. Их особенность в том, что электроэнергия аккумулируется в особой области, то есть на границе раздела электролита и твёрдого тела. От этого расстояние между областью положения отрицательных и положительных зарядов, намного сокращается, аж на 2-3 порядка!

Из всего вышесказанного, можно наконец то сказать, что пора этим супер ёмкостям занять место под капотом машины, а в качестве чего? Есть несколько вариантов, но рассмотрим наиболее реальные.

Использование конденсатора в качестве основного источника электроэнергии для двигателя (электротяги).

Электробус Лужок ездит довольно быстро. Снизу виден выходящий дымок от бензинового отопителя салона.

Совсем недавно, и аккумуляторы для электро-автомобилей никто всерьёз не воспринимал. Но электрокары уже начинают заполонять мир, например в Лондоне уже работает электро-такси. Значит и конденсаторам путь предельно ясен, особенно если учесть их преимущества перед аккумулятором, но о преимуществах чуть позже. Скажу лишь, что «живой»пример, который ездит на электроэнергии от тяговых конденсаторов, можно увидеть на фото слева. Это экологически чистый автобус, а если быть точным — электробус под названием Лужок, который мелкой серией изготавливают в подмосковном городке Троицке (на заводе Эсма). Только вот для обогрева салона в мороз, приходится включать печку, которая работает на бензине, но это как говорится мелочи.

Электробус используется для перевозки туристов на небольшие расстояния (до 10 км), например по территории парков и заповедников, в которые введены жёсткие экологические ограничения. Первые коммерческие рейсы Лужок совершит по территории Московского ВВЦ. Одной зарядки конденсаторов хватает где то на 8-10 км. Затем 10-15 минутная зарядка и снова в путь (аккумуляторы пришлось бы заряжать минимум часов 20). К примеру, если ездить на работу, которая в мелких городах может находиться всего в пределах 5 — 10 км, то такой автомобиль был бы самое то, особенно для каждодневных поездок. Ведь цикл заряда и разряда конденсаторов, в отличии от аккумулятора, почти бесконечен. К тому же автомобиль не такой тяжёлый как автобус, а значит километраж на одной зарядке может увеличиться.

Кроме автобусов, предприятие выпускает немного «Газелей», несколько погрузчиков и электрокар, для перевозки грузов по территории завода. Основное отличие всей этой конденсаторной техники от аккумуляторной, это то, что её можно использовать круглосуточно, ведь их зарядка занимает считанные минуты. И хоть разряжаются они тоже быстро, зато срок службы конденсаторов превышает в десятки раз срок службы аккумуляторов.

Использование конденсатора в качестве помощника батарее, при пуске на морозе.

Использование в машинах конденсаторов нового типа в качестве тяговой силы, дело конечно полезное и интересное, но не самое актуальное. Куда более полезнее их использовать в качестве кратковременной электрической силы большой ёмкости, и в первую очередь для запуска мотора автомобиля. Этим уже пользуются инженеры военной техники, и испытания и усовершенствования постоянно проводятся на армейской технике. К примеру две здоровенные аккумуляторные батареи по 190 Ампер часов, при морозе в минус 45 градусов, способны совершить всего лишь одну пятнадцатисекундную прокрутку Камазовского стартера (и соответственно замёрзшего Камазовского двигателя). Но вот если подключить паралельно конденсатор ёмкостью всего 0,18 кФ, то стартер двигателя Камаза сделает уже несколько таких холодных прокруток! Разница налицо, особенно это полезно для техники, используемой в районах Крайнего Севера, например военная и строительная техника.

Конечно же водителям, которые живут в более тёплом климате, польза конденсаторов, не боящихся холода не так полезна. Но главное другое. Конденсаторам не опасна высокая плотность тока, и они выдерживают огромнейшее количество циклов заряд-разряд, да ещё и совсем не требуют обслуживания. Но самое главное это то, что конденсатор позволит повысить срок службы аккумулятора вдвое. Ведь когда аккумулятор один (особенно не новый), он считается непригодным, если плохо начинает справляться с пусковыми обязанностями, особенно в холодную погоду. А вот в паре с конденсатором, подключенным парраллельно, старая батарея будет служить до тех пор, пока тот способен её подзаряжать. И как я уже говорил, батарея превращается в долгожителя.

К тому же, в паре с коллегой конденсатором, ёмкость аккумуляторной батареи вашего автомобиля или мотоцикла, можно будет сократить вдвое. Легковой машине с двигателем в 1,5 — 1,8 кубиков, будет достаточно 25 Ач, а грузовому автомобилю хватит всего лишь 60 Ач. И можно уже будет не использовать батарею стартерного типа, которая рассчитана на высокие токи, а пользоваться обычной, которая как правило имеет в 2-3 раза больший срок службы. В итоге, комбинация аккумулятор плюс конденсатор, позволит значительно повысить срок службы этой пары. А что бы не менять на своей машине батарею лет 15, об этом мечтают многие, да и к этому сроку, люди как правило меняют машину на более свежую. Вот и выходит, что такой парочки (аккумулятор и конденсатор) хватит на весь срок службы машины. Но главное, водители забудут о трудном запуске в мороз, а такие слова «браток, дай прикурить, не могу завестись» можно будет забыть (как безопасно прикурить от чужой машины, ).

Что можно сказать напоследок. Супер конденсаторы нового поколения пока выпускаются мелкосерийно, стоят они раза в два дороже нормальной аккумуляторной батареи, и наверное не скоро найдут своих покупателей, по крайней мере наших отечественных. Немного конденсаторов уходит заграничным потребителям, но это не особая поддержка нашей промышленности. Но при желании, и нормальных спонсорах, для рекламы и освоения более дешёвого массового производства, можно это дело настроить на нормальный лад. Всё возможно. Ведь дорогущие аккумуляторы нового поколения тоже никто не хотел покупать, в начале их производства. А сейчас их закупают тоннами производители электрокаров, и это только начало. Думаю и новые конденсаторы вскоре будут пользоваться огромным спросом, и если и не заменят полностью аккумуляторы, то станут им надёжными помощниками. Поживём — увидим. Удачи всем!

Электрическая емкость земного шара, как известно из курса физики, составляет примерно 700 мкФ. Обычный конденсатор такой емкости можно сравнить по весу и объему с кирпичом. Но есть и конденсаторы с электроемкостью земного шара, равные по своим размерам песчинке - суперконденсаторты.

Появились такие приборы сравнительно недавно, лет двадцать назад. Их называют по-разному: ионисторами, иониксами или просто суперконденсаторами.

Не думайте, что они доступны лишь каким-то аэрокосмическим фирмам высокого полета. Сегодня можно купить в магазине ионистор размером с монету и емкостью в одну фараду, что в 1500 раз больше емкости земного шара и близко к емкости самой большой планеты Солнечной системы - Юпитера.

Любой конденсатор запасает энергию. Чтобы понять, сколь велика или мала энергия, запасаемая в ионисторе, важно ее с чем-то сравнить. Вот несколько необычный, зато наглядный способ.

Энергии обычного конденсатора достаточно, чтобы он мог подпрыгнуть примерно на метр-полтора. Крохотный ионистор типа 58-9В, имеющий массу 0,5 г, заряженный напряжением 1 В, мог бы подпрыгнуть на высоту 293 м!

Иногда думают, что ионисторы способны заменить любой аккумулятор. Журналисты живописали мир будущего с бесшумными электромобилями на суперконденсаторах. Но пока до этого далеко. Ионистор массой в один кг способен накопить 3000 Дж энергии, а самый плохой свинцовый аккумулятор - 86 400 Дж - в 28 раз больше. Однако при отдаче большой мощности за короткое время аккумулятор быстро портится, да и разряжается только наполовину. Ионистор же многократно и без всякого вреда для себя отдает любые мощности, лишь бы их могли выдержать соединительные провода. Кроме того, ионистор можно зарядить за считаные секунды, а аккумулятору на это обычно нужны часы.

Это и определяет область применения ионистора. Он хорош в качестве источника питания устройств, кратковременно, но достаточно часто потребляющих большую мощность: электронной аппаратуры, карманных фонарей, автомобильных стартеров, электрических отбойных молотков. Ионистор может иметь и военное применение как источник питания электромагнитных орудий. А в сочетании с небольшой электростанцией ионистор позволяет создавать автомобили с электроприводом колес и расходом топлива 1-2 л на 100 км.

Ионисторы на самую разную емкость и рабочее напряжение есть в продаже, но стоят они дороговато. Так что если есть время и интерес, можно попробовать сделать ионистор самостоятельно. Но прежде чем дать конкретные советы, немного теории.

Из электрохимии известно: при погружении металла в воду на его поверхности образуется так называемый двойной электрический слой, состоящий из разноименных электрических зарядов - ионов и электронов. Между ними действуют силы взаимного притяжения, но заряды не могут сблизиться. Этому мешают силы притяжения молекул воды и металла. По сути своей двойной электрический слой не что иное, как конденсатор. Сосредоточенные на его поверхности заряды выполняют роль обкладок. Расстояние между ними очень мало. А, как известно, емкость конденсатора при уменьшении расстояния между его обкладками возрастает. Поэтому, например, емкость обычной стальной спицы, погруженной в воду, достигает нескольких мФ.

По сути своей ионистор состоит из двух погруженных в электролит электродов с очень большой площадью, на поверхности которых под действием приложенного напряжения образуется двойной электрический слой. Правда, применяя обычные плоские пластины, можно было бы получить емкость всего лишь в несколько десятков мФ. Для получения же свойственных ионисторам больших емкостей в них применяют электроды из пористых материалов, имеющих большую поверхность пор при малых внешних размерах.

На эту роль были перепробованы в свое время губчатые металлы от титана до платины. Однако несравненно лучше всех оказался… обычный активированный уголь. Это древесный уголь, который после специальной обработки становится пористым. Площадь поверхности пор 1 см3 такого угля достигает тысячи квадратных метров, а емкость двойного электрического слоя на них - десяти фарад!

Самодельный ионистор На рисунке 1 изображена конструкция ионистора. Он состоит из двух металлических пластин, плотно прижатых к «начинке» из активированного угля. Уголь уложен двумя слоями, между которыми проложен тонкий разделительный слой вещества, не проводящего электроны. Все это пропитано электролитом.

При зарядке ионистора в одной его половине на порах угля образуется двойной электрический слой с электронами на поверхности, в другой - с положительными ионами. После зарядки ионы и электроны начинают перетекать навстречу друг другу. При их встрече образуются нейтральные атомы металла, а накопленный заряд уменьшается и со временем вообще может сойти на нет.

Чтобы этому помешать, между слоями активированного угля и вводится разделительный слой. Он может состоять из различных тонких пластиковых пленок, бумаги и даже ваты.
В любительских ионисторах электролитом служит 25%-ный раствор поваренной соли либо 27%-ный раствор КОН. (При меньших концентрациях не сформируется слой отрицательных ионов на положительном электроде.)

В качестве электродов применяют медные пластины с заранее припаянными к ним проводами. Их рабочие поверхности следует очистить от окислов. При этом желательно воспользоваться крупнозернистой шкуркой, оставляющей царапины. Эти царапины улучшат сцепление угля с медью. Для хорошего сцепления пластины должны быть обезжирены. Обезжиривание пластин производится в два этапа. Вначале их промывают мылом, а затем натирают зубным порошком и смывают его струей воды. После этого прикасаться к ним пальцами не стоит.

Активированный уголь, купленный в аптеке, растирают в ступке и смешивают с электролитом до получения густой пасты, которой намазывают тщательно обезжиренные пластины.

При первом испытании пластины с прокладкой из бумаги кладут одна на другую, после этого попробуем его зарядить. Но здесь есть тонкость. При напряжении более 1 В начинается выделение газов Н2, О2. Они разрушают угольные электроды и не позволяют работать нашему устройству в режиме конденсатора-ионистора.

Поэтому мы должны заряжать его от источника с напряжением не выше 1 В. (Именно такое напряжение на каждую пару пластин рекомендовано для работы промышленных ионисторов.)

Подробности для любознательных

При напряжении более 1,2 В ионистор превращается в газовый аккумулятор. Это интересный прибор, тоже состоящий из активированного угля и двух электродов. Но конструктивно он выполнен иначе (см. рис. 2). Обычно берут два угольных стержня от старого гальванического элемента и обвязывают вокруг них марлевые мешочки с активированным углем. В качестве электролита употребляется раствор КОН. (Раствор поваренной соли применять не следует, поскольку при ее разложении выделяется хлор.)

Энергоемкость газового аккумулятора достигает 36 000 Дж/кг, или 10 Вт-ч/кг. Это в 10 раз больше, чем у ионистора, но в 2,5 раза меньше, чем у обычного свинцового аккумулятора. Однако газовый аккумулятор - это не просто аккумулятор, а очень своеобразный топливный элемент. При его зарядке на электродах выделяются газы - кислород и водород. Они «оседают» на поверхности активированного угля. При появлении же тока нагрузки происходит их соединение с образованием воды и электрического тока. Процесс этот, правда, без катализатора идет очень медленно. А катализатором, как выяснилось, может быть только платина… Поэтому, в отличие от ионистора, газовый аккумулятор большие токи давать не может.

Тем не менее, московский изобретатель А.Г. Пресняков (http://chemfiles.narod .r u/hit/gas_akk.htm) успешно применил для запуска мотора грузовика газовый аккумулятор. Его солидный вес - почти втрое больше обычного - в этом случае оказался терпим. Зато низкая стоимость и отсутствие таких вредных материалов, как кислота и свинец, казалось крайне привлекательным.

Газовый аккумулятор простейшей конструкции оказался склонен к полному саморазряду за 4-6 часов. Это и положило конец опытам. Кому же нужен автомобиль, который после ночной стоянки нельзя завести?

И все же «большая техника» про газовые аккумуляторы не забыла. Мощные, легкие и надежные, они стоят на некоторых спутниках. Процесс в них идет под давлением около 100 атм, а в качестве поглотителя газов применяется губчатый никель, который при таких условиях работает как катализатор. Все устройство размещено в сверхлегком баллоне из углепластика. Получились аккумуляторы с энергоемкостью почти в 4 раза выше, чем у аккумуляторов свинцовых. Электромобиль мог бы на них пройти около 600 км. Но, к сожалению, пока они очень дороги.

На сегодняшний день аккумуляторные технологии значительно продвинулись и стали более совершенными по сравнению с прошлым десятилетием. Но все же, пока что аккумуляторные батареи остаются расходным материалом, потому как имеют небольшой ресурс.

Мысль о том, чтобы использовать, конденсатор для накопления и хранения энергии не нова и первые эксперименты проводились с электролитическими конденсаторами. Ёмкость у электролитических конденсаторов бывает значительной – сотни тысяч микрофарад, но все же ее недостаточно для того, чтобы длительное время питать хоть и не большую нагрузку, притом присутствует значительный ток утечки, обусловленный особенностями конструкции.

Современные технологии не стоят на месте, и был изобретен ионистор, это конденсатор, имеет сверхбольшую емкость – от единиц фарад и до десятков тысяч фарад. Ионисторы емкостью единицы фарад используются в портативной электронике, для обеспечения бесперебойного питания слаботочных цепей, например микроконтроллера. А ионисторы емкостью десятки тысяч фарад используются совместно с аккумуляторами для питания различных электродвигателей. В такой комбинации ионистор позволяет уменьшить нагрузку на аккумуляторные батареи, что значительно увеличивает их срок службы аккумулятора и одновременно увеличивает стартовый ток, который способна отдать гибридная система питания двигателя.

Появилась необходимость запитать датчик температуры, таким образом, чтобы не менять в нем батарейку. Датчик питается от батареи типоразмера АА и включается для отправки данных на погодную станцию один раз в 40 секунд. В момент отправки датчик потребляет в среднем 6 мА в течение 2 секунд.

Возникла идея использовать солнечную батарею и ионистор. Исходя из выявленных характеристик потребления датчика, были взяты следующие элементы:
1. Солнечная батарея 5 Вольта и ток примерно 50 мА (Солнечная батарея Советского производства возрастом примерно 15 лет)
2. Ионистор: Panasonic 5.5 Вольт и емкостью 1 фарад.
3. Ионисторы 2 шт: DMF 5.5 Вольт и общей емкостью 1 фарад.
4. Диод Шотки с прямым падением напряжения при малом токе 0.3 В.
Диод Шотки необходим для того чтобы предотвратить разряд емкости через солнечную батарею.
Ионисторы соединены параллельно, и общая емкость составляет 2 фарады.


Фото 1.

Эксперимент №1 – Подключил микроконтроллер с монохромным ЖК-дисплеем и общим током потребления 500 мкА. Хотя микроконтроллер с дисплеем и заработали, но я заметил, что старые солнечные элементы крайне не эффективны, ток заряда в тени был недостаточным для того, чтобы хоть сколько-нибудь зарядить ионисторы, напряжение на 5ти вольтовой солнечной батареи в тени было меньше 2 вольт. (По некоторым обстоятельствам микроконтроллер с дисплеем на фото не показаны).

Эксперимент №2
Для повышения шанса на успех я приобрел на радиорынке новые солнечные элементы номиналами 2 В, током 40 мА и 100 мА, китайского производства залитые оптической смолой. Для сравнения данные батареи в тени уже выдавали 1,8 вольт, при этом не большой ток заряда, но все же заметно лучше заряжающий ионистор.
Спаяв конструкцию уже с новой батареей, диодом шотки и конденсаторами я положил ее на подоконник для того, чтобы конденсатор зарядился.
Притом, что солнечный свет напрямую не попадал на батарею, уже через 10 минут конденсатор зарядился до 1,95 В. Взял датчик температуры, вынул из него батарею и подключил ионистор с солнечной батареей к контактам батарейного отсека.


Фото 2.

Датчик температуры сразу же заработал и передал на метеостанцию комнатную температуру. Убедившись, что датчик работает, закрепил на него конденсатор с солнечной батареей и повесил на место.
Что же было дальше?
Все светлое время суток датчик исправно работал, но с наступлением темного времени суток, уже через час, датчик перестал передавать данные. Очевидно, что запасенного заряда не хватало даже на час работы датчика и потом выяснилось почему…

Эксперимент №3
Решил немного доработать конструкцию таким образом, чтобы ионистор (вернул сборку ионисторов 2 фарады) был полностью заряжен. Собрал батарею из трех элементов, получилось 6 вольт и ток 40 мА (при полном освещении солнцем). Данная батарея в тени уже давала до 3,7 В вместо предыдущей 1,8 В (фото 1) и ток заряда до 2 мА. Соответственно ионистор заряжаясь до 3,7 В и имел уже значительно больше запасенной энергии в сравнении с Экспериментом №2.


Фото 3.

Все бы хорошо, но мы теперь имеем на выходе до 5,5 В, а датчик питается от 1,5 В. Необходим DC\DC преобразователь, что в свою очередь вносит дополнительные потери. Тот преобразователь, который у меня был в наличии, потреблял порядка 30 мкА и на выходе давал 4,2 В. Пока мне не удалось найти нужный преобразователь, для того чтобы запитать датчик температуры уже от модернизированной конструкции. (Нужно будет подобрать преобразователь и повторить опыт).

О потерях энергии:
Выше упоминалось, что ионисторы имеют ток саморазряда, в данном случае у сборки 2 фарада он составлял 50 мкА, так же сюда добавляются потери в DC\DC преобразователе порядка 4% (заявленная эффективность 96%) и его холостой ход 30 мкА. Если не брать во внимание потери на преобразование, мы уже имеем потребление порядка 80 мкА.
Отнестись к энергосбережению необходимо особо внимательно, потому как экспериментальным путем установлено, что ионистор емкостью 2 фарады заряженный до 5,5 В и разряженный до 2,5 В имеет так скажем «аккумуляторную» емкость 1 мА. Иначе говоря – потребляя 1 мА с ионистора в течении часа, мы его разрядим с 5,5 В до 2,5 В.

О скорости заряда прямым солнечным светом:
Ток, получаемый от солнечной батареи тем выше, чем лучше батарея освещена прямыми солнечными лучами. Соответственно скорость заряда ионистора увеличивается в разы.


Фото 4.

Из показаний мультиметра видно (0.192 В, начальные показания), через 2 минуты конденсатор зарядился до 1,161 В, через 5 минут до 3,132 В и еще через 10 минут 5,029 В. В течении 17 минут ионистор был заряжен на 90%. Нужно отметить, что освещение солнечной батареи было неравномерным в течении всего времени и происходило через двойное оконное стекло и защитную пленку батареи.

Технический отчет по Эксперименту №3
Технические характеристики макета:
- Солнечная батарея 12 элементов, 6 В, ток 40 мА (при полной засветке солнцем), (в тени пасмурной погоды 3,7 В и ток 1 мА с нагрузкой на ионистор).
- Ионисторы соединены параллельно, суммарная емкость 2 Фарад, допустимое напряжение 5,5 В, ток саморазряда 50 мкА;
- Диод Шотки с падением прямого напряжения 0,3 В, используется для развязки по питанию солнечную батарею и ионистор.
- Размеры макета 55 х 85 мм (пластиковая карта VISA).
От данного макета удалось запитать:
Микроконтроллер с ЖК-дисплеем (ток потребления 500 мкА при 5,5 В, время работы без солнечной батареи, приблизительно 1,8 часа);
Датчик температуры, время работы световой день с солнечной батареей, потребление 6 мА в течении 2 секунд каждые 40 секунд;
Светодиод светился 60 сек при среднем токе 60 мА без солнечной батареи;
Так же был испробован DC\DC преобразователь напряжения (для стабильного питания), с которым удалось получить 60 мА и 4 В, в течении 60 секунд (при заряде ионистора до 5,5 В, без солнечной батареи).
Полученные данные говорят о том, что ионисторы в данной конструкции имеют приблизительную емкость 1 мА (без подпитки от солнечной батареи с разрядом до 2,5 В).

Выводы:
Данная конструкция позволяет накапливать энергию в конденсаторах для беспрерывного питания микропотребляющих устройств. Накопленная емкость 1 мА на 2 фарады емкости конденсатора должно хватить для обеспечения работоспособности микропроцессора с низким потреблением в темное время суток в течение 10 часов. При этом суммарный ток потерь и потребления нагрузкой не должен превышать 100 мкА. Днем ионистор подзаряжается от солнечной батареи даже в тени и способен питать нагрузку в импульсном режиме током до 100 мА.

Отвечаем на вопрос в заголовке статьи - Может ли ионистор заменить аккумулятор?
– может заменить, но пока со значительными ограничениями по току потребления и режиму работы нагрузки.

Недостатки:

  • малая емкость запаса энергии (приблизительно 1 мА на каждые 2 Фарад емкости ионистора)
  • значительный ток саморазряда конденсаторов (ориентировочная потеря 20% емкости за сутки)
  • габариты конструкции определяются солнечной батареей и суммарной емкостью ионисторов.
Достоинства: После всех проделанных экспериментов пришла идея модернизировать конструкцию следующим образом


Фото 5.

С одной стороны платы располагаются солнечная батарея, с другой стороны сборка ионисторов и DC\DC преобразователь.

Технические характеристики:

  • Солнечная батарея 12 элементов, 6 В, ток 60 мА (при полной засветке солнцем);
  • Ионисторы суммарная емкость 4; 6 или 16 Фарад, допустимое напряжение 5,5 В, суммарный ток саморазряда соответственно 120\ 140\ (пока не известно) мкА;
  • Диод Шотки сдвоенный с падением прямого напряжения 0,15 В, используется для развязки по питанию солнечной батареи и ионистора;
  • Размеры макета: 55 х 85 мм (пластиковая карта VISA);
  • Расчетная емкость без подпитки от солнечных батарей при установке конденсаторов 4; 6 или 16 Фарад, составляет примерно 2\ 3\ 8 мА.

P. S. Если вы заметили опечатку, ошибку или неточность в расчетах - напишите нам личным сообщением, и мы оперативно все исправим.

Продолжение следует…

Среди последних новинок науки и техники необходимо отметить появление конденсатора нового типа – ионистор, который также называют суперконденсатор. Что же это за зверь, и можно ли его использовать в автомобильном видеорегистраторе и других электронных приборах в качестве резервного источника питания?

Из школьного курса физики известно, что конденсатор может запасать энергию, накапливая заряд электричества. Вот только величина этого заряда очень мала, поэтому его хватает только на хорошую искру при коротком замыкании. Также школьники используют металлобумажные конденсаторы переменного тока на 400…1000 Вольт для того, чтобы лупить друг друга электротоком, предварительно зарядив его в розетке 220 В. А в основном конденсаторы используют как радиокомпонент в электронных приборах.

Но в конце прошлого века в секретных лабораториях был придуман новый тип конденсатора, в котором вместо металлической ленты используется электролит и другие хитрые химические вещества. Благодаря такой конструкции новый тип конденсатора при малых размерах имеет громадную емкость, которую уже можно использовать для накопления заряда, достаточного для кратковременной работы электронных устройств с малым потреблением тока. Он получил название ионистор из-за того, что функционирует благодаря ионному переносу в химической среде между электродами.

В наше время ионисторы используются как резервный источник питания. Например, на Алиэкспресс за 5…10 баксов можно купить 5-вольтовый ионистор, который получает полную зарядку всего за 10…100 секунд. Однако он может питать средний светодиодный фонарик в течение 20…30 минут.

Обзор китайского ионистора

Теперь разберемся, сможет ли суперконденсатор заменить аккумулятор в автомобильном видеорегистраторе? В регике нет компонентов, которые бы потребляют большой ток – сервоприводы, электродвигатели, мощные лампы освещения. Поэтому расход тока достаточно мал – 50…100 мА. Средней паршивости ионистор сможет обеспечить работу видеорегистратора в течение 3…10 минут. Это более чем достаточно, чтобы дописать до конца видеоролик и корректно завершить работу.

Так что, если вы колеблетесь — покупать ли видеорегистратор с суперконденсатором вместо встроенного аккумулятора, то все сомнения напрасны. Этот прибор выполнит все необходимые функции в вашем автомобиле, даже если в случае ДТП будет отключена бортовая сеть. Однако регистратор такого типа нельзя будет использовать как обычную переносную видеокамеру вне салона автомобиля – для уличной видеосъемки потребуется внешний источник питания.

Для накопления электроэнергии люди сначала использовали конденсаторы. Потом, когда электротехника вышла за пределы лабораторных опытов, изобрели аккумуляторы, ставшие основным средством для запасания электрической энергии. Но в начале XXI века снова предлагается использовать конденсаторы для питания электрооборудования. Насколько это возможно и уйдут ли аккумуляторы окончательно в прошлое?

Причина, по которой конденсаторы были вытеснены аккумуляторами, была связана со значительно большими значениями электроэнергии, которые они способны накапливать. Другой причиной является то, что при разряде напряжение на выходе аккумулятора меняется очень слабо, так что стабилизатор напряжения или не требуется или же может иметь очень простую конструкцию.

Главное различие между конденсаторами и аккумуляторами заключается в том, что конденсаторы непосредственно хранят электрический заряд, а аккумуляторы превращают электрическую энергию в химическую, запасают ее, а потом обратно преобразуют химическую энерию в электрическую.

При преобразованиях энергии часть ее теряется. Поэтому даже у лучших аккумуляторов КПД составляет не более 90%, в то время, как у конденсаторов он может достигать 99%. Интенсивность химических реакций зависит от температуры, поэтому на морозе аккумуляторы работают заметно хуже, чем при комнатной температуре. Кроме этого, химические реакции в аккумуляторах не полностью обратимы. Отсюда малое количество циклов заряда-разряда (порядка единиц тысяч, чаще всего ресурс аккумулятора составляет около 1000 циклов заряда-разряда), а также «эффект памяти». Напомним, что «эффект памяти» заключается в том, что аккумулятор нужно всегда разряжать до определенной величины накопленной энергии, тогда его емкость будет максимальной. Если же после разрядки в нем остается больше энергии, то емкость аккумулятора будет постепенно уменьшаться. «Эффект памяти» свойственнен практически всем серийно выпускаемым типам аккумуляторов, кроме, кислотных (включая их разновидности - гелевые и AGM). Хотя принято считать, что литий-ионным и литий-полимерным аккумуляторам он не свойственнен, на самом деле и у них он есть, просто проявляется в меньшей степени, чем в других типах. Что же касается кислотных аккумуляторов, то в них проявляется эффект сульфатации пластин, вызывающий необратимую порчу источника питания. Одной из причин является длительное нахождение аккумулятора в состоянии заряда менее, чем на 50%.

Применительно к альтернативной энергетике «эффект памяти» и сульфатация пластин являются серьезными проблемами. Дело в том, что поступление энергии от таких источников, как солнечные батареи и ветряки, сложно спрогнозировать. В результате заряд и разряд аккумуляторов происходят хаотично, в неоптимальном режиме.

Для современного ритма жизни оказывается абсолютно неприемлемо, что аккумуляторы приходится заряжать несколько часов. Например, как вы себе представляете поездку на электромобиле на дальние расстояния, если разрядившийся аккумулятор задержит вас на несколько часов в пункте зарядки? Скорость зарядки аккумулятора ограничена скоростью протекающих в нем химических процессов. Можно сократить время зарядки до 1 часа, но никак не до нескольких минут. В то же время, скорость зарядки конденсатора ограничена только максимальным током, который дает зарядное устройство.

Перечисленные недостатки аккумуляторов сделали актуальным использование вместо них конденсаторов.

Использование двойного электрического слоя

На протяжении многих десятилетий самой большой емкостью обладали электролитические конденсаторы. В них одной из обкладок являлась металлическая фольга, другой - электролит, а изоляцией между обкладками - окись металла, которой покрыта фольга. У электролитических конденсаторов емкость может достигать сотых долей фарады, что недостаточно для того, чтобы полноценно заменить аккумулятор.

Сравнение конструкций разных типов конденстаторов (Источник: Википедия)

Большую емкость, измеряемую тысячами фарад, позволяют получить конденсаторы, основанные на так называемом двойном электрическом слое. Принцип их работы следующий. Двойной электрический слой возникает при определенных условиях на границе веществ в твердой и жидкой фазах. Образуются два слоя ионов с зарядами противоположного знака, но одинаковой величины. Если очень упростить ситуацию, то образуется конденсатор, «обкладками» которого являются указанные слои ионов, расстояние между которыми равно нескольким атомам.



Суперконденсаторы различной емкости производства Maxwell

Конденсаторы, основанные на данном эффекте, иногда называют ионисторами. На самом деле, этот термин не только к конденсаторам, в которых накапливается электрический заряд, но и к другим устройствам для накопления электроэнергии - с частичным преобразованием электрической энергии в химическую наряду с сохранением электрического заряда (гибридный ионистор), а также для аккумуляторов, основанных на двойном электрическом слое (так называемые псевдоконденсаторы). Поэтому более подходящим является термин «суперконденсаторы». Иногда вместо него используется тождественный ему термин «ультраконденсатор».

Техническая реализация

Суперконденсатор представляет собой две обкладки из активированного угля, залитые электролитом. Между ними расположена мембрана, которая пропускает электролит, но препятствует физическому перемещению частиц активированного угля между обкладками.

Следует отметить, что суперконденсаторы сами по себе не имеют полярности. Этим они принципиально отличаются от электролитических конденсаторов, для которых, как правило, свойственна полярность, несоблюдение которой приводит к выходу конденсатора из строя. Тем не менее, на суперконденсаторах также наносится полярности. Связано это с тем, что суперконденсаторы сходят с заводского конвейера уже заряженными, маркировка и означает полярность этого заряда.

Параметры суперконденсаторов

Максимальная емкость отдельного суперконденсатора, достигнутая на момент написания статьи, составляет 12000 Ф. У массово выпускаемых супероконденсаторов она не превышает 3000 Ф. Максимально допустимое напряжение между обкладками не превышает 10 В. Для серийно выпускаемых суперконденсаторов этот показатель, как правило, лежит в пределах 2,3 – 2,7 В. Низкое рабочее напряжение требует использование преобразователя напряжения с функцией стабилизатора. Дело в том, что при разряде напряжение на обкладках конденсатора изменяется в широких пределах. Построение преобразователя напряжения для подключения нагрузки и зарядного устройства являются нетривиальной задачей. Предположим, что вам нужно питать нагрузку с мощностью 60 Вт.

Для упрощения рассмотрения вопроса пренебрежем потерями в преобразователе напряжения и стабилизаторе. В том случае, если вы работаете с обычным аккумулятором с напряжением 12 В, то управляющая электроника должна выдерживать ток в 5 А. Такие электронные приборы широко распространены и стоят недорого. Но совсем другая ситуация складывается при использовании суперконденсатора, напряжение на котором составляет 2,5 В. Тогда ток, протекающий через электронные компоненты преобразователя, может достигать 24 А, что требует новых подходов к схмотехнике и современной элементной базы. Именно сложностью с построением преобразователя и стабилизатора можно объяснить тот факт, что суперконденсаторы, серийный выпуск которых был начат еще в 70-х годах XX века, только сейчас стали широко использоваться в самых разных областях.



Принципиальная схема источника бесперебойного питания
напряжением на суперконденсаторах, основные узлы реализованы
на одной микосхеме производства LinearTechnology

Суперконденсаторы могут соединяться в батареи с использованием последовательного или параллельного соединения. В первом случае повышается максимально допустимое напряжение. Во втором случае - емкость. Повышение максимально допустимого напряжения таким способом является одним из способов решения проблемы, но заплатить за нее придется снижением емкости.

Размеры суперконденсаторов, естественно, зависят от их емкости. Типичный суперконденсатор емкостью 3000 Ф представляет собой цилиндр диаметром около 5 см и длиной 14 см. При емкости 10 Ф суперконденсатор имеет размеры, сопоставимые с человеческим ногтем.

Хорошие суперконденсаторы способны выдержать сотни тысяч циклов заряда-разряда, превосходя по этому параметру аккумуляторы примерно в 100 раз. Но, как и у электролитических конденсаторов, для суперконденсаторов стоит проблема старения из-за постепенной утечки электролита. Пока сколь-нибудь полной статистики выхода из строя суперконденсаторов по данной причине не накоплено, но по косвенным данным, срок службы суперконденсаторов можно приблизительно оценить величиной 15 лет.

Накапливаемая энергия

Количество энергии, запасенной в конденсаторе, выраженное в джоулях:

E = CU 2 /2,
где C - емкость, выраженная в фарадах, U - напряжение на обкладках, выраженное в вольтах.

Количество энергии, запасенной в конденсаторе, выраженное в кВтч, равно:

W = CU 2 /7200000

Отсюда, конденсатор емкостью 3000 Ф с напряжением между обкладками 2,5 В способен запасти в себе только 0,0026 кВтч. Как это можно соотнести, например, с литий-ионным аккумулятором? Если принять его выходное напряжение не зависящим от степени разряда и равным 3,6 В, то количество энергии 0,0026 кВтч будет запасено в литий-ионном аккумуляторе емкостью 0,72 Ач. Увы, весьма скромный результат.

Применение суперконденсаторов

Системы аварийного освещения являются тем местом, где использование суперконденсаторов вместо аккумуляторов дает ощутимый выигрыш. В самом деле, именно для этого применения характерна неравномерность разрядки. Кроме этого, желательно, чтобы зарядка аварийного светильника происходила быстро, и чтобы используемый в нем резервный источник питания имел большую надежность. Источник резервного питания на основе суперконденсатора можно встроить непосредственно в светодиодную лампу T8. Такие лампы уже выпускаются рядом китайских фирм.



Грунтовый светодиодный светильник с питанием
от солнечных батарей, накопление энергии
в котором осуществляется в суперконденсаторе

Как уже отмечалось, развитие суперконденсаторов во многом связано с интересом к альтернативным источникам энергии. Но практическое применение пока ограничено светодиодными светильниками, получающими энергию от солнца.

Активно развивается такое направление как использование суперконденсаторов для запуска электрооборудования.

Суперконденсаторы способны дать большое количество энергии в короткий интервал времени. Запитывая электрооборудование в момент пуска от суперконденсатора, можно уменьшить пиковые нагрузки на электросеть и в конечном счете уменьшить запас на пусковые токи, добившись огромной экономии средств.

Соединив несколько суперконденсаторов в батарею, мы можем достичь емкости, сопоставимой с аккумуляторами, используемыми в электромобилях. Но весить эта батарея будет в несколько раз больше аккумулятора, что для транспортных средств неприемлемо. Решить проблему можно, используя суперконденсаторы на основе графена, но они пока существуют только в качестве опытных образцов. Тем не менее, перспективный вариант знаменитого «Ё-мобиля», работающий только от электричества, в качестве источника питания будет использовать суперконденсаторы нового поколения, разработка которых ведется российскими учеными.

Суперконденсаторы также дадут выигрыш при замене аккумуляторов в обычных машинах, работающих на бензине или дизельном топливе - их использование в таких транспортных средствах уже является реальностью.

Пока же самым удачным из реализованных проектов внедрения суперконденсаторов можно считать новые троллейбусы российского производства, вышедшие недавно на улицы Москвы. При прекращении подачи напряжения в контактную сеть или же при «слетании» токосъемников троллейбус может проехать на небольшой (порядка 15 км/ч) скорости несколько сотен метров в место, где он не будет мешать движению на дороге. Источником энергии при таких маневрах для него является батарея суперконденсаторов.

В общем, пока суперконденсаторы могут вытеснить аккумуляторы только в отдельных «нишах». Но технологии бурно развиваются, что позволяет ожидать, что уже в ближайшем будущем область применения суперконденсаторов значительно расширится.