Описание бд пример. Основные сведения о базах данных. Интерфейсы языков манипулирования данными

Построение реляционных баз данных

Основы построения реляционных баз данных

Описание реляционных данных

В процессе построения реляционной базы данных должны быть решены несколь­ко задач. Во-первых, необходимо описать структуру базы данных для СУБД. Для этого разработчик использует язык описания данных или какой-либо эквивалент­ный способ описания структуры (например, графическое отображение). Затем база данных записывается на тот или иной физический носитель и заполняется данными. В этом разделе мы рассмотрим каждую из этих задач, но сначала позна­комимся с реляционной терминологией.

Обзор терминологии

Как указывалось в главе 5, отношение - это таблица, обладающая определенны­ми свойствами.

    Записи в отношении могут иметь только одиночные значения; множест­венные значения не допускаются. Следовательно, на пересечении строки и столбца находится только одно значение.

    Все записи в одном столбце имеют один и тот же тип. Например, один столбец может содержать имена покупателей, а другой - их даты рожде­ния. Каждый столбец имеет уникальное имя, и порядок следования столб­цов несуществен. Столбцы отношения носят название атрибутов. Каж­дый атрибут имеет свой домел, который представляет собой физическое и логическое описание множества допустимых значений.

3. В отношении не может быть двух одинаковых строк, и порядок следова­ния строк несуществен (рис. 8.1). Строки отношения называются также кортежами.

Рисунок 8.1 являет собой пример, или отдельный экземпляр, реляционной структуры, содержащей сведения о пациенте клиники. Обобщенный формат, PATIENT (Name , Birth Date , Gender , AccountNumber , Physician ) - это структура отноше­ния; именно ее большинство людей имеют в виду под термином отношение. (Вспомните из главы 5, что подчеркиванием выделяется атрибут, являющийся ключом отношения.) Если мы добавим в структуру отношения ограничение на возможные значения данных, мы получим реляционную схему (relational schema). Все эти термины приведены в табл. 8.1.

Недоразумения относительно термина «ключ»

Термин ключ зачастую является источником недоразумений, так как он имеет различные значения на стадиях проектирования и реализации. В процессе про­ектирования под ключом понимается один или несколько столбцов, однозначно определяющих строку отношения. Как мы знаем из главы 5, каждое отношение имеет хотя бы один ключ, поскольку каждая строка является уникальной; в пре­дельном случае ключ представляет собой комбинацию всех столбцов отношения. Обычно ключ состоит из одного-двух столбцов.

На стадии реализации термин ключ используется в другом значении. В боль­шинстве реляционных СУБД ключом называется столбец, на базе которого СУБД формирует индекс и другие структуры данных. Это делается для того, чтобы обеспечить быстрый доступ к значениям из данного столбца. Эти ключи не обязаны быть уникальными, и зачастую они действительно таковыми не яв­ляются. Они создаются только для повышения быстродействия. (Информацию о таких структурах данных вы найдете в приложении А.)

Рассмотрим, например, отношение ЗАКАЗ (НомерЗаказа, ДатаЗаказа, НомерКли-ента, Количество). С точки зрения проектирования, ключом этого отношения яв­ляется НомерЗаказа, так как выделение жирным шрифтом означает, что данный атрибут однозначно определяет строку отношения. С точки зрения реализации, ключом может быть любой из четырех столбцов данного отношения. Это может быть, например, атрибут ДатаЗаказа. В таком случае СУБД создаст структуру данных, обеспечивающую быстрый доступ к данным из отношения ЗАКАЗ по зна­чению даты заказа. Скорее всего, конкретному значению атрибута ДатаЗаказа бу­дет соответствовать много строк. В данном смысле определение атрибута в каче­стве ключа не говорит ничего о его уникальности.

Иногда, чтобы различать два значения слова ключ, употребляются термины логический ключ (logical key) и физический ключ (physical key). Логический ключ - это уникальный идентификатор, а физический ключ - это столбец, для которого с целью увеличения быстродействия создан индекс или другая структура данных.

Индексы

Поскольку физический ключ обычно является индексом, некоторые оставляют за термином ключ значение логического ключа, а за термином индекс - значение физического ключа. В данной книге мы именно так и будем поступать: термин ключ мы будем использовать в значении «логический ключ», а термин индекс - в значении «физический ключ».

В пользу создания индексов есть три соображения. Одно из них состоит в том, чтобы обеспечить ускоренный доступ к строкам по значению индексируемого атрибута. Другое заключается в упрощении сортировки строк по этому атрибу­ту. Например, в отношении ЗАКАЗ в качестве ключа может быть определен атри­бут ДатаЗаказа, в результате чего отчеты, в которых заказы отсортированы по да­те, будут генерироваться быстрее.

Третья цель построения индексов - обеспечение уникальности. Индексы не обязаны быть уникальными, но когда разработчик хочет, чтобы какой-то столбец был уникальным, СУБД создает для этого столбца индекс. В большинстве реля­ционных СУБД столбец или группу столбцов можно сделать уникальными, если при определении столбца в таблице указать ключевое слово UNIQUE .

Реализация реляционной базы данных

И этой книге для описания структуры базы данных мы используем реляционную модель. Поэтому от проектирования базы данных мы можем непосредственно пе­реходить к ее реализации. Нам нет нужды как-либо преобразовывать структуру па стадии реализации: все, что требуется сделать, - это описать существующую реляционную структуру для СУБД.

При реализации баз данных с использованием СУБД, основанных не на реля­ционной модели, дело обстоит иначе. Например, реализуя базу данных на основе модели DL/I, мы должны преобразовать реляционную структуру в иерархиче­скую, а затем описать для СУБД преобразованную структуру.

Описание структуры базы данных для СУБД

Есть несколько способов, с помощью которых структура базы данных описывает­ся для СУБД. Эти способы зависят от того, какая конкретно СУБД используется. 13 некоторых продуктах создается текстовый файл, который описывает структуру базы данных. Язык, используемый для определения такой структуры, иногда на­зывается языком определения данных (data definition language, DDL). В текстовом DDL-файле перечислены названия таблиц базы данных, указаны названия столб­цов этих таблиц и описано их содержимое, определены индексы, а также описаны другие структуры (ограничения, меры безопасности). В листинге 8.1 с помощью типичного языка определения данных описана простая реляционная база данных для гипотетической СУБД. Более реалистичные примеры с использованием стандарта под названием SQL приведены в главах 12 и 13.

Некоторые СУБД не требуют, чтобы структура базы данных была определена с помощью DDL в текстовом формате. Наиболее распространенная альтер­натива - это графический способ задания структуры базы данных. Например, в Access 2002 разработчику дается графическая структура в виде списка, в соот­ветствующих местах которой нужно ввести имена таблиц и столбцов. Пример этого мы видели в главе 2 (см. рис. 2.2).

Вообще говоря, графические средства описания данных распространены в СУБД, предназначенных для работы на персональных компьютерах. На серве­рах и больших ЭВМ применяются как графические, так и текстовые средства. Например, в Oracle и SQL Server для определения данных могут применяться оба способа. На рис. 8 .2 представлена общая схема процесса описания данных для СУБД.

При любом способе определения структуры данных разработчик должен дать название каждой таблице, определить столбцы для этой таблицы и описать фи­зический формат данных в каждом столбце (скажем, TEXT 10). Кроме того, в зави­симости от возможностей используемой СУБД, разработчик может указать ог­раничения, которые должны реализовываться СУБД. Значения столбцов могут определяться, например, как NOT NULL (не пустой) или UNIQUE (уникальный). Не­которые продукты позволяют также устанавливать ограничения на возможные значения (атрибут Часть может принимать значения, меньшие 10 000, а атрибут Цвет может принимать одно из значений ["Красный"/Зеленый"/Синий"]). Наконец, могут быть введены ограничения целостности по внешнему ключу. Приведем при­мер такого ограничения: «Значение атрибута НомерОтдела в таблице СОТРУДНИК должно быть равно значению атрибута НомерОтдела в таблице ОТДЕЛ».

Во многих СУБД разработчик может также устанавливать пароли и исполь­зовать другие средства контроля и безопасности. Как будет показано в главе 11, существует множество различных стратегий обеспечения безопасности. В одних стратегиях объектами контроля являются структуры данных (например, таблица защищается паролем), в других - пользователи (обладатель пароля X может чи­тать и обновлять таблицы Т1 и Т2).

Распределение пространства на физических носителях

Кроме определения структуры базы данных, разработчик должен выделить место для базы данных на физическом носителе. И вновь конкретные действия зависят от того, какая именно СУБД используется. В случае персональной базы данных псе, что требуется сделать, - это присвоить базе данных каталог на диске и дать ей имя. После этого СУБД автоматически выделит пространство для хранения данных.

Другие СУБД, в особенности предназначенные для серверов и больших ЭВМ, требуют больших усилий. Чтобы повысить быстродействие и улучшить контроль, необходимо тщательно спроектировать распределение информации в базе дан­ных по дискам и каналам. Например, в зависимости от специфики обработки приложений, может оказаться, что определенные таблицы лучше размещать на одном и том же диске. И наоборот, может быть важно, чтобы определенные таб­лицы не находились на одном и том же диске.

Рассмотрим, например, объект-заказ, скомпонованный из таблиц ЗАКАЗ, СТР0КА_ ЗАКАЗА и ТОВАР. Предположим, что при обработке заказа приложение считывает одну строку из таблицы ЗАКАЗ, несколько строк из таблицы СТР0КА_ЗАКАЗА и по одной строке из таблицы ТОВАР для каждой строки из таблицы СТР0КА_ЗАКАЗА. Далее, строки из таблицы СТР0КА_ЗАКАЗА, относящиеся к одному и тому же за­казу, обычно сгруппированы вместе, а строки в таблице ТОВАР не сгруппированы никак. Эту ситуацию иллюстрирует рис. 8.3.

Теперь представим, что организация параллельно обрабатывает множество за­казов и что у нее есть два диска: один большого объема и быстродействующий, а другой - меньшего объема и более медленный. Разработчик должен опреде­лить наилучшее место для хранения данных. Возможно, производительность улучшится, если таблица ТОВАР будет храниться на большом диске с быстрым доступом, а таблицы СТРОКА_ЗАКАЗА и ЗАКАЗ - на диске меньшего размера и бы­стродействия. А может быть, производительность будет выше, если поместить данные из таблиц ЗАКАЗ и СТРОКА_ЗАКАЗА за предыдущие месяцы на более мед­ленный диск, а за текущий месяц - на более быстрый.

Мы не можем ответить на эти вопросы здесь, поскольку ответ зависит от объема данных, характеристик СУБД и операционной системы, размера и быстродейст­вия дисков и каналов, а также от требований приложений, использующих эту базу данных. Смысл состоит в том, что все эти факторы необходимо принимать во вни­мание при выделении пространства для базы данных на физическом носителе.

Кроме местоположения и объема пространства для данных пользователя, разра­ботчику, возможно, потребуется также указать, должно ли это пространство уве­личиваться по мере необходимости, и если да, то на какую величину. Как правило, величина такого приращения указывается либо в виде фиксированного значения, либо в виде процентов от первоначального объема занимаемого пространства.

При создании базы данных разработчику понадобится выделить файловое пространство для журналов базы данных. О ведении журналов вы узнаете в гла­вах 11-13; на данном этапе вам просто следует знать, что СУБД ведет журнал изменений в базе данных, который потом, в случае необходимости, можно ис­пользовать для восстановления базы. Файловое пространство для журналов вы­деляется на этапе создания базы данных.

Составление плана обслуживания базы данных

План обслуживания (maintenance plan) базы данных - это расписание процедур, которые необходимо выполнять на регулярной основе. Эти процедуры включают в себя резервное копирование базы данных, сброс содержимого журнала базы данных в архивные файлы, проверка на наличие нарушений ссылочной целост­ности, оптимизация дискового пространства для данных пользователя и индексов и т. д. К этим вопросам мы также обратимся в главе 11, но имейте в виду, что план обслуживания базы данных должен составляться в процессе ее создания или вскоре после него.

Заполнение базы данных информацией

Когда база данных описана и для ее хранения выделено пространство на физиче­ском носителе, можно начинать заполнение базы данных информацией. То, ка­ким путем это делается, зависит от требования приложений и возможностей СУБД. В лучшем случае все данные уже находятся в формате, воспринимаемом компьютером, а в СУБД имеются возможности и средства, позволяющие упро­стить импорт данных с магнитных носителей. В худшем случае все данные долж­ны вводиться вручную через клавиатуру с помощью прикладных программ, созданных разработчиками «с нуля». Большинство ситуаций, где необходимо конвертирование данных, находятся в промежутке между этими двумя крайними случаями.

Когда данные введены, необходимо проверить их корректность. Такая про­верка утомительна и требует больших трудозатрат, однако она весьма важна. За­частую, особенно в больших базах данных, есть смысл в написании специальных программ для проверки данных. Преимущества от использования этих программ вполне окупят время и деньги, затраченные командой разработчиков на их соз­дание. Такие программы занимаются тем, что подсчитывают количество строк в различных категориях, вычисляют контрольные суммы, выполняют проверки допустимости значений данных и другие процедуры контроля.

Манипулирование реляционными данными

Мы обсудили проектирование реляционных баз данных и способы, при помощи которых структура базы данных описывается для СУБД. До сих пор, говоря об операциях с отношениями, мы рассуждали в обобщенной и интуитивной манере. Такая манера хороша, пока речь идет о проекте, но для реализации приложений нам нужен четкий и непротиворечивый язык, выражающий логику обработки. Такие языки носят название языков манипулирования данпьши (data manipulation languages, DML).

На сегодняшний день предложено четыре стратегии манипулирования реляци­онными данными. Первая из стратегий, реляционная алгебра (relational algebra), определяет операторы, действующие на отношения (они подобны операторам высшей алгебры +, - и т. д.). Эти операторы позволяют манипулировать отноше­ниями для достижения желаемого результата. Но реляционная алгебра трудна в использовании, отчасти потому, что она является процедурной. Это значит, что при использовании реляционной алгебры мы должны знать не только то, что мы делаем, но и то, как это делается.

Реляционная алгебра не используется в коммерческих системах обработки баз данных. Хотя ни одна коммерчески успешная СУБД не включает в себя ин­струментарий реляционной алгебры, мы будем обсуждать ее здесь, поскольку это поможет яснее представить себе манипулирование реляционными данными и заложит основу для изучения SQL.

Реляционное исчисление (relational calculus) - вторая стратегия манипулиро­вания реляционными данными. Реляционное исчисление не является процедур­ным; оно представляет собой язык, выражающий то, что мы хотим сделать, без указания на то, как этого достичь. Вспомните переменную интегрирования в ин­тегральном исчислении: эта переменная принимает значения из того диапазона, по которому происходит интегрирование. В реляционном исчислении есть по­добная переменная. В кортежио-реляционном исчислении областью значений этой переменной являются кортежи отношения, а в доменно-реляционном ис­числении - значения домена. В основе реляционного исчисления лежит область математики, называемая исчислением предикатов.

Если вы не собираетесь становиться теоретиком реляционной технологии, вам, скорее всего, не понадобится изучать реляционное исчисление. Оно никогда не используется в коммерческих системах обработки баз данных, и в его изуче­нии для наших целей нет необходимости. Таким образом, мы не будем обсуж­дать его в этой книге.

Хотя реляционное исчисление трудно для понимания и использования, его непроцедурный характер является преимуществом. Поэтому разработчики СУБД начали поиск других непроцедурных стратегий, который привел к появлению третьей и четвертой категорий языков манипулирования реляционными данными.

Языки, ориентированные на преобразования (transform-oriented languages), - это класс непроцедурных языков, которые преобразуют входные данные, имею­щие вид отношений, в результат, представляющий собой одно отношение. В этих языках имеются простые в использовании структуры, позволяющие указать дей­ствия, которые необходимо совершить с предоставленными данными. SQUARE, SEQUEL и SQL - это примеры языков, ориентированных на преобразования. Язык SQL будет подробно изучаться нами в главах 9, 12 и 13.

Четвертая категория языков манипулирования реляционными данными - это графические языки. К этой категории относятся запрос по образцу (Query-by-Example) и запрос из формы (Query-by-Form). В числе продуктов, поддерживаю­щих эту категорию, можно упомянуть Approach (фирмы Lotus) и Access. Поль­зователю выдается графическое представление одного отношения или более. Представление может иметь вид формы для ввода данных, электронной таблицы или какой-либо другой структуры. СУБД преобразует представление в соответ­ствующее отношение и формирует запросы (скорее всего, на SQL) от лица поль­зователя. После этого пользователи инициируют выполнение операторов DML, по они об этом не знают. Четыре категории языков манипулирования реляцион­ными данными:

    реляционная алгебра;

    реляционное исчисление;

    языки, ориентированные на преобразования (например, SQL);

    запрос по образцу, запрос из формы.

Интерфейсы языков манипулирования данными

В этом разделе мы рассмотрим четыре вида интерфейсов, с помощью которых осуществляется манипулирование информацией в базе данных.

Манипулирование данными посредством форм

В большинстве реляционных СУБД имеются средства для создания форм. Неко­торые формы генерируются автоматически при определении таблицы, другие должны создаваться разработчиком. Помощь в этом процессе может оказать ин­теллектуальный ассистент, присутствующий, например, в Access. Форма может иметь вид таблицы (электронной таблицы), в которой одновременно показыва­ются несколько строк отношения. Есть и другой вид форм, где каждая строка от­ношения представляется отдельно. На рис. 8.4 и 8.5 приведены примеры обоих типов форм для таблицы PATIENT с рис. 8.1. Большинство продуктов обеспечивают некоторую гибкость в обработке форм и отчетов. Например, строки для обработки могут выбираться по значениям столбцов и могут быть отсортированы. Таблица па рис. 8.4 отсортирована по значению поля AccountNumber.

Многие формы, генерируемые по умолчанию, содержат в себе данные только из одного отношения. Если нужно получить данные из двух или более отноше­ний, тогда, как правило, нужно создавать специальные формы с помощью средств СУБД. Такие средства позволяют создавать как многотабличные, так и много­строчные формы. Поскольку использование этих средств сильно зависит от кон­кретной СУБД, мы не будем рассматривать их далее.

Интерфейс языка запросов и обновлений

Второй тип интерфейса к базе данных - это язык запросов и обновлений (query/ update language), или просто язык запросов (query language). (Хотя большинство такого рода языков позволяют выполнять как запрос, так и обновление данных, их чаще всего называют языками запросов.) В этом случае пользователь вводит команды, которые указывают, какие действия необходимо произвести над базой данных. СУБД расшифровывает эти команды и выполняет предписанные дейст­вия. Рисунок 8.6 показывает, какие программы участвуют в обработке запроса.

Важнейшим из всех языков запросов является SQL. Чтобы дать вам пред­ставление о языках запросов, рассмотрим следующий SQL-оператор, который обрабатывает отношение PATIENT , показанное на рис. 8.1:

SELECT Name. DateOfBirth FROM PATIENT

WHERE Physician = "Levy"

Этот оператор извлекает из отношения PATIENT все строки, в которых атрибут Physician имеет значение " Levy ". Значения атрибутов Name и DateOf Birth из этих строк он затем помещает во вторую таблицу.

Хранимые процедуры

Со временем пользователи и разработчики баз данных обнаружили, что некото­рые последовательности команд SQL приходится выполнять регулярно. Единст­венное, что при этом меняется, - это значения, указываемые в предложении WHERE . Например, при ежемесячном начислении платежей выполняются одни и те же SQL-операторы, но с различной датой закрытия. Чтобы учесть эту потреб­ность, производители СУБД ввели так называемые хранимые процедуры (stored procedures). Такая процедура представляет собой набор SQL-операторов, кото­рый хранится в файле и может быть запущен на выполнение одной командой. Параметры, указываемые в предложении WHERE и т. д., могут передаваться при вызове процедуры. Примером может служить следующее:

DO BILLING STORED_PROCEDURE FOR BILLDATE = "9/1/2000"

Эта строка запускает хранимую процедуру под названием BILLING со значени­ем параметра BILLDATE , равным "9/1/2000".

По мере накопления разработчиками опыта выявилась одна проблема. SQL создавался как подъязык данных, и при этом не делалось попыток наделить его всеми элементами полноценного языка программирования. Однако некоторые из этих элементов были необходимы для написания хранимых процедур, и про­изводители СУБД создали расширенные версии SQL, включив в них допол­нительные возможности. Один такой язык, PL/SQL, был разработан для Oracle, а еще один, под названием TRANSACT-SQL, - для SQL Server. Более подробно об этих языках вы узнаете из глав 12 и 13.

Специальный тип хранимой процедуры - триггер (trigger) - вызывается СУБД при выполнении заданного условия. Например, в приложении, обрабаты­вающем заказы, разработчик должен создать триггер, который запускается в тех случаях, когда количество товара на складе оказывается ниже заданного предела (то есть пора заказывать товар у оптового поставщика). Более подробно о храни­мых процедурах вы узнаете из глав 12 и 13.

Интерфейс прикладных программ

Четвертый тип интерфейса доступа к данным - это доступ через прикладные программы, написанные на таких языках программирования, как COBOL, BASIC, Perl, Pascal и С++. Кроме того, некоторые прикладные программы пишутся на встроенных в используемые СУБД языках. Из таких языков программирования наибольшей известностью пользуется dBASE.

Есть два стиля интерфейса между прикладными программами и СУБД. Пер­вый из них характеризуется тем, что прикладные программы вызывают подпро­граммы из библиотеки функций, поставляемой в комплекте с СУБД. Например, чтобы считать строку из таблицы, прикладная программа вызывает функцию чтения СУБД и передает ей параметры, которые указывают нужную таблицу, требуемые столбцы, критерии выбора строки и т. п.

В некоторых случаях вместо вызовов функций используется объектно-ориен­тированный синтаксис. В приведенном ниже коде Access объектный указатель db устанавливается на открытую в данный момент базу данных, а объектный указа­тель rs ссылается на строки таблицы PATIENT ;

set db = currentdbC)

set rs = db.OpenRecordsetCPATIENT")

С помощью последнего указателя можно обращаться к свойствам откры­ того набора записей и запускать его методы. Например, с помощью свойства rs . AllowDeletions можно определить, могут ли быть удалены записи из набора за­писей PATIENT . Метод MoveFirst перемещает курсор на первую строку.

Второй, более старый тип интерфейса используется иногда в СУБД, предна­значенных для больших ЭВМ и серверов. Здесь производителем СУБД опреде­лен набор высокоуровневых команд доступа к данным. Эти команды, которые относятся к обработке базы данных и не являются частью какого-либо стандарт­ного языка, встраиваются в код прикладной программы.

Прикладная программа со встроенными командами передается на предвари­тельный компилятор, входящий в комплект СУБД. Он транслирует операторы доступа к данным в корректные вызовы функций и определяет области данных, которые будут совместно использоваться прикладными программами и СУБД. Предварительный компилятор также вставляет в программу код, поддерживаю­щий доступ к этим областям данных. Обработанная таким образом программа передается на языковой компилятор. На рис. 8 .7 показано взаимодействие про­грамм в этом процессе.

База данных -- организованная в соответствии с определёнными правилами и поддерживаемая в памяти компьютера совокупность данных, характеризующая актуальное состояние некоторой предметной области и используемая для удовлетворения информационных потребностей пользователей.

База данных -- совокупность данных, хранимых в соответствии со схемой данных, манипулирование которыми выполняют в соответствии с правилами средств моделирования данных.

База данных -- совокупность взаимосвязанных данных, совместно хранимых в одном или нескольких компьютерных файлах.

Существует множество других определений, отражающих скорее субъективное мнение тех или иных авторов о том, что означает этот термин в их понимании, однако общепризнанная единая формулировка отсутствует. Наиболее часто используются следующие отличительные признаки: База данных хранится и обрабатывается в вычислительной системе. Таким образом, любые внекомпьютерные хранилища информации (архивы, библиотеки, картотеки и т. п.) базами данных не являются.

Данные в базе данных логически структурированы (систематизированы) с целью обеспечения возможности их эффективного поиска и обработки в вычислительной системе.

Структурированность подразумевает явное выделение составных частей (элементов), связей между ними, а также типизацию элементов и связей, при которой с типом элемента (связи) соотносится определённая семантика и допустимые операции.

Из перечисленных признаков только первый является строгим, а другие допускает различные трактовки и различные степени оценки. Можно лишь установить некоторую степень соответствия требованиям к БД.

Многие специалисты указывают на распространённую ошибку, состоящую в некорректном использовании термина база данных вместо термина система управления базами данных. Эти понятия, следовательно, необходимо различать.

Базы данных необходимы для хранения и фильтрации информации, для её обработки и обмена. В целом, спектр применения достаточно широкий. По всему миру люди используют БД, начиная от простого пользователя-любителя, заканчивая крупнейшими мировыми корпорациями.

База данных - это хранилище для большого количества систематизированных данных, с которыми можно производить определённые действия. Под действиями понимается добавление, удаление, изменение, копирование, упорядочивание и прочее.

Все данные в БД можно представить в виде записей или объектов.

Для успешной работы с БД необходимы какие-то программные средства, при помощи которых можно было бы создавать и управлять БД. Для этого существуют Системы Управления Базами Данных (СУБД).

СУБД - совокупность языковых и программных средств, обеспечивающих создание, использование и ведение БД.

Существует два вида СУБД: локальные и сетевые.

Локальные - это СУБД, работающие на одном компьютере. К таким относятся dBase, FoxPro, Microsoft Access, Paradox и т.д.

Сетевые - это СУБД, позволяющие нескольким компьютерам использовать одну и ту же БД с помощью технологии клиент-сервер. Примером таких СУБД являются InterBase, Oracle, Microsoft SQL Server и т.д.Поскольку мы разбираем общие понятия, то расскажу немного о взаимосвязи данных.

Существует 4 типа взаимосвязи данных:

1) Один к одному

2) Один ко многим

3) Много к одному

4) Много ко многим

Вид взаимосвязи один к одному означает, что каждая запись одного объекта БД будет указывать на единственную запись другого объекта.

Один ко многим означает, что одной записи объекта БД будет соответствовать несколько записей других объектов.

Много к одному означает, что нескольким записям объектов БД будет соответствовать одна запись другого объекта.

Много ко многим устанавливается между двумя типами объектов БД.

Характеристика баз данных

База данных - это реализованная с помощью компьютера информационная структура (модель), отражающая состояние объектов и их отношения.

Следует учесть, что это определение не является единственно возможным. Информатика в отношении определений чаще всего не похожа на математику с ее полной однозначностью. Если подойти к понятию “база данных” с чисто пользовательской точки зрения, то возникает другое определение: база данных - совокупность хранимых операционных данных некоторого предприятия. Все дело в том, какой аспект доминирует в рассмотрении; в данной главе первое из определений более уместно.

Опыт использования баз данных позволяет выделить общий набор их рабочих характеристик:

* полнота - чем полнее база данных, тем вероятнее, что она содержит нужную информацию (однако, не должно быть избыточной информации);

* правильная организация - чем лучше структурирована база данных, тем легче в ней найти необходимые сведения;

* актуальность - любая база данных может быть точной и полной, если она постоянно обновляется, т.е. необходимо, чтобы база данных в каждый момент времени полностью соответствовала состоянию отображаемого ею объекта;

* удобство для использования - база данных должна быть проста и удобна в использовании и иметь развитые методы доступа к любой части информации.

Соответственно возможностям организации реляционных, иерархических и сетевых информационых структур, существуют и аналогичные виды баз данных.

Основные типы баз данных

1) Иерархические

2) Сетевые

3) Реляционные

Иерархические базы данных

Иерархические БД применялись в начале 60-х годов. Они построены в виде обычного дерева. Данные делятся на 2 категории: главные и подчинённые. Таким образом, один тип объекта является главным, а остальные, находящиеся на более низких ступенях иерархии, - подчинёнными.БД, организованные по такому принципу, удобно использовать в тех случаячх, когда информамция упорядочена соответствующим образом.

Сетевые базы данных

Сетевые БД начали применятся практически одновременно с иерархическими. В этих БД любой объект может быть как главным, так и подчинённым.

В использовании довольно сложно реализовать представление данных в таком виде, поэтому от этого типа тоже отказались.

Реляционные базы данных

Именно реляционные БД используются в повседневной жизни. (от англ. relation - отношение). Такой тип БД представляется собой несколько взаимосвязанных таблиц прямоугольной формы. В которых собственное есть поля, ключи, записи, аторибуты и прочее и прочее.

Введение

Глава1. Основы баз данных

1.1.Классификация баз данных

1.3Модели описания баз данных

1.4. Основы работы настольных СУБД

1.5.Требования и стандарты, предъявляемые к базам данных

Глава 2. Работа с базой данных Microsoft Access

2.1. Основы работы настольной СУБД Microsoft Access

2.2. Работа с базой данных Microsoft Access

Заключение

Список использованной литературы

Введение

Потоки информации, циркулирующие в мире, который нас окружает, огромны. Во

времени они имеют тенденцию к увеличению. Поэтому в любой организации, как

большой, так и маленькой, возникает проблема такой организации управления

данными, которая обеспечила бы наиболее эффективную работу. Некоторые

организации используют для этого шкафы с папками, но большинство предпочитают

компьютеризированные способы – базы данных, позволяющие эффективно хранить,

структурировать и систематизировать большие объемы данных. И уже сегодня без баз

данных невозможно представить работу большинства финансовых, промышленных,

торговых и прочих организаций. Не будь баз данных, они бы просто захлебнулись в

информационной лавине.

Существует много веских причин перевода существующей информации на компьютерную основу. Сейчас стоимость хранения информации в файлах ЭВМ дешевле, чем на бумаге. Базы данных позволяют хранить, структурировать информацию и извлекать

оптимальным для пользователя образом. Данная тема актуальна в настоящее время, т.к. использование клиент/серверных технологий позволяют сберечь значительные средства, а главное и время для получения необходимой информации, а также упрощают доступ и ведение, поскольку они основываются на комплексной обработке данных и централизации их хранения. Кроме того ЭВМ позволяет хранить любые форматы данных, текст, чертежи, данные в рукописной форме, фотографии, записи голоса и т.д.

Для использования столь огромных объемов хранимой информации, помимо развития

системных устройств, средств передачи данных, памяти, необходимы средства

обеспечения диалога человек - ЭВМ, которые позволяют пользователю вводить

или принимать решения на основании хранимых данных. Для обеспечения этих функций

созданы специализированные средства – системы управления базами данных (СУБД).

Целью данной работы является раскрыть понятие базы данных и системы управления базами данных, а также рассмотреть на конкретном примере работу настольной СУБД.

1.1.Классификация баз данных

База данных – это информационная модель предметной области, совокупность взаимосвязанных, хранящихся вместе данных при наличии такой минимальной избыточности, которая допускает их использование оптимальным образом для одного или нескольких приложений. Данные (файлы) хранятся во внешней памяти и используются в качестве входной информации для решения задач.

СУБД - это программа, с помощью которой реализуется централизованное управление данными, хранимыми в базе, доступ к ним, поддержка их в актуальном состоянии.

Системы управления базами данных можно классифицировать по способу установления связей между данными, характеру выполняемых ими функций, сфере применения, числу поддерживаемых моделей данных, характеру используемого языка общения с базой данных и другим параметрам.

Классификация СУБД:

· по выполняемым функциям СУБД подразделяются на операционные и информационные;

· по сфере применения СУБД подразделяются на универсальные и проблемно-ориентированные;

· по используемому языку общения СУБД подразделяются на замкнутые, имеющие собственные самостоятельные языки общения пользователей с базами данных, и открытые, в которых для общения с базой данных используется язык программирования, расширенный операторами языка манипулирования данными;

· по числу поддерживаемых уровней моделей данных СУБД подразделяются на одно-, двух-, трехуровневые системы;

· по способу установления связей между данными различают реляционные, иерархические и сетевые базы данных;

· по способу организации хранения данных и выполнения функций обработки базы данных подразделяются на централизованные и распределенные.

Системы централизованных баз данных с сетевым доступом предполагают две основные архитектуры – файл-сервер или клиент-сервер.

Архитектура файл-сервер. Предполагает выделение одной из машин сети в качестве центральной (главный сервер файлов), где хранится совместно используемая централизованная база данных. Все другие машины исполняют роль рабочих станций. Файлы базы данных в соответствии с пользовательскими запросами передаются на рабочие станции, где в основном и производится их обработка. При большой интенсивности доступа к одним и тем же данным производительность информационной системы падает.

Архитектура клиент-сервер. Эта модель взаимодействия компьютеров в сети для современных СУБД фактически стала стандартом. Каждый из подключенных к сети и составляющих эту архитектуру компьютеров играет свою роль: сервер владеет и распоряжается информационными ресурсами системы, клиент имеет возможность пользоваться ими. Помимо хранения централизованной базы данных сервер базы данных обеспечивает выполнение основного объема обработки данных. Запрос на данные, выдаваемый клиентом (рабочей станцией), порождает поиск и извлечение данных на сервере. Извлеченные данные транспортируются по сети от сервера к клиенту. Спецификой архитектуры клиент-сервер является использование языка запроса SQL.

Сервер базы данных представляет собой СУБД, параллельно обрабатывающую запросы, поступившие со всех рабочих станций. Как правило, клиент и сервер территориально отделены друг от друга, и в этом случае они образуют систему распределенной обработки данных.

1.2. Функциональные возможности СУБД

Характеристиками СУБД являются:

· производительность;

· обеспечение целостности данных на уровне баз данных;

· обеспечение безопасности данных;

· возможность работы в многопользовательских средах;

· возможность импорта и экспорта данных;

· обеспечение доступа к данным с помощью языка SQL;

· возможность составления запросов;

· наличие инструментальных средств разработки прикладных программ.

Производительность СУБД оценивается:

· временем выполнения запросов;

· скоростью поиска информации;

· временем импортирования баз данных из других форматов;

· скоростью выполнения операций (таких как обновление, вставка, удаление);

· временем генерации отчета и другими показателями.

· Безопасность данных достигается:

· шифрованием прикладных программ;

· шифрованием данных;

· защитой данных паролем;

· ограничением доступа к базе данных (к таблице, к словарю и т.д.).

Обеспечение целостности данных подразумевает наличие средств, позволяющих удостовериться, что информация в базе данных всегда остается корректной и полной. Целостность данных должна обеспечиваться независимо от того, каким образом данные заносятся в память (в интерактивном режиме, посредством импорта или с помощью специальной программы). Используемые в настоящее время СУБД обладают средствами обеспечения целостности данных и надежной безопасности.

Система управления базами данных управляет данными во внешней памяти, обеспечивает надежное хранение данных и поддержку соответствующих языков базы данных. Важной функцией СУБД является функция управления буферами оперативной памяти. Обычно СУБД работают с базами данных больших размеров, часто превышающими размеры оперативной памяти ЭВМ. В развитых СУБД поддерживается свой набор буферов оперативной памяти с собственной дисциплиной их замены.

Наибольшее распространение в настоящее время получили системы управления базами данных Microsoft Access и Oracle.

Этапами работы в СУБД являются:

· создание структуры базы данных, т.е. определение перечня полей, из которых состоит каждая запись таблицы, типов и размеров полей (числовой, текстовый, логический и т.д.), определение ключевых полей для обеспечения необходимых связей между данными и таблицами;

· ввод и редактирование данных в таблицах баз данных с помощью представляемой по умолчанию стандартной формы в виде таблицы и с помощью экранных форм, специально создаваемых пользователем;

· обработка данных, содержащихся в таблицах, на основе запросов и на основе программы;

· вывод информации из ЭВМ с использованием отчетов и без использования отчетов.

Реализуются названные этапы работы с помощью различных команд.

Централизованная база данных обеспечивает простоту управления, улучшенное использование данных на местах при выполнении дистанционных запросов, более высокую степень одновременности обработки, меньшие затраты на обработку.

Распределенная база данных предполагает хранение и выполнение функций управления данными в нескольких узлах и передачу данных между этими узлами в процессе выполнения запросов. В такой базе данных не только различные ее таблицы могут храниться на разных компьютерах, но и разные фрагменты одной таблицы. При этом для пользователя не имеет значения как организовано хранение данных, он работает с такой базой, как с централизованной.

1.3.Модели описания баз данных

Известны три типа моделей описания баз данных – иерархическая, сетевая и реляционная, основное различие между которыми состоит в характере описания взаимосвязей и взаимодействия между объектами и атрибутами базы данных.

Иерархическая модель предполагает использование для описания базы данных древовидных структур, состоящих из определенного числа уровней. «Дерево» представляет собой иерархию элементов, называемых узлами. Под элементами понимается список, совокупность, набор атрибутов, элементов, описывающих объекты.

Эта статья содержит краткие сведения о базах данных: что это, чем они могут быть полезны, каковы функции их отдельных элементов. Здесь используется терминология, свойственная Microsoft Access, однако описываемые понятия применимы по отношению к любым базам данных.

В этой статье:

Что представляет собой база данных?

Базы данных - это инструмент для сбора и структурирования информации. В базе могут храниться данные о людях, товарах, заказах и о многом другом. Многие базы данных изначально представляют собой небольшой список в текстовом редакторе или электронной таблице. По мере увеличения объема данных в списке постепенно появляются несоответствия и излишняя информация. Информация, отображенная в виде списка, становится непонятной. Кроме того, ограничены способы, с помощью которых можно искать и отображать подмножества данных. Как только начинают появляться эти проблемы, мы рекомендуем перенести всю информацию в базу данных, созданную в системе управления базами данных (СУБД), такой как Access.

Компьютерная база данных - это хранилище объектов. В одной базе данных может быть больше одной таблицы. Например, система отслеживания складских запасов, в которой используются три таблицы, - это не три базы данных, а одна. В базе данных Access (если ее специально не настраивали для работы с данными или кодом, принадлежащими другому источнику) все таблицы хранятся в одном файле вместе с другими объектами, такими как формы, отчеты, макросы и модули. Для файлов баз данных, созданных в формате Access 2007 (который также используется в Access 2016, Access 2013 и Access 2010), используется расширение ACCDB, а для баз данных, созданных в более ранних версиях Access, - MDB. С помощью Access 2016, Access 2013, Access 2010 и Access 2007 можно создавать файлы в форматах более ранних версий приложения (например, Access 2000 и Access 2002–2003).

Использование Access позволяет:

    добавлять новую информацию в базу данных, например новый артикул складских запасов;

    изменять информацию, уже находящуюся в базе, например перемещать артикул;

    удалять информацию, например если артикул был продан или утилизирован;

    упорядочивать и просматривать данные различными способами;

    обмениваться данными с другими людьми с помощью отчетов, сообщений электронной почты, внутренней сети или Интернета.

Элементы базы данных Access

Ниже приведены краткие описания элементов стандартной базы данных Access.

Таблицы

Таблица базы данных похожа на электронную таблицу - и там, и там информация расположена в строках и столбцах. Поэтому импортировать электронную таблицу в таблицу базы данных обычно довольно легко. Основное различие заключается в том, как данные структурированы.

Чтобы база данных была как можно более гибкой и чтобы в ней не появлялось излишней информации, данные должны быть структурированы в виде таблиц. Например, если речь идет о таблице с информацией о сотрудниках компании, больше одного раза вводить данные об одном и том же сотруднике не нужно. Данные о товарах должны храниться в отдельной таблице, как и данные о филиалах компании. Этот процесс называется нормализацией .

Строки в таблице называются записями. В записи содержатся блоки информации. Каждая запись состоит по крайней мере из одного поля. Поля соответствуют столбцам в таблице. Например, в таблице под названием "Сотрудники" в каждой записи находится информация об одном сотруднике, а в каждом поле - отдельная категория информации, например имя, фамилия, адрес и т. д. Поля выделяются под определенные типы данных, например текстовые, цифровые или иные данные.

Записи и поля можно описать по-другому. Представьте старый библиотечный карточный каталог. Каждой карточке в шкафу соответствует запись в базе данных. Блоки информации на карточке (автор, название книги и т. д.) соответствуют полям в базе данных.

Дополнительные сведения о таблицах см. в статье Общие сведения о таблицах .

Формы

С помощью форм создается пользовательский интерфейс для ввода и редактирования данных. Формы часто содержат кнопки команд и другие элементы управления, предназначенные для выполнения различных функций. Можно создать базу данных, не используя формы, если просто отредактировать уже имеющуюся информацию в таблицах Access. Тем не менее, большинство пользователей предпочитает использовать формы для просмотра, ввода и редактирования информации в таблицах.

С помощью кнопок команд задаются данные, которые должны появляться в форме, открываются прочие формы и отчеты и выполняется ряд других задач. Например, есть "Форма клиента", в которой вы работаете с данными о клиентах. И в ней может быть кнопка, нажатием которой открывается форма заказа, с помощью которой вы вносите информацию о заказе, сделанном определенным клиентом.

Формы также дают возможность контролировать взаимодействие пользователей с информацией базы данных. Например, можно создать форму, в которой отображаются только определенные поля и с помощью которой можно выполнять только ограниченное число операций. Таким образом обеспечивается защита и корректный ввод данных.

Дополнительные сведения о формах см. в статье Формы .

Отчеты

Отчеты используются для форматирования, сведения и показа данных. Обычно отчет позволяет найти ответ на определенный вопрос, например "Какую прибыль в этом году принесли нам наши клиенты?" или "В каких городах живут наши клиенты?" Отчеты можно форматировать таким образом, чтобы информация отображалась в наиболее читабельном виде.

Отчет можно сформировать в любое время, и в нем всегда будет отображена текущая информация базы данных. Отчеты обычно форматируются таким образом, чтобы их можно было распечатать, но их также можно просматривать на экране, экспортировать в другие программы или вкладывать в сообщения электронной почты.

Запросы

Запросы могут выполнять множество функций в базе данных. Одна из их основных функций - находить информацию в таблицах. Нужная информация обычно содержится в нескольких таблицах, но, если использовать запросы, ее можно просматривать в одной. Кроме того, запросы дают возможность фильтровать данные (для этого задаются критерии поиска), чтобы отображались только нужные записи.

Используются и так называемые "обновляемые" запросы, которые дают возможность редактировать данные, найденные в основных таблицах. При работе с обновляемым запросом помните, что правки вносятся в основные таблицы, а не только в таблицу запроса.

Есть два основных вида запросов: запросы на выборку и на изменение. Запрос на выборку только находит данные и предоставляет к ним доступ. Результаты такого запроса можно просмотреть на экране, распечатать или скопировать в буфер обмена, а также использовать в качестве источника записей для формы или отчета.

С помощью запроса на изменение, как видно из названия, можно выполнять определенные операции с найденными данными: создавать таблицы, добавлять информацию в уже существующие таблицы, а также обновлять или удалять данные.

Дополнительные сведения о запросах см. в статье Знакомство с запросами .

Макросы

Макросы в Access - это нечто вроде упрощенного языка программирования, с помощью которого можно сделать базу данных более функциональной. Например, если к кнопке команды в форме добавить макрос, то он будет запускаться всякий раз при нажатии этой кнопки. Макросы состоят из команд, с помощью которых выполняются определенные задачи: открываются отчеты, выполняются запросы, закрывается база данных и т. д. Используя макросы, можно автоматизировать большинство операций, которые в базе данных вы делаете вручную, и, таким образом, значительно сэкономить время.

Дополнительные сведения о макросах см. в статье Общие сведения о программировании в Access .

Модули

Подобно макросам, модули - это объекты, с помощью которых базу данных можно сделать более функциональной. Но если макросы в Access составляются путем выбора из списка макрокоманд, модули создаются на языке Visual Basic для приложений (VBA). Модули представляют собой наборы описаний, инструкций и процедур. Существуют модули класса и стандартные модули. Модули класса связаны с конкретными формами или отчетами и обычно включают в себя процедуры, которые работают только с этими формами или отчетами. В стандартных модулях содержатся общие процедуры, не связанные ни с каким объектом. Стандартные модули, в отличие от модулей класса, перечисляются в списке Модули в области навигации.

Каждый владелец сайта знает, что для правильного функционирования сайта нужны не только файлы с кодом страниц, но и базы данных. Для взаимодействия с базами данных используются системы управления базами данных (СУБД). В данной статье я хочу рассказать о базах данных и СУБД, о том, какие разновидности существуют, и чем они отличаются друг от друга.

База данных

База данных представляет собой определенный набор данных, которые, как правило, связаны объединяющим признаком либо свойством (или несколькими). Эти данные упорядочены, например, по алфавиту. Обилие различных данных, которые могут быть помещены в единую базу, ведет к множеству вариаций того, что может быть записано: личные данные пользователей, записи, даты, заказы и так далее. К примеру, если у вас интернет-магазин, то база данных вашего сайта может содержать прайс-листы, каталог товаров или услуг, отчеты, статистику и информацию о клиентах.

В первую очередь это удобно тем, что информацию можно быстро заносить в базу данных и так же быстро ее извлекать при необходимости. Если на заре развития web-разработки все необходимые данные нужно было прописывать в коде страницы, то теперь такая необходимость отсутствует - нужная информация может быть запрошена из базы данных при помощи скриптов. Специальные алгоритмы хранения и поиска информации, которые используются в базах данных, позволяют находить нужные сведения буквально за доли секунд - а при работе в виртуальном пространстве скорость работы ресурса важна как ничто другое.

Немаловажной является и взаимосвязь информации в базе данных: изменение одной строчки может привести к значительным изменениям других строк. Работать с данными таким образом гораздо проще и быстрее, чем если бы изменения касались только одного места в базе данных.

Однако это не значит, что база данных обязательно должна быть у каждого сайта - к примеру, если у вас сайт-визитка, и никакой новой информации вы на сайте не размещаете, то база данных вам будет попросту не нужна. Самый легкий способ сделать простой сайт - создать .

Система управления базами данных

Как можно догадаться уже из названия, система управления базами данных (или сокращенно СУБД) представляет собой программное обеспечение, которое используется для создания и работы с базами данных. Главная функция СУБД - это управление данными (которые могут быть как во внешней, так и в оперативной памяти). СУБД обязательно поддерживает языки баз данных, а также отвечает за копирование и восстановление данных после каких-либо сбоев.

Что касается классификации баз данных, то тут возможны различные варианты.
К примеру, можно разделить базы по модели данных : иерархические (имеют древовидную структуру), сетевые (по своей структуре похожи на иерархические), реляционные (используются для управления реляционными базами данных), объектно-ориентированные (используются для объектной модели данных) и объектно-реляционные (некое слияние реляционного и объектно-ориентированного вида баз данных).

Либо, если деление идет по тому, где размещается СУБД , их можно разделить на локальные - вся СУБД размещается на одном компьютере, и распределенные - части системы управления базами данных находятся на нескольких компьютерах.

Файл-серверные, клиент-серверные и встраиваемые - такие названия носят СУБД, если разделить их по способу доступа к базам данных . Файл-серверные СУБД на данный момент уже считаются устаревшими; в основном идет использование клиент-серверных (СУБД, которые располагаются на сервере вместе с самой базой данных) и встраиваемых (не требующих отдельной установки) систем.

Информация, которая хранится в базах данных, не ограничивается только текстовыми или графическими файлами - современные версии СУБД поддерживают также форматы аудио и видеофайлов.

В этой статье я сделаю упор на СУБД, которые используются для хранения информации различных веб-ресурсов.

Зачем же нужны эти СУБД? Помимо основной своей функции - хранения и систематизации огромного количества информации - они позволяют быстро обрабатывать клиентские запросы и выдавать свежую и актуальную информацию.

Это касается и изменений, которые вносите вы - вместо того, чтобы менять информацию в каждом файле сайта, вы можете поменять ее в базе данных, и тогда на каждой странице сразу же будет отображена корректная информация.

Реляционные СУБД и язык SQL

Реляционные и объектно-реляционные СУБД являются одними из самых распространенных систем. Они представляют собой таблицы, у которых каждый столбец (который называется “field” или «поле») упорядочен и имеет определенное уникальное название. Последовательность строк (их называют “records” или «записи») определяется последовательностью ввода информации в таблицу. При этом обрабатывание столбцов и строк может происходить в любом порядке. Таблицы с данными связаны между собой специальными отношениями, благодаря чему с данными из разных таблиц можно работать - к примеру, объединять их - при помощи одного запроса.

Для управления реляционными базами данных применяется особый язык программирования - SQL. Сокращение расшифровывается как “Structured query language”, в переводе на русский «язык структурированных запросов».

Команды, которые используются в SQL, делятся на те, которые манипулируют данными, те, которые определяют данные, и те, которые управляют данными.

Схема работы с базой данных выглядит следующим образом:


MySQL

MySQL является одной из самых популярных и распространенных СУБД, которая используется во многих компаниях (например, Facebook, Wikipedia, Twitter, LinkedIn, Alibaba и других). MySQL представляет собой реляционную СУБД, которая относится к свободному программному обеспечению: она распространяется на условиях GNU Public License. Как правило, эту систему управления базами данных определяют как хорошую, быструю и гибкую систему, рекомендованную к применению в небольших или средних проектах. У MySQL есть множество различных преимуществ. Например, она поддерживает различные типы таблиц: как известные MyISAM и InnoDB, так и более экзотичные HEAP и MERGE; кроме того, количество поддерживаемых типов постоянно растет. MySQL выполняет все команды быстро - возможно, сейчас это самая быстрая СУБД из всех существующих. С этой системой управления базами данных может одновременно работать неограниченное количество пользователей, а число строк в таблицах может быть равно 50 миллионам.

Так как в сравнении с некоторыми другими СУБД MySQL поддерживает меньшее количество возможностей, то и работать с ней значительно проще, чем, к примеру, с PostgreSQL, о которой будет рассказано ниже.

Первая версия MySQL вышла в далеком 1995 году, и с тех пор состоялось несколько последующих релизов, каждый из которых нес в себе значительные изменения.

Для работы с MySQL используется не только текстовый, но и графический режим. Это возможно благодаря приложению phpMyAdmin: для работы в приложении вам даже не нужно будет знать SQL-команды, а администрировать свою базу данных можно прямо через браузер.

В целом можно отметить, что MySQL - это выбор тех, кому необходима СУБД для проекта небольшого или среднего размера, быстрая и удобная в работе и без сложностей с администрированием.


PostgreSQL

Эта свободно распространяемая система управления базами данных относится к объектно-реляционному типу СУБД. Как и в случае с MySQL, работа с PostgreSQL основывается на языке SQL, однако, в отличие от MySQL, PostgreSQL поддерживает стандарт SQL-2011. Эта СУБД не имеет ограничений ни по максимальному размеру базы данных, ни по максимуму записей или индексов в таблице.

Если говорить о преимуществах PostgreSQL, то, безусловно, это надежность транзакций и репликаций, возможность наследования и легкая расширяемость. PostgreSQL поддерживает различные расширения и варианты языков программирования, такие как PL/Perl, PL/Python и PL/Java. Также есть возможность загружать C-совместимые модули.

Многие отмечают, что в отличие от MySQL данная СУБД имеет хорошую и подробную документацию, которая дает ответы практически на все вопросы.

О том, что это более масштабная, чем MySQL, СУБД, говорит и тот факт, что PostgreSQL периодически сравнивают с такой мощной системой управления данных, как Oracle.

Все это позволяет говорить о PostgreSQL как об одной из самых продвинутых СУБД на данный момент.


SQLite

На данный момент это одна из самых компактных СУБД; также она является встраиваемой и реляционной. SQLite позволяет хранить все данные в одном файле и, благодаря своему небольшому объему, отличается завидным быстродействием. SQLite значительно отличается от MySQL и PostgreSQL своей структурой: движок и интерфейс этой СУБД находятся в одной библиотеке - и именно это позволяет выполнять все запросы очень быстро. Другие СУБД (MySQL, PostgreSQL, Oracle и т.д.) используют парадигму клиент-сервер, когда взаимодействие происходит через сетевой протокол.

Из недостатков можно отметить отсутствие системы пользователей и возможности увеличения производительности.

SQLite можно посоветовать к использованию в проектах, где нужно иметь возможность быстро перенести приложение, и нет необходимости в масштабируемости.


Oracle

Эта СУБД относится к объектно-реляционному типу. Название произошло от названия разработавшей эту систему фирмы Oracle. Наравне с SQL СУБД использует процедурное расширение под названием PL/SQL, а также язык Java.

Oracle - это система, отличающаяся стабильностью уже не один десяток лет, поэтому ее выбирают крупные корпорации, для которых важна надежность восстановления после сбоев, отлаженная процедура бэкапа, возможность масштабирования и другие ценные возможности. К тому же эта СУБД обеспечивает отличную безопасность и эффектную защиту данных.

В отличие от других СУБД, стоимость покупки и использования Oracle достаточно высока, и именно это зачастую является значимым препятствием к ее использованию в небольших фирмах. Вероятно, именно это также является причиной того, что в рейтинге СУБД на 2016 год в России Oracle находится лишь на 6-м месте.



MongoDB

Эта СУБД отличается тем, что она предназначена для хранения иерархических структур данных, и поэтому ее называют документоориентированной (она представляет собой документное хранилище без использования таблиц или схем). MongoDB имеет открытый исходный код.

Используя идентификатор, вы можете производить быстрые операции над объектом; эта СУБД хорошо показывает себя и при сложных взаимодействиях. В первую очередь речь идет о быстродействии - в некоторых случаях приложение, написанное на MongoDB, будет работать быстрее, чем такое же приложение, использующее SQL, т.к. MongoDB относится к классу СУБД NoSQL и вместо SQL пользуется объектным языком запросов, который значительно легче SQL.

Однако этот язык имеет и свои ограничения, а поэтому MongoDB следует использовать в случаях, когда нет необходимости в сложных и нетривиальных выборках.

Вместо заключения

Выбор СУБД - это важный момент при создании своего ресурса. Отталкивайтесь от своих задач и возможностей, пробуйте и экспериментируйте, чтобы найти именно тот вариант, который будет наиболее подходящим.