Процессоры. Конфигурации стендов и ПО. Перебор с четырьмя ядрами

integrated heat spreader ) кристаллом, установленную на плату-переходник (англ. interposer ) с 423 штырьковыми контактами (размеры корпуса - 53,3×53,3 мм) . Между контактами на обратной стороне платы-переходника установлены SMD -элементы.

Поздние процессоры на ядре Willamette, процессоры Pentium 4 на ядре Northwood, часть процессоров Pentium 4 Extreme Edition на ядре Gallatin и ранние процессоры на ядре Prescott с по 2005 год выпускались в корпусе типа FC-mPGA2 , представлявшем собой подложку из органического материала с закрытым теплораспределительной крышкой кристаллом с лицевой стороны и 478 штырьковыми контактами, а также SMD-элементами, с обратной (размеры корпуса - 35×35 мм).

Часть процессоров Pentium 4 Extreme Edition на ядре Gallatin, поздние процессоры на ядре Prescott, процессоры на ядрах Prescott-2M и Cedar Mill c весны по осень 2007 года выпускались в корпусе типа FC-LGA4 , представлявшем собой подложку из органического материала с закрытым теплораспределительной крышкой кристаллом с лицевой стороны и 775 контактными площадками с обратной (размеры корпуса - 37,5×37,5 мм). Как и в двух предыдущих типах корпусов, между контактами установлены SMD-элементы.

Часть мобильных процессоров на ядре Northwood выпускалась в корпусе типа FC-mPGA . Основным отличием этого типа корпуса от FC-mPGA2 является отсутствие теплораспределительной крышки.

Маркировка процессоров, имеющих теплораспределительную крышку, нанесена на её поверхность, а у остальных процессоров маркировка нанесена на две наклейки, расположенные на подложке с двух сторон от кристалла.

Особенности архитектуры

Конвейер процессора на ядре Northwood

Конвейер состоит из 20 стадий:

  • TC, NI (1, 2) - поиск микроопераций, на которые указывает последняя выполненная инструкция.
  • TR, F (3, 4) - выборка микроопераций.
  • D (5) - перемещение микроопераций.
  • AR (6-8) - резервирование ресурсов процессора, переименование регистров.
  • Q (9) - постановка микроопераций в очереди.
  • S (10-12) - изменение порядка исполнения.
  • D (13-14) - подготовка к исполнению, выборка операндов.
  • R (15-16) - чтение операндов из регистрового файла.
  • E (17) - исполнение.
  • F (18) - вычисление флагов.
  • BC, D (19, 20) - проверка корректности результата.

Архитектура NetBurst (рабочее наименование - P68 ), лежащая в основе процессоров Pentium 4, разрабатывалась компанией Intel, в первую очередь, с целью достижения высоких тактовых частот процессоров. NetBurst не является развитием архитектуры , использовавшейся в процессорах Pentium III , а представляет собой принципиально новую по сравнению с предшественниками архитектуру. Характерными особенностями архитектуры NetBurst являются гиперконвейеризация и применение кэша последовательностей микроопераций вместо традиционного кэша инструкций. АЛУ процессоров архитектуры NetBurst также имеет существенные отличия от АЛУ процессоров других архитектур.

Основными недостатками длинного конвейера являются уменьшение удельной производительности по сравнению с коротким конвейером (за один такт выполняется меньшее количество инструкций), а также серьёзные потери производительности при некорректном выполнении инструкций (например, при неверно предсказанном условном переходе или кэш-промахе).

Для минимизации влияния неверно предсказанных переходов, в процессорах архитектуры NetBurst используются увеличенный по сравнению с предшественниками буфер предсказания ветвлений (англ. branch target buffer ) и новый алгоритм предсказания ветвлений, что позволило достичь высокой точности предсказания (около 94 %) в процессорах на ядре Willamette. В последующих ядрах механизм предсказания ветвлений подвергался модернизациям, повышавшим точность предсказания.

Кэш последовательностей микроопераций (англ. Execution Trace Cache )

Процессоры архитектуры NetBurst, как и большинство современных x86 -совместимых процессоров, являются CISC -процессорами с RISC -ядром: перед исполнением сложные инструкции x86 преобразуются в более простой набор внутренних инструкций (микроопераций), что позволяет повысить скорость обработки команд. Однако, вследствие того, что инструкции x86 имеют переменную длину и не имеют фиксированного формата, их декодирование связано с существенными временными затратами.

В связи с этим, при разработке архитектуры NetBurst было принято решение отказаться от традиционной кэш-памяти инструкций первого уровня, хранящей команды x86, в пользу кэша последовательностей микроопераций, хранящего последовательности микроопераций в соответствии с предполагаемым порядком их исполнения. Такая организация кэш-памяти позволила также снизить временные затраты на выполнение условных переходов и на выборку инструкций.

АЛУ и механизм ускоренного выполнения целочисленных операций (англ. Rapid Execution Engine )

Так как основной целью разработки архитектуры NetBurst было повышение производительности за счёт достижения высоких тактовых частот, возникла необходимость увеличения темпа выполнения основных целочисленных операций. Для достижения этой цели АЛУ процессоров архитектуры NetBurst разделено на несколько блоков: «медленное АЛУ», способное выполнять большое количество целочисленных операций, и два «быстрых АЛУ», выполняющих только простейшие целочисленные операции (например, сложение). Выполнение операций на «быстрых АЛУ» происходит последовательно в три этапа: сначала вычисляются младшие разряды результата, затем старшие, после чего могут быть получены флаги.

«Быстрые АЛУ», обслуживающие их планировщики, а также регистровый файл синхронизируются по половине такта процессора, таким образом, эффективная частота их работы вдвое превышает частоту ядра. Эти блоки образуют механизм ускоренного выполнения целочисленных операций.

В процессорах на ядрах Willamette и Northwood «быстрые АЛУ» способны выполнять лишь те операции, которые обрабатывают операнды в направлении от младших разрядов к старшим. При этом результат вычисления младших разрядов может быть получен через половину такта. Таким образом, эффективная задержка составляет половину такта. В процессорах на ядрах Willamette и Northwood отсутствуют блоки целочисленного умножения и сдвига, а данные операции выполняются другими блоками (в частности, блоком инструкций MMX).

В процессорах на ядрах Prescott и Cedar Mill присутствует блок целочисленного умножения, а «быстрые АЛУ» способны выполнять операции сдвига. Эффективная задержка операций, исполняемых «быстрыми АЛУ», возросла по сравнению с процессорами на ядре Northwood и составляет один такт.

Система повторного исполнения микроопераций (англ. Replay System )

Основной задачей планировщиков микроопераций является определение готовности микроопераций к исполнению и передача их на конвейер. Вследствие большого числа стадий конвейера, планировщики вынуждены отправлять микрооперации на исполнительные блоки до того, как завершится выполнение предыдущих микроопераций. Это обеспечивает оптимальную загрузку исполнительных блоков процессора и позволяет избежать потери производительности в том случае, если данные, необходимые для выполнения микрооперации, находятся в кэш-памяти первого уровня, регистровом файле, или могут быть переданы минуя регистровый файл.

При определении готовности новых микроопераций к передаче на исполнительные блоки, планировщику необходимо определить время выполнения тех предыдущих микроопераций, результатом которых являются данные, необходимые для выполнения новых микроопераций. В том случае, если время выполнения заранее не определено, планировщик для его определения использует наименьшее время её выполнения.

Если оценка времени, необходимого для получения данных, оказалась верной, микрооперация выполняется успешно. В том случае, если данные не были получены вовремя, проверка корректности результата заканчивается неудачей. При этом микрооперация, результат выполнения которой оказался некорректен, ставится в специальную очередь (англ. replay queue ), а затем вновь направляется планировщиком на исполнение.

Несмотря на то, что повторное исполнение микроопераций приводит к значительным потерям производительности, применение данного механизма позволяет в случае ошибочного исполнения микроопераций избежать останова и сброса конвейера, который приводил бы к более серьёзным потерям.

Модели

Процессор с кодовым именем Willamette впервые появился в официальных планах компании Intel в октябре 1998 года , хотя его разработка и началась вскоре после завершения работ над процессором Pentium Pro , вышедшим в конце 1995 года , а название «Willamette» упоминалось в анонсах 1996 года . Необходимость в проектировании нового процессора архитектуры IA-32 появилась в связи со сложностями, возникшими при разработке 64-битного процессора Merced , которому в соответствии с планами компании Intel была отведена роль преемника процессоров архитектуры : разработка, осуществлявшаяся с 1994 года , сильно затянулась, а производительность Merced при выполнении инструкций x86 оказалась неудовлетворительной по сравнению с процессорами, для замены которых он предназначался .

Предполагалось, что Willamette выйдет во второй половине 1998 года , однако, в результате многочисленных задержек анонс был перенесён на конец 2000 года . В феврале 2000 года на форуме разработчиков Intel (IDF Spring 2000) был продемонстрирован компьютер, основой которого служил инженерный образец процессора Willamette, получившего наименование «Pentium 4», работающий на частоте 1,5 ГГц .

Первые серийные процессоры Pentium 4 на ядре , анонсированные 20 ноября 2000 года, производились по 180 нм технологии. Дальнейшим развитием семейства Pentium 4 стали процессоры на ядре , производившиеся по 130 нм технологии. 2 февраля 2004 года были представлены первые процессоры на ядре (90 нм), а последним ядром, использовавшимся в процессорах Pentium 4 стало ядро (65 нм). На базе ядер Northwood и Prescott выпускались также мобильные процессоры Pentium 4 и Pentium 4-M, представлявшие собой Pentium 4 с пониженным энергопотреблением. На базе всех ядер, перечисленных выше, выпускались также процессоры Celeron , предназначенные для бюджетных компьютеров, представлявшие собой Pentium 4 с уменьшенным объёмом кэш-памяти второго уровня и пониженной частотой системной шины .

Ниже представлены даты анонса различных моделей процессоров Pentium 4, а также их стоимость на момент анонса.

Мобильные процессоры Pentium 4
Процессор Pentium 4-M Mobile Pentium 4
Тактовая частота, ГГц 1,6 1,7 1,4 1,5 1,8 1,9 2 2,2 2,4 2,5 2,6 2,4 2,666 2,8 3,066 3,2 3,333
Анонсирован 4 марта 23 апреля 24 июня 16 сентября 14 января 16 апреля 11 июня 23 сентября 28 сентября
2002 года 2003 года 2004 года
Цена, $ 392 496 198 268 637 431 637 562 562 562 562 185 220 275 417 653 262

Pentium 4

Willamette

Pentium 4 1800 на ядре Willamette (FC-mPGA2)

Ещё до выхода первых Pentium 4 предполагалось, что и процессоры на ядре Willamette, и разъём Socket 423 будут присутствовать на рынке лишь до середины 2001 года, после чего будут заменены на процессоры на ядре Northwood и разъём Socket 478 . Однако, в связи с проблемами при внедрении 130 нм технологии, лучшим по сравнению с ожидавшимся процентом выхода годных кристаллов процессоров на ядре Willamette, а также необходимостью продажи уже выпущенных процессоров, анонс процессоров на ядре Northwood был отложен до 2002 года, а 27 августа 2001 года были представлены процессоры Pentium 4 в корпусе типа FC-mPGA2 (Socket 478), в основе которых по-прежнему лежало ядро Willamette .

Процессоры Pentium 4 на ядре Willamette работали на тактовой частоте 1,3-2 ГГц с частотой системной шины 400 МГц, напряжение ядра составляло 1,7-1,75 В в зависимости от модели, а максимальное тепловыделение - 100 Вт на частоте 2 ГГц .

Northwood

Intel Pentium 4 1800 на ядре Northwood

14 ноября 2002 года был представлен процессор Pentium 4 3066 МГц, поддерживающий технологию виртуальной многоядерности - Hyper-threading . Этот процессор оказался единственным процессором на ядре Northwood с частотой системной шины 533 МГц, обладавшим поддержкой технологии Hyper-threading. В дальнейшем эту технологию поддерживали все процессоры с частотой системной шины 800 МГц (2,4-3,4 ГГц) .

Характерной особенностью процессоров Pentium 4 на ядре Northwood была невозможность продолжительной работы при повышенном напряжении ядра (повышение напряжения ядра при разгоне является распространённым приёмом, позволяющим повысить стабильность работы на повышенных частотах ). Повышение напряжения ядра до 1,7 В приводило к быстрому выходу процессора из строя, несмотря на то, что температура кристалла при этом оставалась невысокой. Это явление, названное «синдромом внезапной смерти Northwood» (англ. sudden Northwood death syndrome ), серьёзно ограничивало разгон Pentium 4 на ядре Northwood .

Prescott

Pentium 4 2800E на ядре Prescott (Socket 478)

Pentium 4 3400 на ядре Prescott (LGA 775)

Процессоры Pentium 4 на ядре Prescott получили поддержку нового дополнительного набора команд - SSE3 , а также поддержку технологии EM64T (в ранних процессорах поддержка 64-битных расширений была отключена). Кроме того, была оптимизирована технология Hyper-threading (в частности, в набор SSE3 вошли инструкции, предназначенные для синхронизации потоков) .

В результате изменений, внесённых в архитектуру NetBurst, производительность процессоров на ядре Prescott изменилась по сравнению с процессорами на ядре Northwood, имеющими равную частоту, следующим образом: в однопоточных приложениях, использующих инструкции x87 , MMX , SSE и SSE2 , процессоры на ядре Prescott оказывались медленнее, чем предшественники, а в приложениях, использующих многопоточность или чувствительных к объёму кэш-памяти второго уровня, опережали их .

Cedar Mill

Pentium 4 641 на ядре Cedar Mill

Процессоры Pentium 4 на ядре Cedar Mill выпускались до 8 августа 2007 года , когда компания Intel объявила о снятии с производства всех процессоров архитектуры NetBurst.

Отменённые процессоры

Предполагалось, что в конце 2004 - начале 2005 годов на смену ядру Prescott в настольных процессорах Pentium 4 придёт новое ядро Tejas. Процессоры на ядре Tejas должны были выпускаться по 90 нм технологии, работать на частоте от 4,4 ГГц с частотой системной шины 1066 МГц, иметь увеличенный до 24 Кбайт кэш первого уровня и улучшенную поддержку технологии Hyper-threading . В конце 2005 года процессоры на ядре Tejas должны были быть переведены на 65 нм технологию производства и достичь частоты 9,2 ГГц . В перспективе тактовая частота процессоров архитектуры NetBurst должна была превысить отметку в 10 ГГц, однако сроки анонса Tejas постоянно переносились, процессоры на ядре Prescott не смогли достичь частоты 4 ГГц из-за проблем с тепловыделением, в связи с чем в начале 2004 года появилась информация об отмене выпуска процессоров на ядре Tejas , а 7 мая 2004 года компания Intel официально объявила о прекращении работы как над ядром Tejas, так и над перспективными разработками, основанными на архитектуре NetBurst .

Pentium 4 Extreme Edition

Первые процессоры Pentium 4 Extreme Edition (Pentium 4 «EE» или «XE»), предназначенные для энтузиастов , были представлены компанией Intel 3 ноября 2003 года. В их основе лежало ядро Gallatin, использовавшееся в серверных процессорах Xeon и представлявшее собой ядро Northwood ревизии M0 с кэш-памятью третьего уровня объёмом 2 Мбайт . Площадь кристалла таких процессоров составляла 237 мм².

Процессоры Pentium 4 EE на ядре Gallatin работали на частоте 3,2-3,466 ГГц, имели частоту системной шины 1066 МГц для модели, работающей на 3,466 ГГц, и 800 МГц для остальных моделей (3,2 и 3,4 ГГц). Напряжение ядра составляло 1,4-1,55 В, а максимальное тепловыделение - 125,59 Вт на частоте 3,466 ГГц. Изначально процессоры Pentium 4 EE ядре Gallatin выпускались в корпусе типа FC-mPGA2 (Socket 478), а затем - в корпусе типа FC-LGA4 (LGA775).

21 февраля 2005 года компанией Intel был представлен процессор Pentium 4 EE на ядре Prescott 2M. Он выпускался в корпусе типа FC-LGA4, предназначался для установки в системные платы с разъёмом LGA775 и работал на частоте 3,733 ГГц. Частота системной шины составляла 1066 МГц, напряжение питания - 1,4 В, максимальное тепловыделение - 148,16 Вт.

Дальнейшим развитием семейства Extreme Edition стали двухъядерные процессоры Pentium XE .

Pentium 4-M и Mobile Pentium 4

Мобильные процессоры Pentium 4-M представляли собой Pentium 4 на ядре Northwood, имеющие пониженное напряжение питания и тепловыделение, а также поддерживающие энергосберегающую технологию Intel SpeedStep . Максимально допустимая температура корпуса была повышена по сравнению с процессорами для настольных компьютеров и составляла 100 °C (у настольных процессоров на ядре Northwood - от 68 до 75 °C), что было связано с условиями работы в ноутбуке (небольшое воздушное пространство и размеры радиатора, менее сильный воздушный поток).

Все процессоры Pentium 4-M работали с частотой системной шины 400 МГц. Напряжение ядра процессоров Pentium 4-M составляло 1,3 В, максимальное тепловыделение - 48,78 Вт на частоте 2,666 ГГц, типичное - 35 Вт, в режиме пониженного энергопотребления - 13,69 Вт. Процессоры Pentium 4-M работали на частотах от 1,4 до 2,666 ГГц.

Процессоры Mobile Pentium 4 представляли собой Pentium 4 на ядрах Northwood или Prescott и работали на более высоких по сравнению с Pentium 4-M тактовых частотах - от 2,4 до 3,466 ГГц. Некоторые процессоры Mobile Pentium 4 поддерживали технологию Hyper-threading.

Все процессоры Mobile Pentium 4 работали с частотой системной шины 533 МГц. Напряжение ядра составляло 1,325-1,55 В, максимальное тепловыделение - 112 Вт на частоте 3,466 ГГц, типичное - от 59,8 до 88 Вт, в режиме пониженного энергопотребления - от 34,06 до 53,68 Вт.

Положение на рынке

Процессоры Pentium 4 Extreme Edition являлись «имиджевыми » процессорами, а оптовая цена на эти процессоры в момент анонса всегда составляла 999 $ .

Несмотря на то, что в течение года после анонса Pentium 4 основу продаж компании Intel по-прежнему составляли процессоры Pentium III (это было связано с крайне высокой стоимостью систем на базе Pentium 4 в сочетании с памятью типа RDRAM , альтернативы которой не было до выхода набора микросхем Intel 845 осенью 2001 года ), впоследствии благодаря агрессивной рекламной и маркетинговой политике компании Intel (в том числе, предоставление скидок производителям компьютеров и торговым сетям за использование и продажу исключительно продукции Intel, а также выплаты за отказ от использования продукции конкурентов ) в сочетании с неудачной маркетинговой политикой основного конкурента - компании AMD, процессоры Pentium 4 стали популярны среди пользователей . Этому также способствовала более высокая тактовая частота процессоров Pentium 4 (в частности, из-за высокой тактовой частоты процессоров конкурента, а также популярности «мифа о мегагерцах » , компания AMD была вынуждена ввести рейтинг производительности процессоров Athlon XP, нередко вводивший неопытных пользователей в заблуждение ). Тем не менее, компании AMD удалось серьёзно потеснить Intel на рынке микропроцессоров благодаря удачным продуктам - ранним Athlon XP и Athlon 64, превосходившим процессоры Pentium 4 в производительности и имеющим меньшую стоимость. Так, с 2000 по 2001 год компании AMD удалось увеличить свою долю на рынке процессоров архитектуры x86 с 18 % до 22 % (доля Intel при этом сократилась с 82,2 % до 78,7 %), а после решения проблем, возникших у AMD в 2002 году, когда её доля на рынке сократилась до 14 %, с 2003 по 2006 - до 26 % (доля Intel - около 73 %) .

Сравнение с конкурентами

Параллельно с процессорами семейства Pentium 4 существовали следующие x86-процессоры:

  • Intel Pentium III-S (Tualatin). Предназначались для рабочих станций и серверов. Несмотря на меньшую тактовую частоту, по производительности превосходили процессоры Pentium 4 на ядре Willamette в большинстве задач. Кроме того, в отличие от Pentium 4, процессоры Pentium III-S могли работать в двухпроцессорной конфигурации. Также компанией Intel выпускались процессоры Pentium III на ядре Tualatin, отличавшиеся от Pentium III-S меньшим объёмом кэш-памяти второго уровня. Оба этих процессора не получили широкого распространения: они были представлены позже, чем Pentium 4, являвшиеся в то время флагманскими процессорами компании Intel, и стоили значительно дороже, чем Pentium 4, имеющие сравнимую производительность .
  • Intel Celeron (Tualatin). Представляли собой Pentium III с уменьшенной частотой системной шины, предназначались для недорогих систем и в целом уступали процессорам Pentium 4 за счёт меньшей тактовой частоты (старшая модель Celeron работала на частоте 1,4 ГГц, в то время, как младшая модель Pentium 4 - на 1,3 ГГц) и небольшой пропускной способности памяти (в системах на процессорах Celeron обычно использовалась память PC133 SDRAM , а процессоры Pentium 4 чаще всего работали с памятью типа RDRAM или DDR SDRAM) и системной шины (100 МГц против 400 МГц) . Производительность разогнанных Celeron была сравнима с производительностью равночастотных Pentium 4 при более низкой цене .
  • Intel Celeron (Willamette-128 и Northwood-128), Celeron D (Prescott-256 и Cedar Mill-512). Представляли собой Pentium 4 с уменьшенными частотой системной шины и размером кэш-памяти второго уровня, предназначались для недорогих систем и всегда уступали процессорам Pentium 4. В некоторых задачах Celeron на ядре Willamette-128 уступали также и предшественникам (Celeron на ядре Tualatin) со значительно более низкими частотами .
  • Intel Pentium M и Celeron M . Являлись дальнейшим развитием процессоров Pentium III. Предназначались для мобильных компьютеров, обладали низким энергопотреблением и тепловыделением. Pentium M опережал как большинство мобильных Pentium 4 M, так и некоторые настольные процессоры Pentium 4, обладая при этом значительно меньшими тактовой частотой и тепловыделением . Процессор Celeron M имел близкую к Pentium M производительность, незначительно отставая от него.
  • Intel Pentium D (Presler, Smithfield). Двухъядерные процессоры, представлявшие собой два ядра Prescott (процессоры на ядре Smithfield) или Cedar Mill (Presler), находящиеся либо на одном кристалле (Smithfield), либо в одном корпусе (Presler). Опережали равночастотные Pentium 4 в большинстве задач. Однако процессоры Pentium 4 имели большую тактовую частоту, чем Pentium D (старшая модель Pentium D на ядре Smithfield работала на частоте 3,2 ГГц, а старшая модель Pentium 4 - на 3,8 ГГц), что позволяло им опережать двухъядерные процессоры в задачах, не оптимизированных под многопоточность .
  • AMD Athlon (Thunderbird). Конкурировали с процессорами Pentium 4 на ядре Willamette. В задачах, использующих дополнительные наборы инструкций SSE и SSE2 , требующих высокой пропускной способности памяти, а также в приложениях, оптимизированных под архитектуру NetBurst (приложения, работающие с потоковыми данными), процессоры Athlon уступали процессорам Pentium 4, однако в офисных и бизнес-приложениях, задачах трёхмерного моделирования, а также в математических расчётах, процессоры Athlon показывали более высокую производительность .
  • AMD Athlon XP . Конкурировали в основном с процессорами Pentium 4 на ядре Northwood. В названиях моделей этих процессоров фигурировала не тактовая частота, а рейтинг, показывающий производительность процессоров Athlon XP относительно Pentium 4. «Равнорейтинговые» Athlon XP уступали процессорам Pentium 4 в приложениях, оптимизированных под архитектуру NetBurst, требовавших наличие поддержки инструкций SSE2 или высокой пропускной способности памяти, однако значительно опережали их в вычислениях с плавающей запятой и неоптимизированных приложениях. Старшие Pentium 4 опережали конкурента в большинстве приложений .
  • AMD Athlon 64 . Конкурировали в основном с процессорами Pentium 4 на ядре Prescott. Опережали их в ряде задач (например, офисные приложения, научные расчёты или игры) за счёт меньших задержек при работе с памятью (за счёт встроенного контроллера памяти) и более эффективного математического сопроцессора, уступали процессорам Pentium 4 в задачах, оптимизированных под архитектуру NetBurst или имеющих поддержку многопоточности (например, кодирование видео) .
  • AMD Athlon 64 FX . Конкурировали с процессорами Pentium 4 Extreme Edition. Как и в случае с Athlon 64 и Pentium 4, Athlon 64 FX опережали конкурентов за счёт архитектурных особенностей, интегрированного контроллера памяти или более эффективного математического сопроцессора, уступая им в задачах, оптимизированных под архитектуру NetBurst или имеющих поддержку многопоточности .
  • AMD Duron (Morgan и Applebred). Были нацелены на рынок недорогих процессоров и конкурировали с процессорами Celeron, в целом уступая процессорам Pentium 4, однако в некоторых приложениях, которые не были оптимизированы под архитектуру NetBurst и не использовали набор инструкций SSE2, могли опережать Pentium 4, имеющие значительно более высокие тактовые частоты .
  • VIA C3 (Nehemiah) и VIA Eden. Предназначались для компьютеров с низким энергопотреблением и ноутбуков (C3 и Eden-N) и для интегрирования в системные платы (Eden), имели низкую производительность и уступали конкурирующим процессорам.
  • VIA C7 . Также, как и процессоры VIA C3, предназначались для компьютеров с низким энергопотреблением и ноутбуков. Серьёзно уступали конкурентам и могли опережать их только в задачах шифрования (за счёт его аппаратной поддержки) .
  • Transmeta Efficeon . Предназначались для ноутбуков, имели низкое энергопотребление и тепловыделение. Уступали в большинстве задач мобильным процессорам AMD и Intel, опережая мобильные процессоры VIA .

Работавшие на высокой частоте процессоры Pentium 4 отличались большим энергопотреблением и, как следствие, тепловыделением. Максимальная тактовая частота серийных процессоров Pentium 4 составила 3,8 ГГц, при этом типичное тепловыделение превысило 100 Вт , а максимальное - 150 Вт . Однако при этом процессоры Pentium 4 были лучше защищены от перегрева, чем конкурирующие процессоры. Работа Thermal Monitor - технологии термозащиты процессоров Pentium 4 (а также последующих процессоров Intel) - основана на механизме модуляции тактового сигнала (англ. clock modulation ), позволяющем регулировать эффективную частоту работы ядра с помощью введения холостых циклов - периодического отключения подачи тактового сигнала на функциональные блоки процессора («пропуск тактов», «троттлинг »). При достижении порогового значения температуры кристалла, зависящего от модели процессора, автоматически включается механизм модуляции тактового сигнала, эффективная частота снижается (при этом определить её снижение можно либо по замедлению работы системы, либо с помощью специального программного обеспечения, так как фактическая частота остаётся неизменной), а рост температуры замедляется. В том случае, если температура всё же достигает максимально допустимой, происходит отключение системы . Кроме того, поздние процессоры Pentium 4 (начиная с ядра Prescott ревизии E0 ), предназначенные для установки в разъём Socket 775, обладали поддержкой технологии Thermal Monitor 2, позволяющей снижать температуру путём снижения фактической тактовой частоты (с помощью понижения множителя) и напряжения ядра .

Наглядным примером эффективности термозащиты процессоров Pentium 4 стал эксперимент, проведённый в 2001 году Томасом Пабстом. Целью этого эксперимента являлось сравнение эффективности термозащиты процессоров Athlon 1,4 ГГц, Athlon MP 1,2 ГГц, Pentium III 1 ГГц и Pentium 4 2 ГГц на ядре Willamette. После снятия кулеров с работающих процессоров, процессоры Athlon MP и Athlon получили необратимые термические повреждения, а система на Pentium III зависла, в то время как система с процессором Pentium 4 лишь замедлила скорость работы . Несмотря на то, что ситуация с полным отказом системы охлаждения (например, в случае разрушения крепления радиатора), смоделированная в экспериментах, маловероятна, а в случае возникновения приводит к более серьёзным последствиям (например, к разрушению плат расширения или системной платы в результате падения на них радиатора) вне зависимости от модели процессора , результаты эксперимента Томаса Пабста отрицательно повлияли на популярность конкурирующих процессоров AMD, а мнение о их ненадёжности было широко распространено даже после выхода процессоров Athlon 64 , имеющих более эффективную по сравнению с предшественником систему защиты от перегрева. К тому же температуры процессоров Intel в данном эксперименте, равные 29 и 37 по Цельсию, вызывают сомнение - ведь это рабочие температуры процессоров Intel при нулевой загрузке ЦПУ, и при наличии штатной системы охлаждения. Разумеется, при снятом радиаторе они ведут себя по другому: нагреваются до критической температуры, срабатывает тепловая защита и компьютер выключается. А если учесть, что тепловыделение Pentium 4 не меньше, чем у Athlon, то вопросов с дымящимся через считанные секунды AMD и работающим несколько секунд после снятия системы охлаждения Intel не убавляется. Просто в эксперименте Томаса Пабста были показаны в гипертрофированном виде имеющие место: достоинства процессоров Intel и недостатки процессоров AMD, относительно тепловой защиты. Возможно, это была рекламная акция в пользу новых процессоров Intel, особенно учитывая отношение потребителей к первым процессорам Pentium 4 из-за их высокой цены и низкой производительности.

Из-за особенностей архитектуры NetBurst, позволявших процессорам работать на высокой частоте, процессоры Pentium 4 пользовались популярностью среди оверклокеров . Так, например, процессоры на ядре Cedar Mill были способны работать на частотах, превышавших 7 ГГц , с использованием экстремального охлаждения (обычно использовался стакан с жидким азотом) , а младшие процессоры на ядре Northwood со штатной частотой системной шины 100 МГц надёжно работали при частоте системной шины 133 МГц и выше .

Технические характеристики

Willamette Northwood Gallatin Prescott Prescott 2M Cedar Mill
Настольный Настольный Мобильный Настольный Мобильный Настольный
Тактовая частота
Частота ядра, ГГц 1,3-2 1,6-3,4 1,4-3,2 3,2-3,466 2,4-3,8 2,8-3,333 2,8-3,8 3-3,6
Частота FSB , МГц 400 400, 533, 800 400, 533 800, 1066 533, 800, 1066 () 800
Характеристики ядра
Набор инструкций IA-32 , MMX , SSE , SSE2 IA-32 , EM64T (некоторые модели), MMX , SSE , SSE2 , SSE3
Разрядность регистров 32/64 бит (целочисленные), 80 бит (вещественночисленные), 64 бит (MMX), 128 бит (SSE)
Глубина конвейера 20 стадий (без учёта декодера инструкций) 31 стадия (без учёта декодера инструкций)
Разрядность ША 36 бит 40 бит
Разрядность ШД 64 бит
Аппаратная предвыборка данных есть
Количество

4 считается самой удачной по сравнению с другими модификациями производителя, ведь в течение многих лет работы она доказала право на своё существование. В данной статье читатель сможет узнать, чем же так хороши эти процессоры, узнает их технические характеристики, а тестирование и отзывы помогут потенциальному покупателю определиться с выбором на рынке компьютерных комплектующих.

Гонка за частотами

Как показывает история, поколения процессоров сменялись одно за другим благодаря гонке производителей за частотами. Естественно, внедрялись также новые технологии, но они были не на первом плане. И пользователи, и производители понимали, что настанет день, когда эффективная частота процессора будет достигнута, и это случилось после появления четвёртого поколения Intel Pentium. 4 GHz - частота работы одного ядра - стала пределом. Кристаллу для работы требовалось слишком много электроэнергии. Соответственно, и рассеиваемая мощность в виде колоссального тепловыделения ставила под сомнение работу всей системы.

Все последующие модификации а также аналоги конкурентов стали производиться в пределах 4 ГГц. Тут уже вспомнили про технологии с использованием нескольких ядер и внедрение специальных инструкций, которые способны оптимизировать работу по обработке данных в целом.

Первый блин комом

В сфере высоких технологий монополия на рынке ни к чему хорошему привести не может, в этом уже убедились многие производители электроники на собственном опыте (диски DVD-R были заменены на DVD+R, а ZIP-дисковод вообще канул в Лету). Однако компании Intel и Rambus решили всё-таки хорошо заработать и выпустили совместный многообещающий продукт. Так на рынке появился первый Pentium 4, который работал на Socket 423 и на очень высокой скорости общался с оперативной памятью Rambus. Естественно, многие пользователи пожелали стать владельцами самого быстрого компьютера в мире.

Стать монополистами на рынке двум компаниям помешало открытие двухканального режима памяти. Проведённые тестирования новинки показали колоссальный прирост производительности. Новой технологией тут же заинтересовались все производители компьютерных комплектующих. А первый процессор Pentium 4 вместе с сокетом 423 стал историей, ведь производитель не обеспечил платформу возможностью модернизации. На данный момент комплектующие под эту платформу востребованы, как оказалось, ряд государственных предприятий успели закупить сверхбыстрые компьютеры. Естественно, замена комплектующих на порядок дешевле полного апгрейда.

Шаг в правильном направлении

У многих владельцев персональных компьютеров, которые не играют в игры, а предпочитают работать с документацией и просматривать мультимедиа контент, до сих пор установлен Intel Pentium 4 (Socket 478). Миллионы тестов, проведённых профессионалами и энтузиастами, показывают, что мощности данной платформы достаточно для всех задач рядового пользователя.

Данная платформа использует две модификации ядер: Willamette и Prescott. Судя по характеристикам, отличия между двумя процессорами незначительные, в последней модификации добавлена поддержка 13 новых инструкций для оптимизации данных, получивших краткое название SSE3. Частотный диапазон работы кристаллов находится в пределах 1,4-3,4 ГГц, что, по сути, и удовлетворяет требования рынка. Производитель рискнул ввести дополнительную ветку процессоров под сокет 478, которые должны были привлечь внимание любителей игр и оверлокеров. Новая линейка получила название Intel Pentium 4 CPU Extreme Edition.

Преимущества и недостатки 478 сокета

Судя по отзывам ИТ-специалистов, процессор Intel Pentium 4, работающий на платформе 478 сокета, является до сих пор довольно востребованным. Не каждый владелец компьютера может позволить себе модернизацию, которая требует приобретения трёх базовых комплектующих (материнская плата, процессор и оперативная память). Ведь для большинства задач, для улучшения производительности всей системы достаточно установить более мощный кристалл. Благо вторичный рынок ими переполнен, ведь процессор намного долговечнее той же материнской платы.

И если производить апгрейд, то внимание нужно уделить самым мощным представителям в данной категории Extreme Edition, которые до сих пор показывают достойные результаты в тестах на производительность. Недостатком мощных процессоров под является большая рассеиваемая мощность, которая требует хорошего охлаждения. Поэтому к расходам пользователя добавится и необходимость приобретения достойного кулера.

Процессоры по низкой цене

Читатель однозначно сталкивался на рынке с моделями процессоров Intel Pentium 4, имеющих в маркировке надпись Celeron. По сути - это младшая линейка устройств, которая обладает меньшей мощностью за счёт уменьшения инструкций и отключения блоков внутренней памяти микропроцессора (кэш). Рынок Intel Celeron нацелен на пользователей, которым прежде всего важна цена компьютера, а не его производительность.

Среди пользователей бытует мнение, что младшая линейка процессоров является отбраковкой в процессе производства кристаллов Intel Pentium 4. Истоком данного предположения является ажиотаж на рынке в далёком 1999 году, когда группа энтузиастов доказала общественности, что Pentium 2 и его младшая модель Celeron являются одним и тем же процессором. Однако за прошедшие годы ситуация в корне изменилась, и производитель имеет отдельную линию по выпуску недорогого устройства для нетребовательных покупателей. К тому же нельзя забывать о конкуренте AMD, который претендует на то, чтобы вытеснить компанию Intel с рынка. Соответственно, все ценовые ниши должны быть заняты достойной продукцией.

Новый виток эволюции

Многие специалисты в области компьютерных технологий считают, что именно появление на рынке процессора Intel Pentium 4 Prescott открыло эпоху устройств с несколькими ядрами и завершило гонку за гигагерцами. С появлением новых технологий производителю пришлось перейти на сокет 775, который и помог раскрыть потенциал всех персональных компьютеров в работе с ресурсоёмкими программами и динамическими играми. По статистике, более 50% всех компьютеров на планете работают на легендарном разъёме Socket 775 от компании Intel.

Появление процессора Intel привело к ажиотажу на рынке, ведь производитель на одном ядре умудрился запустить два потока инструкций, создав прообраз двухъядерного устройства. Технология получила название Hyper-threading и на сегодня является передовым решением при производстве самых мощных кристаллов в мире. Не останавливаясь на достигнутом, компания Intel презентовала технологии Dual Core, Core 2 Duo и Core 2 Quad, которые на аппаратном уровне имели по несколько микропроцессоров на одном кристалле.

Двуликие процессоры

Если ориентироваться на критерий «цена-качество», то в фокусе однозначно окажутся процессоры с двумя ядрами. Их низкая себестоимость и отличная производительность дополняют друг друга. Микропроцессоры Intel Pentium Dual Core и Core 2 Duo являются самыми продаваемыми в мире. Их основное отличие между собой в том, что последний имеет два физических ядра, которые работают независимо друг от друга. А вот процессор Dual Core реализован в виде двух контроллеров, которые установлены на одном кристалле и их совместная работа неразрывно связана между собой.

Частотный диапазон устройств, имеющих два ядра, немного занижен и колеблется в пределах 2-2,66 ГГц. Вся проблема - в рассеиваемой мощности кристалла, который сильно греется на повышенных частотах. Примером служит вся восьмая линейка Intel Pentium D (D820-D840). Именно они получили первыми два раздельных ядра и рабочие частоты свыше 3 ГГц. Потребляемая мощность этих процессоров составляет в среднем 130 Вт (в зимнее время вполне приемлемый обогреватель комнаты для пользователей).

Перебор с четырьмя ядрами

Новинки с четырьмя ядрами Intel(R) Pentium(R) 4 явно были рассчитаны на пользователей, которые предпочитают приобретать комплектующие с большим запасом на будущее. Однако рынок программного обеспечения вдруг остановился. Разработка, тестирование и внедрение приложений производится для устройств, имеющих одно или два ядра максимум. А как же быть с системами, состоящими из 6, 8 и более микропроцессоров? Обычный маркетинговый ход, ориентированный на потенциальных покупателей, которые желают приобрести сверхмощный компьютер или ноутбук.

Как с мегапикселями на фотоаппарате - лучше не тот, где написано 20 Мп, а устройство с большей матрицей и фокусным расстоянием. А в процессорах погоду делает набор инструкций, которые обрабатывают программный код приложения и выдают результат пользователю. Соответственно, программисты должны этот самый код оптимизировать так, чтобы микропроцессор его быстро и без ошибок обрабатывал. Так как слабых компьютеров на рынке большинство, то разработчикам выгодно создавать нересурсоёмкие программы. Соответственно, большая мощность компьютера на данном этапе эволюции не нужна.

Владельцам процессора Intel Pentium 4 желающим произвести модернизацию с минимальными затратами, профессионалы рекомендуют посмотреть в сторону вторичного рынка. Но для начала нужно выяснить технические характеристики установленной в системе материнской платы. Сделать это можно на сайте производителя. Интересует раздел «поддержка процессоров». Далее в средствах массовой информации необходимо найти и, сравнив с характеристиками материнской платы, выбрать несколько достойных вариантов. Не помешает изучить отзывы владельцев и ИТ-специалистов в СМИ по выбранным устройствам. После чего можно заняться поиском необходимого процессора, бывшего в употреблении.

Для многих платформ, поддерживающих работу микропроцессоров с четырьмя ядрами, рекомендуется устанавливать Intel Core Quad 6600. Если система умеет работать только с двухъядерными кристаллами, то стоит поискать серверный вариант Intel Xeon или инструмент для оверлокера Intel Extreme Edition (естественно, под сокет 775). Их стоимость на рынке находится в пределах 800-1000 рублей, что на порядок дешевле любого апгрейда.

Рынок мобильных устройств

Помимо стационарных компьютеров, процессоры Intel Pentium 4 устанавливались также на ноутбуки. Для этого производителем была создана отдельная линейка, которая в своей маркировке имела букву «М». Характеристики мобильных процессоров были идентичны стационарным компьютерам, однако частотный диапазон явно был занижен. Так, самым мощным среди процессоров для ноутбуков считается Pentium 4M 2,66 ГГц.

Однако с развитием платформ в мобильных версиях всё так напутано, что сам производитель Intel до сих пор не предоставил дерево развития процессоров на своём официальном сайте. Используя 478-контактную платформу в ноутбуках, компания изменяла лишь технологию обработки процессорного кода. В результате, на одном сокете удалось развести целый "зоопарк" процессоров. Самым популярным, по статистике, принято считать кристалл Intel Pentium Dual Core. Дело в том, что это самое дешёвое устройство в производстве, и его рассеиваемая мощность ничтожно мала по сравнению с аналогами.

Гонка за энергосбережением

Если для компьютеров потребляемая процессором мощность не является для системы критичной, то для ноутбука ситуация кардинально меняется. Тут устройства Intel Pentium 4 были вытеснены менее энергозависимыми микропроцессорами. И если читатель познакомится с тестами мобильных процессоров, то он увидит, что по производительности старый Core 2 Quad из линейки Pentium 4 не сильно отстаёт от более современного кристалла Core i5, а вот энергопотребление последнего в 3,5 раза меньше. Естественно, такое различие сказывается на автономности работы ноутбука.

Проследив за рынком мобильных процессоров, можно обнаружить, что производитель снова вернулся к технологиям прошлого десятилетия и начинает активно устанавливать во все ноутбуки продукты Intel Atom. Только не нужно их сравнивать с маломощными процессорами, устанавливаемыми на нетбуки и планшеты. Это совершенно новые, технологичные и очень производительные системы, имеющие на борту 2 или 4 ядра и способные принять участие в тестировании приложений или игр наравне с кристаллами Core i5/i7.

В заключение

Как видно из обзора, легендарный процессор Intel Pentium 4, характеристики которого претерпели изменений за многие годы, не только имеет право на сосуществование с новыми линейками производителя, но и успешно конкурирует в сегменте «цена-качество». И если речь идёт об апгрейде компьютера, то перед совершением важного шага стоит понять, есть ли смысл менять шило на мыло. В большинстве случаев, особенно когда речь идёт о производительных играх, профессионалы рекомендуют произвести модернизацию заменой видеокарты. Также многие пользователи не знают, что слабым звеном компьютера в динамических играх является жёсткий магнитный диск. Замена его на SSD-накопитель способна увеличить производительность компьютера в несколько раз.

Относительно мобильных устройств ситуация несколько другая. Работа всей системы сильно зависима от температуры внутри корпуса ноутбука. Понятно, что мощный процессор в пиковых нагрузках приведёт к торможениям или полному отключению устройства (много негативных отзывов этот факт подтверждают). Естественно, при покупке ноутбука для игр нужно уделить внимание экономичности процессора в плане энергопотребления и достойного охлаждения всех комплектующих.

В прошлом году Intel выпустила новое ядро - Prescott - для Pentium 4 , особенностью которого стал 90 -нм техпроцесс, кэш 2-го уровня возрос до 1 Мбайт, кроме того, появился набор инструкций SSE3 . Одновременно на суд общественности был представлен Pentium 4 Extreme Edition 3,4 ГГц с 2 Мбайт кэша 3-го уровня. Летом была объявлена платформа Socket 775 , которая заинтересовала нас тем, что ножки с процессора “перешли” на сокет. Вместе с новым разъемом мы получили и чипсеты i915 и i925 , набор функций которых приятно порадовал всех: DDR2 SDRAM , PCI Express для графики и периферии, звук HDA , WLAN , Matrix RAID и т.д. Примерно в то же время Intel ввела модельные номера, до этого этим баловалась только AMD . И нам пришлось привыкать к линейке Celeron 3xx , Pentium 4 5xx .

Однако у нового ядра Prescott были проблемы с высоким тепловыделением, которое достигало 115 Вт для топовых моделей. При этом производительность по сравнению с ядром Northwood практически не увеличилась. Конкуренты меж тем не спали, AMD представила ядро Winchester , которое отличалось низким тепловыделением. Кроме того, компания подкупала пользователей технологиями Cool"n"Quiet (снижение частоты и напряжения при малых нагрузках), NX-bit (запрет выполнения кода на переполнение буфера) и x86-64 (64-битные расширения).

В итоге Prescott дорабатывали много раз и на свет появилось очень много степпингов процессора. Спустя некоторое время инженеры Intel представили хорошо сбалансированные процессоры со степпингом E0 . Появившаяся технология Thermal Monitoring 2 улучшила защиту от перегрева - процессор стал снижать частоту и напряжение, если тепловыделение достигнет критического предела. Подобный подход лучше троттлинга (Throttling), когда процессор в той же ситуации пропускал тактовые импульсы. Впрочем, он по-прежнему включается, но в экстремальных случаях. Технология Thermal Monitoring 2 может работать и в режиме бездействия для снижения тепловыделения, но для этого нужно установить Service Pack 2 . В новом степпинге появился XD-bit , выполняющий функцию запрета выполнения вредоносного кода, для этого SP2 также необходим. Процессоры с поддержкой этой фишки получили суффикс J . Появление 64 -битных расширений EM64T в степпинге E0 для 500-й линейки мы так и не увидели.

Однако вспомним про AMD, которая к тому времени представила процессоры Athlon 64 4000+ и FX-55 . Последний оказался лучшим процессором для геймеров, показывая экстремальную производительность в играх. На этот выпад Intel ответила выпуском чипсета i925XE и Pentium 4 Extreme Edition 3,46 ГГц с системной шиной 1066 МГц. Другие характеристики нового P4 EE не изменились: кэш L2 512 Кбайт, L3 - 2 Мбайт (ядро Gallatin ). Увы, при экстремальной цене $999 новичок проигрывал FX-55 в большинстве игровых тестов.

Вот, вкратце, ситуация на начало 2005 года.

Speedstep в действии

Технология SpeedStep позволяет Windows программно использовать интерфейс ACPI для уменьшения тактовой частоты процессора до 2,8 ГГц при низкой нагрузке. Для работы SpeedStep необходимы следующие условия:

  • процессор должен поддерживать SpeedStep;
  • материнская плата и BIOS должны поддерживать SpeedStep;
  • должна быть установлена система Windows XP Service Pack 2;
  • необходимо выбрать мобильную схему энергопотребления под Windows.

Наша материнская плата ASUS P5AD2-E Platinum (i925XE) обеспечивает полную поддержку SpeedStep.

Итог по SpeedStep будет таков: для игр его лучше вообще отключать, а для офисной и другой работы - включать. Тогда процессор будет работать на меньших частотах и выделять меньше тепла.

Новая страница в жизни Pentium 4: шестисотые модели

Самое главное отличие новых Pentium 6xx - увеличение кэша L2 до 2 Мбайт. Вся новая серия процессоров поддерживает XD-bit. Технология управления энергопотреблением еще улучшилась: если степпинг E0 мог похвастаться Thermal Monitoring 2, то у новых процессоров добавилась технология Enhanced SpeedStep , которая ранее использовалась только в мобильных процессорах компании. Она позволяет снижать напряжение и частоту, если нагрузка на процессор невелика. Главное отличие между двумя технологиями заключается в том, что “инициатором” снижения частоты в последнем случае выступает операционная система, а не процессор.

Все Pentium 6xx поддерживают 64-битные расширения EM64T (аналог расширений x86-64 от AMD). Впрочем, эта особенность может быть полезна только при использовании Windows XP 64-bit Edition . Но даже после официального появления этой ОС проблемы для пользователей AMD и Intel не закончатся: дело в том, что прирост производительности вы получите, только если ОС, драйвера и программы будут 64-битными. А вот с этим большие проблемы и даже сложно сказать, когда мы сможем воспользоваться плодами новой технологии. С другой стороны, если Intel взялась за это дело, то процесс пойдет гораздо быстрее.

Стоит еще сказать, что технология EM64T будет встречаться и в некоторых моделях серии 5xx (с “единичками” в конце номера), а вот Enhanced Speed Step останется эксклюзивной чертой линейки 6xx.

Физически кристалл линейки Pentium 4 6xx существенно больше, чем у 5xx: 169 миллионов транзисторов и 135 мм 2 против 125 миллионов и 112 мм 2 .

Достаточно интересна новая модель P4 Extreme Edition. К сожалению, Pentium 4 Extreme Edition 3,46 ГГц, вышедший в ноябре 2004-го, так и не оправдал надежд, поэтому был списан в утиль. На смену ему пришел новый P4 Extreme Edition 3,73 ГГц, который представляет из себя обычный процессор линейки 6xx, но с частотой системной шины 1066 МГц. Кэш 2-го уровня составляет все те же 2 Мбайт, а вот с кэшем 3-го уровня пришлось распрощаться.

Стоит отметить, что линейка 6хх будет дороже 500-х моделей при равных тактовых частотах.

Тестовый стенд
Процессоры Intel Pentium 4 560 (3,6 ГГц, 1 Мбайт кэша L2)
Intel Pentium 4 660 (3,6 ГГц, 2 Мбайт кэша L2)
Intel Pentium 4 Extreme Edition 3,73 ГГц (2 Мбайт кэша L2)
Материнская плата ASUS P5AD2-E Platinum (i925XE)
Память 2x512 Мбайт DDR2 SDRAM Corsair TwinX CM2X512A-5400C4 533 МГц
Общее аппаратное обеспечение
Видеокарта NVIDIA GeForce 6800 GT 256 Мбайт (PCIE x16)
Жесткий диск Western Digital WD740 Raptor (74 Гбайт, 8 Мбайт, 10 000 об/мин, SATA)
Оптический привод MSI MS-8216
Программное обеспечение
Драйвер для видеокарты NVIDIA Detonator 66.93
Драйвера для чипсета Intel Chipset Installation Utility 6.3.0.1007
DirectX 9.0c
ОС Windows XP Professional SP2
Стоимость процессоров в партиях от 1000 шт.
Процессор Тактовая частота Цена (доллары США)
Pentium 4 EE 3,73 ГГц 999
Pentium 4 EE 3,43 ГГц 999
Pentium 4 660 3,6 ГГц 605
Pentium 4 650 3,4 ГГц 401
Pentium 4 640 3,2 ГГц 273
Pentium 4 630 3,0 ГГц 224
Pentium 4 570 3,8 ГГц 637
Pentium 4 560 3,6 ГГц 417
Pentium 4 550 3,4 ГГц 278
Pentium 4 540 3,2 ГГц 218
Pentium 4 530 3,0 ГГц 178
PC Mark04 1.30
CPU Memory
AMD Athlon 64 4000+ 4535 5684
Intel Pentium 4 EE 3,73 ГГц 5743 6294
5525 5705
5495 5494

Гонка частот окончена

На протяжении многих лет мы привыкли к тому, что производители процессоров регулярно радовали нас увеличением тактовых частот - этот показатель стоял во главе угла. К концу 2004 года Intel планировала выпустить Pentium 4 с частотой 4 ГГц, но он так и не появился. Инженеры и руководство компании осознали, что не в гигагерцах счастье да и просто невозможно гнать частоту постоянно, тем более что ее увеличение не ведет к пропорциональному росту производительности системы.

У AMD ситуация похожа: вряд ли в этом году мы увидим процессор, который перешагнет порог в 3 ГГц. Да и зачем это нужно, если современные Athlon 64 со скоростями до 2,6 ГГц успешно конкурируют с продукцией Intel.

Обе компании сегодня работают над повышением эффективности и производительности своих процессоров за счет использования новых технологий, расширения их функций. Гонка за тактовыми частотами окончена. Собственно, 6хх-серия стала прекрасным тому примером.

Технические характеристики процессоров
Номер процессора Частота, ГГц FSB, МГц Кэш L2, Мбайт Технологии Intel
HT SS EM64T XD
Линейка Extreme Edition
Pentium 4 EE 3,73 ГГц 1066 2 + + + +
Pentium 4 EE 3,43 ГГц 1066 512 Кбайт + 2 Мбайт кэш L3 + - - -
Линейка 6xx
670 3,8 800 2 + + + +
660 3,6 800 2 + + + +
650 3,4 800 2 + + + +
640 3,2 800 2 + + + +
630 3 800 2 + + + +
Линейка 5xx
571 3,8 800 1 + - + +
570 J 3,8 800 1 + - - +
561 3,6 800 1 + - + +
560 J 3,6 800 1 + - - +
560 3,6 800 1 + - - -
551 3,4 800 1 + - + +
550 J 3,4 800 1 + - - +
550 3,4 800 1 + - - -
541 3,2 800 1 + - + +
540 J 3,2 800 1 + - - +
540 3,2 800 1 + - - -
531 3 800 1 + - + +
530 J 3 800 1 + - - +
530 3 800 1 + - - -
520 J 2,8 800 1 + - - +
520 2,8 800 1 + - - -
Far Cry (Cooler01)
Разрешение 1280x1024
AMD Athlon 64 4000+ 197,8
Intel Pentium 4 EE 3,73 ГГц 176,0
Intel Pentium 4 660 (3,8 ГГц) 167,7
Intel Pentium 4 560 (3,8 ГГц) 164,0
Doom 3 (demo1)
Разрешение 1024x768
AMD Athlon 64 4000+ 94,7
Intel Pentium 4 EE 3,73 ГГц 94,2
Intel Pentium 4 660 (3,8 ГГц) 90,0
Intel Pentium 4 560 (3,8 ГГц) 87,1
Wolfenstein - Enemy Territory
Разрешение 1024x768
AMD Athlon 64 4000+ 182,2
Intel Pentium 4 EE 3,73 ГГц 178,3
Intel Pentium 4 660 (3,8 ГГц) 168,7
Intel Pentium 4 560 (3,8 ГГц) 166,1

Заключение

Если сравнивать линейки 5хх и 6хх, то заключение будет вполне определенным: новые версии процессоров лучше, хотя удвоенный размер кэша не особо влияет на производительность. Зато благодаря функциям EM64T, XD-bit, Thermal Monitoring 2, Enhanced SpeedStep новые Pentium 4 выглядят очень перспективно. Большая производительность, внушительный набор дополнительных функций и разумное энергопотребление существенно меняют картину. Тем более что новинки полностью совместимы с уже привычными материнскими платами под Socket 775, единственное, что вам может потребоваться сделать, так это обновить BIOS.

До этого момента Intel можно было обвинить в некоторой медлительности внедрения новых технологий: AMD гораздо раньше реализовала 64-битные расширения, хотя реальное преимущество от нее до сих пор не очевидно. NX-bit и Cool"n"Quiet владельцы AMD также увидели довольно давно.

Впрочем, остается непонятным, почему Intel объявила столь высокую цену на новые процессоры: они существенно дороже старых версий.

Так или иначе, но в ближайшие месяцы от Intel стоит ждать куда более кардинальных обновлений линейки Pentium 4 - двухъядерные процессоры, технология виртуализации Vanderpool (VT) и многое другое.

Через несколько дней после официального представления AMD своего последнего процессора Athlon64 FX-53, Intel решила объявить о выпуске на рынок 3,4-ГГц версии Prescott, которая позиционируется на конкуренцию с Athlon64, а не с Athlon64 FX-53, несмотря на одинаковый размер кэша.

Хотя стратегия Intel по гонке тактовых частот пока оказывалась вполне успешной, сегодня становится всё труднее находить аргументы в пользу процессора Prescott, который плохо наращивает свою производительность по сравнению с чипами AMD, использующими встроенный контроллер памяти.

Да, Intel нужна быстрая платформа со всеми выпестованными особенностями типа Socket 775, PCI Express и памятью DDR2, но на тактовую частоту процессора уповать уже не приходится. Это урок, который Intel уже пришлось выучить на серверном рынке, поскольку AMD получает всё более широкую поддержку своего семейства Opteron. И Pentium 4 Prescott не слишком хорошо соответствует репутации Intel, ведь его тепловой пакет TDP составляет более сотни ватт - при этом процессор не даёт сколько-нибудь ощутимых преимуществ по сравнению с предшественником Northwood.

Intel, конечно же, не почивает на лаврах - сегодня компания находится в процессе внедрения нового степпинга D0 ядра Prescott, который позволит процессору достичь тактовой частоты вплоть до 4 ГГц - как и упоминается в планах компании. Поскольку не все 3,4-ГГц версии Prescott имеют степпинг D0, мы решили привести таблицу, которая поможет отличить старые и новые процессоры Prescott.

По информации Intel, последний степпинг позволит увеличивать тактовую частоту из-за внесённых оптимизаций потребления энергии. Однако тепловой пакет нового процессора не изменился и остался на уровне 103 Вт максимум. Хотя процессор и кажется улучшенным по сравнению с 3,2-ГГц версией, его тепловыделение всё ещё несколько непропорционально по отношению к тактовой частоте. В любом случае, при покупке следует быть готовым к высокому тепловыделению процессора.

CPU-Z правильно определяет новый процессор Pentium 4: Model 3, Stepping 3 (CPUID 0F34h). Перед нами старый степпинг C0.

Новый процессор нагревается чуть сильнее.

Pentium 4: обзор моделей

Как вы, наверняка, знаете, Pentium 4 Prescott является ядром Pentium 4 третьего поколения. Первое, под кодовым названием Willamette, приобрела немалую популярность из-за увеличения производительности по сравнению с Pentium III Tualatin, в то же время потребляя намного больше энергии.

Второе поколение ядра под названием Northwood изготавливалось по 130-нм техпроцессу - на сегодня его по-прежнему можно называть лучшим ядром Pentium 4, поскольку процессор обеспечивает приличную производительность и неплохие возможности по "разгону". Мы уже смогли заставить несколько процессоров Northwood работать на частоте больше 4 ГГц - причём с обычными кулерами.

Сегодня на рынке присутствует большое число процессоров Pentium 4, базирующихся на ядрах Northwood или Prescott. Тактовые частоты сегодня начинаются на отметке 2,4 ГГц и заканчиваются на 3,4 ГГц, причём на этом отрезке потребитель может выбирать 20 разных моделей. Чтобы вы смогли лучше представлять себе ситуацию с процессорами Pentium 4, мы свели все модели вместе в краткую таблицу:

Процессор FSB Частота ядра Ядро HT
Pentium 4 400 МГц 2,0, 2,2, 2,4, 2,6 ГГц Northwood Нет
Pentium 4 B 533 МГц 2,4 ГГц Northwood Нет
Pentium 4 533 МГц 2,26, 2,53, 2,66, 2,8 ГГц Northwood Нет
Pentium 4 533 МГц 3,06 ГГц Northwood Да
Pentium 4 C 800 МГц 2,4, 2,6, 2,8 ГГц Northwood Да
Pentium 4 800 МГц 3,0, 3,2, 3,4 ГГц Northwood Да
Pentium 4 A 533 МГц 2,8 ГГц Prescott Нет
Pentium 4 E 800 МГц 2,8, 3,0, 3,2, 3,4 ГГц Prescott Да

Чем дальше располагается буква по алфавиту, тем лучше процессор вы получите. Однако это относится только к сравнению двух различных моделей с одинаковой тактовой частотой - типа Pentium 4 на 2,4 ГГц и FSB400 в сравнении с Pentium 4 B на 2,4 ГГц и FSB533. Pentium 4 C работает на FSB800 и поддерживает Hyper-Threading. Единственным исключением является Pentium 4 3,06 ГГц, который работает на FSB533 - и является первым процессором, поддерживающим Hyper-Threading. Буква E обозначает модели Prescott с 1-Мбайт кэшем L2, в то же время версии этого ядра с FSB533 обозначаются буквой A.

Intel вводит номера моделей

Существует много причин, по которым лучше использовать модельные номера, а не тактовые частоты. Во-первых, в номере можно учесть множество технологических деталей, типа FSB, размера кэша, частоты или дополнительных функций - Hyper-Threading и т.д. Во-вторых, исчезнет путаница между разными версиями процессоров с одинаковой тактовой частотой - в результате чего обычный покупатель легко выберет самый быстрый процессор. В-третьих, в индустрии существует множество примеров успешного использования модельных номеров - скажем та же AMD с семейством Opteron 14x, 24x и 84x. Первая цифра номера указывает поддержку числа процессоров: 1 - для одного процессора, 2 - для двухпроцессорных систем и т.д. Цифра x может быть 2, 4, 6 и 8 - что указывает на частоты 1,6, 1,8, 2,0 и 2,2 ГГц.

Наконец, мы должны подумать о процессорах Intel Pentium M, тем более что вскоре появится новая версия с техпроцессом 90-нм (Dothan). Поскольку этот чип будет существенно быстрее Banias из-за увеличенных тактовых частот, Intel будет очень трудно аргументировать покупку 3-ГГц настольного процессора Prescott, который в некоторых приложениях работает медленнее 2,0-ГГц Dothan.

По нашим источникам, тактовые частоты должны полностью исчезнуть из названий процессоров Intel. Поскольку число доступных моделей процессоров вряд ли уменьшится, такой шаг нам кажется вполне логичным. Будущая система именования процессоров будет выглядеть примерно так: процессор Pentium 4 будет дополняться номером 5xx, а линейка Celeron - номером Celeron 3xx.

Мобильные процессоры Настольные процессоры
Производительный сегмент рынка Pentium M 755 (2,0 ГГц)
Pentium M 745 (1,8 ГГц)
Pentium M 735 (1,7 ГГц)
Pentium M 725 (1,6 ГГц)
Pentium M 715 (1,5 ГГц)
Pentium 4 Extreme Edition
Массовый сегмент рынка Pentium 4 Mobile Pentium 4 560 (3,6 ГГц)
Pentium 4 550 (3,4 ГГц)
Pentium 4 540 (3,2 ГГц)
Pentium 4 530 (3,0 ГГц)
Pentium 4 520 (2,8 ГГц)
"Бюджетный" сегмент рынка Celeron M 340 (1,5 ГГц)
Celeron M 330 (1,4 ГГц)
Celeron M 320 (1,3 ГГц)
Celeron D 340 (2,93 ГГц)
Celeron D 330 (2,8 ГГц)
Celeron D 320 (2,66 ГГц)
Celeron D 310 (2,53 ГГц)

Intel Pentium 4 («Интел Пентиум 4») - 32-битный микропроцессор седьмого поколения архитектуры x86, разработанный компанией Intel в ноябре 2000. Не является продолжением линии P6 (см. Pentium Pro, Pentium II, Pentium III) и выполнен на принципиально новом ядре.

От Pentium III отличается следующими характеристиками: поддержка технологии NetBurst; 144 новые инструкции SSE2, направленные на поддержку мультимедиа, видео и трехмерной графики, Интернет-технологий; 20-ступенчатый конвейер; улучшенный модуль предсказания переходов; 128-битная системная шина с тактовой частотой 100 МГц (эффективная частота 400 МГц); 2 АЛУ, работающих на удвоенной частоте ядра; кэш-память первого уровня с отслеживанием исполнения команд (Execution Trace Cache); 256 килобайт интегрированной кэш-памяти второго уровня с повышенной пропускной способностью (Advanced Transfer Cache); возможность использования производительной памяти RDRAM.

Несмотря на все улучшения, первые модели Pentium 4 (на ядре Willamette) показывали меньшую производительность, чем Pentium III или AMD Athlon с более низкими частотами. Низкая производительность, необходимость использования новых системных плат и дорогой памяти, а также дороговизна самих процессоров отрицательно сказалась на их популярности. Выпускались они по 0, 18-микронной технологии с частотами от 1, 3 до 2 ГГц и устанавливались в разъем Socket 423. В марте 2001 вышла серверная версия - Xeon, а в августе появились модели Pentium 4 для разъемов Socket 478, поддерживающие память SDRAM (вместо дорогостоящей RDRAM). Это позволило снизить цены на компьютеры с новыми процессорами, но еще сильней уменьшило их производительность.

В январе 2002, вслед за выходом конкурирующего AMD Athlon XP, компания выпустила новое ядро Northwood. Изготовлялось оно по 0, 13-микронной технологии, что позволило разместить на кристалле 512 килобайт кэш-памяти L2. В апреле к новому ядру была добавлена поддержка шины с частотой 133/533 МГц.

В этом же месяце была представлена мобильная версия процессора - Pentium 4-M, а в мае на старом ядре Willamette вышли бюджетные Celeron. В ноябре поступили в продажу первые модели на ядре Northwood с поддержкой технологии Hyper-Threading, а в апреле 2003 - шины 200/800 МГц. Процессоры на этом ядре выпускались с частотой от 1, 6 до 3, 4 ГГц. Проделанные улучшения позволили процессорам догнать и перегнать по производительности Athlon XP.

В сентябре 2003, за неделю да выхода Athlon 64 FX, появился высокопроизводительный процессор от Intel - Pentium 4 Extreme Edition. В феврале 2004 появилось новое ядро Prescott, выполненное по 0, 09-микронной технологии. По сравнению с предыдущим ядром, был увеличен конвейер (до 31 ступени) и кэш L2 (до 1 мегабайт), добавлены инструкции SSE3. В августе были добавлены инструкции EM64T (для 64-битных вычислений), а разъем сменился на Socket 775. В сентябре появилась поддержка технологии NX-Bit, а в феврале 2005 вышла новая версия этого ядра - Prescott 2M. Буквы 2M обозначали 2 мегабайта; именно таким стал размер интегрированной кэш-памяти L2. Кроме того, была добавлена поддержка технологии Enhanced SpeedStep, позволяющая операционной системе регулировать тактовую частоту процессора.

На ядрах Prescott и Prescott 2M выходили процессоры с частотами от 2, 4 до 3, 8 ГГц. К этому времени стало ясно, что производительность процессоров Pentium 4 зависит не только от их тактовой частоты. Поэтому, начиная с Prescott, процессорам дают условные обозначения, состоящие из нескольких букв и цифр (например, 519J), в которых зашифрованы такие факторы, как частота системной шины, размер кэш-памяти и поддерживаемые технологии.

В мае 2005 был представлен двухъядерный аналог Pentium 4 - Pentium D. Новая версия ядра для Pentium 4 называлась Cedar Mill. Появилась она в январе 2006 и представляла собой точную копию Prescott 2M, изготовленную по 0, 065-микронной технологии. В это же время появились процессоры, основанные на более старой архитектуре P6 - Intel Core Solo и Intel Core Duo. .