Андроид wifi модуль esp8266 подключение к ардуино. Arduino - освоение WiFi модуля. Для работы модуля требуется

Анастасия Сергеева

Как написать песню так, чтобы она стала хитом?

Поиски универсального способа, как написать песню идеально, вряд ли к чему-то приведут; посмотрите даже на авторов признанных музыкальных шедевров — это все разные люди с отличающимся жизненным опытом, чувствами и мировоззрением, что играет важную роль в создании музыки. Но определенные технические приемы написания песен все же существуют. Какие именно — читайте далее.

С чего начать: текст или музыка?

Первый подход подразумевает написание текста, а затем накладывание на него музыки. Некоторым этот способ кажется непростым, ведь не каждое стихотворение можно красиво положить на музыку. Кому-то, наоборот, нравится этот способ больше, так как в готовом тексте потом легче музыкально подчеркнуть какие-то ключевые моменты.

При втором подходе на первый план выходит создание музыки, в то время как вместо текста автор может использовать бессмысленный набор слов с целью временно заполнить вокальную партию и правильно аранжировать песню. Именно таким образом Пол Маккартни написал всем известную песню «Yesterday»: мелодия пришла к нему во сне, поэтому он решил ее поскорее написать, наспех придумав текст под названием «Scrambled eggs» («Яичница-болтунья»).

Нет смысла ограничивать себя только одним из этих подходов — пробуйте оба, чтобы понять, какой вам удобнее. Единственное, что, начав с текста, вам нужно будет сразу подумать над темой композиции, а начав с музыки, написать под нее текст соответственно настроению композиции — грустный или веселый.

О чем писать

Подумайте, какая тема могла бы быть действительно интересна слушателям? Иногда люди слушают даже не самые удачные в музыкальном и вокальном плане песни просто потому, что им близок сам смысл, который она в себе несет.

Если вы решили написать песню в жанре электронной или поп-музыки, не пишите о слишком сложных вещах, которые будет трудно понять. Для таких направлений, как правило, наиболее характерны темы любви и развлечений.

В стиле кантри и блюз часто пишут тексты с элементами самобичевания и жалоб на жизнь. В хип-хоп текстах обычно встречаются показательное тщеславие, бытовая, сексуальная, а также социально-политическая тематика. Довольно разнообразны в этом плане стили рок-музыки — здесь встречаются самые разнообразные темы, от любви до социальной сатиры.

Придумайте название

Название песни — слово или строка, которая почти всегда встречается в самой песне, чаще всего в припеве, заставляя слушателя хорошенько ее запомнить. Хорошее название должно как бы суммировать всю песню целиком, выражая ее главную мысль.

Хороший заголовок не должен быть длинным — от одного слова до пяти. Наиболее характерно это для жанра поп-музыки, где названия по определению должны быть лаконичными и запоминающимися, чего длинное название в большинстве случаев гарантировать не может. Зато во многих стилях рок-музыки это вполне приемлемо: длинные заголовки песен стали фишкой таких групп, как, например, The Smiths и Fall Out Boy.

Кому-то проще сразу придумать название, а затем написать под него текст, а кто-то сначала пишет всю лирику целиком, и уже потом думает над заголовком — выбирайте, как вам удобнее.

Структура песни

Самый распространенный принцип построения песен — куплет-припев-куплет-припев-бридж-припев.

Но есть еще варианты: куплет-припев-куплет-припев-припев; куплет-куплет-припев-куплет-припев-бридж-припев; куплет-куплет-бридж-куплет; куплет-припев-куплет-припев-куплет-припев-припев — именно из этих нескольких элементов состоят практически все успешные песни.

В куплетах, как правило, раскрывается тема композиции, ее сюжет, который в итоге подведет слушателя к названию; мелодия каждого куплета одинаковая, а текст разный.

Припев — самая яркая и динамичная часть в песне. Он отличается от куплетов и мелодически, и гармонически. Неудачный припев может испортить всю песню.

Часто перед припевом идет так называемый предварительный припев (Pre-chorus), который иногда называют переходным мостиком или развитием. Его функция заключается в том, чтобы подготавливать слушателя к самому припеву.

Вставка, которая соединяет две части в песне, например, второй куплет с припевом и третий припев, называется бридж (Bridge). Он используется как пауза перед финальной частью трека и мелодически отличается от куплетов. Он не всегда содержит в себе текст и может исполняться в виде инструментального проигрыша.

Какую структуру выберет автор, зависит от его личных предпочтений, от темы, которую он стремится раскрыть, от настроения, которое хочет передать. Обратите внимание на структуру популярных и своих любимых композиций, возможно, это поможет определиться с вашей песней.

Создание музыки

Чтобы написать музыку к песне, понадобится научиться играть на одном из музыкальных инструментов, например, на пианино или гитаре — самых распространенных инструментах, которые используются для первичного создания мелодии.

После того, как вы придумали мелодию, нужно заняться ее аранжировкой. Аранжировка — это аккомпанемент к основному мелодическому ряду. Именно аранжировка делает песню многогранной, объемной и широко звучащей.

Впрочем, осваивать игру на музыкальном инструменте не обязательно, если весь процесс создания аранжировки вы хотите доверить профессиональному музыканту. При наличии развитого музыкального слуха вам будет достаточно лишь сочинить главные мелодии композиции и записать их на диктофон аранжировщику, который и будет потом иметь дело с этим материалом.

Если же вы хотите самостоятельно контролировать аранжировку, вы должны как минимум понимать, что такое мелодия, гармония, ритм, секция баса, обладать некоторыми знаниями о жанрах и стилях музыки, знать их ритмические и фактурные формулы.

Аранжировка песни начинается с определения музыкального стиля. Возможно, впоследствии вы добавите в нее элементы других стилей, что вполне закономерно, так как в своем чистом виде музыкальные направления теперь встречаются не так часто, но сейчас ваша цель — определиться с основным вектором движения.

Для разных стилей музыки характерно и использование разных инструментов, к примеру, для рок-музыки это звучание электрогитар и ударных, для кантри — акустическая гитара, скрипка и банджо, а электронную музыку сейчас вообще можно полностью написать с помощью специальных программ на компьютере.

При выборе музыкальных партий для вашей песни стоит учитывать и особенности будущего вокала, чтобы обилие разных инструментов не заглушало его.

  • Чтобы написать хорошую песню, вам надо научиться писать стихи . Стихотворный размер, способы рифмовки — все это используется и здесь, только с тем отличием, что текст надо будет потом совместить с музыкой. Поэтому многие авторы предпочитают писать сначала музыку, а уже затем подгонять под нее слова.
  • В каждом куплете должна раскрываться новая информация — для повторения существует припев. Куплет и припев должны четко друг от друга отличаться.
  • Эффективный текст — логически связанный и последовательный, а успешная песня не длится долго. Слушатель должен без труда понимать, о чем идет речь в песне, и у вас есть не более 4-х минут, чтобы это сделать.

  • Всегда держите при себе диктофон — никто не знает, когда вам в голову придет удачная мелодия, которую нужно будет срочно записать. Не забудьте и про блокнот — записывайте туда все идеи, которые приходят вам в голову в течение дня, а потом анализируйте и отсеивайте ненужное.
  • Мелодия песни должна быть простой, с запоминающимся битом, чтобы человек мог ее легко напеть. Возьмите себе на заметку такие популярные песни как «Wannabe» группы Spice Girls, «Beat it» Майкла Джексона, «Pretty Woman» Роя Орбисона — согласно исследованиям, их мотив запоминается слушателям быстрее, чем за три секунды.
  • Если у вас есть такая возможность, отдайте написанную песню на суд не родным и друзьям, а профессиональным музыкантам, которые работают в том же стиле, в каком и написан трек.

Помните: если вы не делаете кавер-версию, а пишете собственную песню — плагиат недопустим. Конечно, некоторые мелодии получаются похожими друг на друга случайно, да и нот в мире, как говорится, только семь, но умышленное заимствование идей становится очевидным всегда.


Забирай себе, расскажи друзьям!

Читайте также на нашем сайте:

Показать еще

Бывало ли так, что вы слышали где-то хорошую песню и думали: «Как здорово было бы ее сыграть!». И действительно, зная основы нотной записи, можно открыть для себя бесконечные музыкальные возможности. Как выучить ноты - узнайте в нашей статье.

Часть 1. Подготовка ESP8266

Зачем эта статья? На хабре уже есть ряд статей про использование ESP в разных конфигурациях, но почему-то без подробностей о том, как именно все подключается, прошивается и программируется. Типа «я взял ESP, две пальчиковые батарейки, DHT22, закинул в коробку, потряс часик и термометр готов!». В итоге, получается странно: те, кто уже работают с ESP не видят в сделанном ничего необычного, а те, кто хочет научиться - не понимают с чего начать. Поэтому, я решил написать подробную статью о том, как подключается и прошивается ESP, как его связать с Arduino и внешним миром и какие проблемы мне попадались на этом пути. Ссылки на Aliexpress привожу лишь для представления порядка цен и внешнего вида компонентов.

Итак, у меня было два микроконтроллера, семь разных сенсоров, пять источников питания, температурный датчик DHT22 и целое множество проводков всех сортов и расцветок, а так же бессчетное количество сопротивлений, конденсаторов и диодов. Не то, чтобы все это было необходимо для термометра, но если уж начал заниматься микроэлектроникой, то становится трудно остановиться.


Питание

Для работы ESP8266 нужно напряжение 3.3В и ток не ниже 300мА. К сожалению, Arduino Uno не в состоянии обеспечить такой ток, как не в состоянии обеспечить его и переходники USB-UART (программаторы) типа FT232RL - их предел около 50мА. А значит придется организовать отдельное питание. И лучше бы, чтобы Arduino тоже работал от 3.3В, чтобы избежать проблем типа «я подал пятивольтовый сигнал на вывод RX модуля ESP, почему пахнет паленой пластмассой?».

Есть три решения.

2. Купить готовый модуль с регулятором напряжения, понижающий 5В до 3.3В. Пожалуй, это самый удобный вариант.

3. Собрать модуль самому из регулятора AMS1117 и одного танталового конденсатора на 22мкФ.

Я выбрал третий пункт, поскольку мне часто нужно 3.3В, я жадный и я люблю встраивать регуляторы прямо в блоки питания.

С AMS1117 все просто: если положить его текстом вверх, то напряжение на ногах растет слева направо: 0(Gnd), 3.3В (Vout), 5В (Vin).
Между нулем и выходом нужен танталовый конденсатор на 22мкФ (так по инструкции , что будет если поставить электролитический - я не проверял). У танталового SMD-конденсатора плюс там, где полоска. Немного чудовищной пайки совершенно не предназначенных для такого варварства SMD-компонентов и:

Обязательно проверяйте выходное напряжение. Если оно значительно меньше 3.3В (например, 1.17В) - дайте регулятору остыть после пайки и проверьте контакты. Если поставите конденсатор больше, чем на 22мкФ, то мультиметр может показать более высокое напряжение.

Почему именно AMS1117? Он широко используется. Его вы можете найти почти везде, даже в Arduino Uno, как правило, стоит AMS1117-5.0.
Если вы знаете что-то схожих габаритов и цены, еще более простое в использовании - напишите, пожалуйста.

Важный момент. Не знаю уж почему, но AMS1117 крайне капризно относится к качеству соединений. Контакты должны быть надежны. Лучше - пропаяны. Иначе он на тестах выдает 3.3В, но под нагрузкой не выдает ничего.

Подключение ESP8266

Я выбрал модель 07, поскольку у нее отличный металлический экран, который работает как защита от наводок, механических воздействий и как радиатор. Последнее обеспечивает разницу между сгоревшим модулем и просто нагревшимся. Кроме того, есть гнездо под внешнюю антенну.

Чтобы чип запустился нужно соединить VCC и CH_P через резистор 10кОм. Если такого нет, то сгодится любой из диапазона 1-20кОм. Кроме того, конкретно модель 07 еще требует, чтобы GPIO15 (самый ближний к GND) был «на земле» (этого на картинке не видно, потому что соединение с другой стороны).

Теперь берем переходник USB-UART, переключаем его на 3.3В и подключаем RX к TX, TX к RX и GND к «земле» (у меня без этого передача нестабильна). Если вы не можете переключить на 3.3В, то можно использовать простейший резисторный делитель напряжения: соедините ESP RX с TX переходника через сопротивление в 1кОм, а ESP RX с «землей» через 2кОм. Существует масса более сложных и более надежных способов связать 3.3В и 5В, но в данном случае и так сойдет.

И соединяемся на скорости 9600 по нужному COM-порту (можно посмотреть в диспетчере устройств).

Я использую SecureCRT, Putty тоже подойдет, а ценители Линукса и так знают, что делать и где смотреть.

(AT+RST перезагружает чип)

Если ничего не происходит - выключите - включите питание, если все равно ничего не происходит - проверьте соответствие TX/RX, попробуйте переставить их местами или припаять к чипу.

Иногда чип в ходе издевательств экспериментов зависает и тогда его надо обесточить, в том числе отключив и переходник (например, вытащив его из USB), поскольку чипу хватает даже поступающих крох питания, чтобы упорно тупить и не работать.

Иногда фокусы с переходником вешают USB-порт. Можно в качестве временного решения использовать другой USB-порт, но вообще лучше перезагрузить компьютер.

Иногда при этом меняется номер COM-порта. Под Linux это можно решить с помощью udev.

Если вместо текста приходит мусор, то проверьте настройки скорости. Некоторые старые чипы работают на 115200.

На старте чип нагревается, но если он реально горячий и продолжает греться - отключайте и проверяйте все соединения. Чтобы на корпус не попадало +3.3В, чтобы 5В к нему вообще никуда не приходили, чтобы «земля» переходника была соединена с «землей» чипа. Модели с металлическим экраном очень трудно сжечь (но нет ничего невозможного), а на модели без экранов жалуются, мол даже небольшая ошибка может стать последней в жизни чипа. Но это я не проверял.

Прошивка

Мой выбор - NodeMCU . У нее проблемы с памятью и поддержкой железа, но это многократно окупается простотой кода и легкостью отладки.

Так же потребуются NodeMCU flasher и LuaLoader (последнее - опционально, есть и другие клиенты для работы с этой прошивкой).

Выключаем чип. Подсоединяем GPIO0 к земле и включаем чип:

Если ничего не происходит и поля AP MAC/STA MAC пустые - проверьте еще раз, чтобы GPIO0 был на «земле».
Если прошивка началась, но зависла - посмотрите в закладке Log, у меня почему-то конкретно этот чип отказался прошиваться на FT232RL, но зато без проблем прошился на PL2303HX на скорости 576000. PL2303HX в указанном варианте не имеет переключения на 3.3В, чтобы им воспользоваться нужно открыть пластиковый корпус и перепаять провод с 5V на 3.3V, есть варианты с пятью выходами : 3.3, 5, TX, RX, Gnd.


Обратите внимание: STA MAC поменялся. Подозреваю, что flasher его неправильно показывал, но требуется проверка.

Для экономии сил и нервов можно взять готовый или полуготовый вариант.

Есть одноразовые адаптеры с удобной разводкой.
Есть

Микросхема ESP8266 – один из самых популярных инструментов для организации беспроводной связи в проектах умного дома. С помощью беспроводного контроллера можно организовывать связь по интерфейсу WiFi, обеспечивая проектам Arduino выход в интернет и возможность дистанционного управления и сбора данных. На основе ESP8266 созданы такие популярные платы как WeMos и NodeMcu, а также огромное количество самодельных проектов. В этой статье, мы узнаем, что из себя представляет ESP82266, какие бывают ее разновидности, как работать с ESP8266 в среде Arduino IDE.

ESP8266 – микроконтроллер с интерфейсом WiFi, который имеет возможность исполнять программы из флеш-памяти. Устройство было выпущено в 2014 году китайской фирмой Espressif и практически сразу же стало популярным.

Контроллер недорогой, обладает небольшим количеством внешних элементов и имеет следующие технические параметры:

  • Поддерживает Wi-Fi протоколы 802.11 b/g/n с WEP, WPA, WPA2;
  • Обладает 14 портами ввода и вывода, SPI, I2C, UART, 10-бит АЦП;
  • Поддерживает внешнюю память до 16 МБ;
  • Необходимое питание от 2,2 до 3,6 В, потребляемый ток до 300 мА в зависимости от выбранного режима.

Важной особенностью является отсутствие пользовательской энергонезависимой памяти на кристалле. Программа выполняется от внешней SPI ПЗУ при помощи динамической загрузки необходимых элементов программы. Доступ к внутренней периферии можно получить не из документации, а из API набора библиотек. Производителем указывается приблизительное количество ОЗУ – 50 кБ.

Особенности платы ESP8266:

  • Удобное подключение к компьютеру – через USB кабель, питание от него же;
  • Наличие встроенного преобразователя напряжения 3,3В;
  • Наличие 4 Мб флеш-памяти;
  • Встроенные кнопки для перезагрузки и перепрошивки;
  • Все порты выведены на плату на две гребенки с шагом 2,5 мм.

Сферы применения модуля ESP8266

  • Автоматизация;
  • Различные системы для умного дома: Беспроводное управление, беспроводные розетки, управление температурой, дополнение к сигнализационным системам;
  • Мобильная электроника;
  • ID метки;
  • Детские игрушки;
  • Mesh-сети.

Распиновка esp8266

Существует огромное количество разновидностей модуля ESP8266. На рисунке представлены некоторые из них. Наиболее популярным вариантом является ESP 01.

Исполнение программы требуется задавать состоянием портов GPIO0, GPIO2 и GPIO15, когда заканчивается подача питания. Можно выделить 2 важных режима – когда код исполняется из UART (GPIO0 = 0, GPIO2 = 1 и GPIO15 = 0) для перепрошивки флеш-карты и когда исполняется из внешней ПЗУ (GPIO0 = 1, GPIO2 = 1 и GPIO15 = 0) в штатном режиме.

Распиновка для ESP01 изображена на картинке.

Описание контактов:

  • 1 – земля, 8 – питание. По документации напряжение подается до 3,6 В – это важно учесть при работе с Ардуино, на которую обычно подают 5 В.
  • 6 – RST, нужна для перезагрузки микроконтроллера при подаче на него низкого логического уровня.
  • 4 – CP_PD, также используется для перевода устройства в энергосберегающий режим.
  • 7 и 0 – RXD0 и TXD0, это аппаратный UART, необходимый для перепрошивки модуля.
  • 2 – TXD0, к этому контакту подключается светодиод, который загорается при низком логическом уровне на GPIO1 и при передаче данных по UART.
  • 5 – GPIO0, порт ввода и вывода, также позволяет перевести устройство в режим программирования (при подключении порта к низкому логическому уровню и подачи напряжения) .
  • 3 – GPIO2, порт ввода и вывода.

Распиновка ESP-12

Основные отличия Ардуино от ESP8266

  • ESP8266 имеет больший объем флеш-памяти, при этом у ESP8266 отсутствует энергонезависимая память;
  • Процессор ESP8266 быстрее, чем у Ардуино;
  • Наличие Wi-Fi у ESP8266;
  • ESP8266 потребляеn больше тока, чем для Ардуино;

Программирование ESP8266 в Arduino IDE

Программный комплект разработчика esp8266 включает в себя:

  • Компилятор из пакета GNU Compiler Collection.
  • Библиотеки, стеки протоколов WiFi, TCP/IP.
  • Средство загрузки информации в программу контроллера.
  • Операционная IDE.

Изначально модули ESP8266 поставляются с прошивкой от фирмы-изготовителя. С ее помощью можно управлять модулем с внешнего микроконтроллера, реализовывать работу с Wi-Fi как с модемом. Также существует множество других готовых прошивок. Некоторые из них позволяют настраивать работу модуля при помощи WEB-интерфейса.

Можно программировать из среды Arduino IDE. При ее помощи можно легко писать скетчи и загружать их в ESP8266, прошивать ESP8266, при этом не требуется сама плата Ардуино. Arduino IDE поддерживает все виды модулей ESP8266.

В настоящий момент для ESP8266 можно реализовать следующие функции:

  • Основные функции языка Wiring. Управлять портами GPIO можно точно так же, как и пинами на плате Ардуино: pinMode, digitalRead, digitalWrite, analogWrite. Команда analogRead(А0) позволяет считать значения АЦП. При помощи команды analogWrite (pin, value) можно подключить ШИМ на нужном выходе GPIO. При value=0 ШИМ отключается, максимальное значение достигает константы, равной 1023.С помощью функций attachInterrupt, detachInterrupt можно выполнять прерывание на любом порте GPIO, кроме 16.
  • Тайминг и delay. Используя команды millis и micros можно вернуть мс и мкс, которые прошли с момента старта. Delay позволяет приостановить исполнение программы на нужное время. Также функция delay(…) позволяет поддерживать нормальную работу Wi-Fi, если в скетче присутствуют большие элементы, которые выполняются более 50 мс. Yield() – аналог функции delay(0).
  • Serial и Serial1 (UART0 и UART1). Работа Serial на ESP8266 аналогична работе на ардуино. Запись и чтение данных блокируют исполнение кода, если FIFO на 128 байт и программный буфер на 256 байт заполнены. Объект Serial пользуется аппаратным UART0, для него можно задать пины GPIO15 (TX) и GPIO13 (RX) вместо GPIO1(TX) и GPIO3(RX). Для этого после функции Serial.begin(); нужно вызвать Serial.swap();. Аналогично Serial1 использует UART1, который работает на передачу. Необходимый пин для этого GPIO2.
  • Макрос PROGMEM. Его работа аналогична работе в Ардуино. Позволяет перемещать данные read only и строковые постоянные во flash-память. При этом в ESP8266 не сохраняются одинаковые константы, что приводит к дополнительной трате флеш-памяти.
  • I2C. Перед началом работы с шиной I2C выбираются шины с помощью функции Wire.pins(int sda, int scl).
  • SPI, OneWire – поддерживаются полностью.

Использование esp8266 для связи Ардуино по WiFi

Перед подключением к Ардуино важно помнить, что у ESP8266 напряжение питания не может быть выше 3,6, в то время как на пате Ардуино напряжение равно 5 В. Соединять 2 микроконтроллера нужно с помощью резистивных делителей. Перед подключением модуля нужно ознакомиться с распиновкой выбранного ESP8266. Схема подключения для ESP8266-01 представлена на рисунке.

3,3 В с Ардуино – на Vcc&CH_PD на модуле ESP8266, Земля с Ардуино – к земле с ESP8266, 0 – TX, 1 – RX.

Для поддержки стабильной работы ESP8266 необходим источник постоянного напряжения на 3,3 В и максимальный ток 250 мА. Если питание происходит от конвертера USB-TTL, могут происходить неполадки и сбои в работе.

Работа с библиотекой Wi-Fi для ESP8266 схожа с библиотекой для обыкновенного шилда. Имеется несколько особенностей:

  • mode(m) – для выбора одного из трех режимов: клиент, точка доступа или оба режима единовременно.
  • softAP(ssid) – нужен для создания открытой точки доступа.
  • softAP(ssid, password) – создает точку доступа с паролем, который должен состоять не менее чем из 8 знаков.
  • WiFi.macAddress(mac) и WiFi.softAPmacAddress(mac)– определяет МАС адрес.
  • WiFi.localIP() и WiFi.softAPIP() – определение IP адреса.
  • printDiag(Serial); – позволят узнать данные о диагностике.
  • WiFiUDP – поддержка передачи и приема multicast пакета в режиме клиента.

Работа выполняется по следующему алгоритму:

  • Подключение USB-TTL к USB и к ESP.
  • Запуск Arduino IDE.
  • Выбрать в меню инструменты нужный порт, плату, частоту и размер flash-памяти.
  • Файл - Примеры - ESP8266WiFi - WiFiWebServer.
  • Записать в скетче SSID и пароль сети Wi-Fi.
  • Начать компиляцию и загрузку кода.
  • Дождаться окончания процесса прошивки, отсоединить GPIO0 от земли.
  • Поставить скорость 115200.
  • Произойдет подключение, будет записан адрес IP.
  • Открыть браузер, ввести в адресной строке номер IP/gpio/1
  • Посмотреть монитор порта, если к выходу GPIO2 подключен светодиод, он должен загореться.

NodeMCU на базе esp8266

NodeMCU – это платформа, основанная на базе модуля esp8266. Используется для управления схемой на расстоянии при помощи интернета через Wi-Fi. Плата малогабаритная, компактная, стоит дешево, на лицевой стороне имеется разъем для USB. Рядом кнопки для отладки и перезагрузки микроконтроллера. Также установлен чип ESP8266. Напряжение питания – от 5 до 12 В, желательно подавать более 10 В.

Большим преимуществом платы является ее малое энергопотребление. Нередко их используют в схемах с автономным питанием. На плате расположены всего 11 портов общего назначения, из них некоторые имеют специальные функции:

  • D1 и D2 – для интерфейса I2C/ TWI;
  • D5-D8- для интерфейса SPI;
  • D9, D10 – для UART;
  • D1-D10 – могут работать как ШИМ.

Платформа имеет современное API для аппаратного ввода и вывода. Это позволяет сократить количество действий во время работы с оборудованием и при его настройке. С помощью прошивки NodeMCU можно задействовать весь рабочий потенциал для быстрой разработки устройства.

WeMos на базе esp8266

WeMos – еще один вид платформы, основанный на базе микроконтроллера esp8266. Соответственно, имеется Wi-Fi модуль, поддерживается Arduino IDE, имеется разъем для внешней антенны. Плата имеет 11 цифровых входов/выходов, которые (кроме D0) поддерживают interrupt/pwm/I2C/one-wire. Максимальное напряжение питания достигает 3,3 В. Также на платформе присутствует USB разъем. Аналоговый вход 1 с максимальным напряжением 3,2В.

Для работы с модулем нужно установить драйвер CH340 и настроить Ардуино IDE под ESP8266. Для этого нужно в меню настройки в строке «дополнительная ссылка для менеджера плат» добавить адрес http://arduino.esp8266.com/stable/package_esp8266com_index.json.

После этого требуется найти пакет esp8266 by ESP8266 и установить его. Затем нужно выбрать в меню инструменты микроконтроллер Wemos D1 R2 и записать нужный скетч.

Выводы по ESP8266

С помощью плат на основе микросхемы ESP8266 вы можете добавить в свои проекты возможности “большого интернета”, сделав их гораздо более интеллектуальными. Дистанционное управление, сбор и анализ данных на сервере, обработка голоса и работа с изображением – все это становится доступным, когда мы подключаем наш проект по WiFi к интернету. В следующих статьях мы подробно рассмотрим то, как можно программировать устройства на базе esp8266, а также уделим внимание таким популярным платам как WeMos и NodeMcu.

Часть 1. Подготовка ESP8266

Зачем эта статья? На хабре уже есть ряд статей про использование ESP в разных конфигурациях, но почему-то без подробностей о том, как именно все подключается, прошивается и программируется. Типа «я взял ESP, две пальчиковые батарейки, DHT22, закинул в коробку, потряс часик и термометр готов!». В итоге, получается странно: те, кто уже работают с ESP не видят в сделанном ничего необычного, а те, кто хочет научиться - не понимают с чего начать. Поэтому, я решил написать подробную статью о том, как подключается и прошивается ESP, как его связать с Arduino и внешним миром и какие проблемы мне попадались на этом пути. Ссылки на Aliexpress привожу лишь для представления порядка цен и внешнего вида компонентов.

Итак, у меня было два микроконтроллера, семь разных сенсоров, пять источников питания, температурный датчик DHT22 и целое множество проводков всех сортов и расцветок, а так же бессчетное количество сопротивлений, конденсаторов и диодов. Не то, чтобы все это было необходимо для термометра, но если уж начал заниматься микроэлектроникой, то становится трудно остановиться.


Питание

Для работы ESP8266 нужно напряжение 3.3В и ток не ниже 300мА. К сожалению, Arduino Uno не в состоянии обеспечить такой ток, как не в состоянии обеспечить его и переходники USB-UART (программаторы) типа FT232RL - их предел около 50мА. А значит придется организовать отдельное питание. И лучше бы, чтобы Arduino тоже работал от 3.3В, чтобы избежать проблем типа «я подал пятивольтовый сигнал на вывод RX модуля ESP, почему пахнет паленой пластмассой?».

Есть три решения.

2. Купить готовый модуль с регулятором напряжения, понижающий 5В до 3.3В. Пожалуй, это самый удобный вариант.

3. Собрать модуль самому из регулятора AMS1117 и одного танталового конденсатора на 22мкФ.

Я выбрал третий пункт, поскольку мне часто нужно 3.3В, я жадный и я люблю встраивать регуляторы прямо в блоки питания.

С AMS1117 все просто: если положить его текстом вверх, то напряжение на ногах растет слева направо: 0(Gnd), 3.3В (Vout), 5В (Vin).
Между нулем и выходом нужен танталовый конденсатор на 22мкФ (так по инструкции , что будет если поставить электролитический - я не проверял). У танталового SMD-конденсатора плюс там, где полоска. Немного чудовищной пайки совершенно не предназначенных для такого варварства SMD-компонентов и:

Обязательно проверяйте выходное напряжение. Если оно значительно меньше 3.3В (например, 1.17В) - дайте регулятору остыть после пайки и проверьте контакты. Если поставите конденсатор больше, чем на 22мкФ, то мультиметр может показать более высокое напряжение.

Почему именно AMS1117? Он широко используется. Его вы можете найти почти везде, даже в Arduino Uno, как правило, стоит AMS1117-5.0.
Если вы знаете что-то схожих габаритов и цены, еще более простое в использовании - напишите, пожалуйста.

Важный момент. Не знаю уж почему, но AMS1117 крайне капризно относится к качеству соединений. Контакты должны быть надежны. Лучше - пропаяны. Иначе он на тестах выдает 3.3В, но под нагрузкой не выдает ничего.

Подключение ESP8266

Я выбрал модель 07, поскольку у нее отличный металлический экран, который работает как защита от наводок, механических воздействий и как радиатор. Последнее обеспечивает разницу между сгоревшим модулем и просто нагревшимся. Кроме того, есть гнездо под внешнюю антенну.

Чтобы чип запустился нужно соединить VCC и CH_P через резистор 10кОм. Если такого нет, то сгодится любой из диапазона 1-20кОм. Кроме того, конкретно модель 07 еще требует, чтобы GPIO15 (самый ближний к GND) был «на земле» (этого на картинке не видно, потому что соединение с другой стороны).

Теперь берем переходник USB-UART, переключаем его на 3.3В и подключаем RX к TX, TX к RX и GND к «земле» (у меня без этого передача нестабильна). Если вы не можете переключить на 3.3В, то можно использовать простейший резисторный делитель напряжения: соедините ESP RX с TX переходника через сопротивление в 1кОм, а ESP RX с «землей» через 2кОм. Существует масса более сложных и более надежных способов связать 3.3В и 5В, но в данном случае и так сойдет.

И соединяемся на скорости 9600 по нужному COM-порту (можно посмотреть в диспетчере устройств).

Я использую SecureCRT, Putty тоже подойдет, а ценители Линукса и так знают, что делать и где смотреть.

(AT+RST перезагружает чип)

Если ничего не происходит - выключите - включите питание, если все равно ничего не происходит - проверьте соответствие TX/RX, попробуйте переставить их местами или припаять к чипу.

Иногда чип в ходе издевательств экспериментов зависает и тогда его надо обесточить, в том числе отключив и переходник (например, вытащив его из USB), поскольку чипу хватает даже поступающих крох питания, чтобы упорно тупить и не работать.

Иногда фокусы с переходником вешают USB-порт. Можно в качестве временного решения использовать другой USB-порт, но вообще лучше перезагрузить компьютер.

Иногда при этом меняется номер COM-порта. Под Linux это можно решить с помощью udev.

Если вместо текста приходит мусор, то проверьте настройки скорости. Некоторые старые чипы работают на 115200.

На старте чип нагревается, но если он реально горячий и продолжает греться - отключайте и проверяйте все соединения. Чтобы на корпус не попадало +3.3В, чтобы 5В к нему вообще никуда не приходили, чтобы «земля» переходника была соединена с «землей» чипа. Модели с металлическим экраном очень трудно сжечь (но нет ничего невозможного), а на модели без экранов жалуются, мол даже небольшая ошибка может стать последней в жизни чипа. Но это я не проверял.

Прошивка

Мой выбор - NodeMCU . У нее проблемы с памятью и поддержкой железа, но это многократно окупается простотой кода и легкостью отладки.

Так же потребуются NodeMCU flasher и LuaLoader (последнее - опционально, есть и другие клиенты для работы с этой прошивкой).

Выключаем чип. Подсоединяем GPIO0 к земле и включаем чип:

Если ничего не происходит и поля AP MAC/STA MAC пустые - проверьте еще раз, чтобы GPIO0 был на «земле».
Если прошивка началась, но зависла - посмотрите в закладке Log, у меня почему-то конкретно этот чип отказался прошиваться на FT232RL, но зато без проблем прошился на PL2303HX на скорости 576000. PL2303HX в указанном варианте не имеет переключения на 3.3В, чтобы им воспользоваться нужно открыть пластиковый корпус и перепаять провод с 5V на 3.3V, есть варианты с пятью выходами : 3.3, 5, TX, RX, Gnd.


Обратите внимание: STA MAC поменялся. Подозреваю, что flasher его неправильно показывал, но требуется проверка.

Для экономии сил и нервов можно взять готовый или полуготовый вариант.

Есть одноразовые адаптеры с удобной разводкой.
Есть

Часть 1

Последовательный WIFI модуль для Arduino

Это первая из трех инструкций, которая поможет вам использовать ESP8266 с Arduino. В этом первом руководстве вы узнаете, как установить и протестировать работу модуля, подсоединенного к Arduino.

ESP8266 – это, наверное, самый универсальный модуль с последовательным интерфейсом для соединения различных физических предметов («вещей») с интернетом, поэтому он так популярен в сфере «Интернета вещей». Это законченный модуль, который состоит из микропроцессора, доступного для программирования напрямую через ArduinoIDE (C++), или в любой другой среде программирования (обычно используется язык высокого уровня “LUA”).

Для управления «вещами» не нужна сама плата Arduino в качестве интерфейса, потому что ESP8266 уже имеет 2 GPIO (Интерфейс ввода/вывода общего назначения). Множество дополнительной важной информации вы сможете найти на форуме, посвященном ESP8266.

Характеристики:

  • 802.11 b / g / n
  • Wi-FiDirect (P2P), программная точка доступа soft-AP
  • Интегрированный стек протоколов TCP / IP
  • Интегрированный TR свитч, балун, LNA, усилитель мощности и согласующая сеть (matchingnetwork)
  • Интегрированные PLL, регуляторы, DCXO и системы управления мощностью
  • + 19.5 дБ выходная мощность в режиме 802.11b
  • Отключение при превышении утечки тока <10uA
  • 1MB флэш память
  • Интегрированный 32-битный центральный процессор с низким энергопотреблением, может быть использован как процессор приложений
  • SDIO 1.1 / 2.0, SPI, UART STBC, 1 × 1 MIMO, MIMO 2 × 1
  • A-MPDU и A-MSDU агрегирование, 0.4 мс пустой промежуток
  • Wakeup пакеты и передача <2мс
  • Потребление энергии в режиме ожидания <1.0мВт (DTIM3)

Вышеуказанные данные включают в себя много технической информации, которая вам не понадобится в большинстве ваших проектов, однако лучше, чтобы она была под рукой, на всякий случай.

До сих пор я изучал только ESP8266 в соединении с Arduino, заменяя необходимость в более дорогих WiFi шилдах. (Шилд – это печатная плата, которую вы устанавливаете на Arduino для увеличения его функциональности).

Шаг 1: ESP 8266 характеристики и пины



Итак, сначала необходимо протестировать модуль AT командами, которые являются стандартными. Как правило, модуль поставляется от производителя с установленными настройками скорости передачи данных в 115200 бодов. Иногда это создает неудобства, например, в случае с ArduinoUNO, только однажды HWSerial “0” (пины 0 и 1) мог работать на такой скорости. Проблема в том, что программа SerialMonitor для PC также использует этот последовательный порт. («PC» используется здесь как усредненный термин, надеюсь, мой Macне слышит меня;) Решение для ArduinoUNO нашлось в виде использования библиотеки "SoftwareSerial", чтобы заставить два других универсальных пина (GPIO) работать в режиме последовательного порта (SW). Это хорошо работает тогда, когда скорость передачи данных не превышает 19200 бодов. Отлично! Но что делать, если ESP8266 изначально запрограммирован на работу с более высокой скоростью? Решением может быть перепрограммирование. Но не все прошивки, которые загружены в устройство на заводе, поддерживают перепрограммирование модуля. Таким образом, сначала нужно обновить прошивку. В некоторых постах в интернете описывается, как это сделать. Я не буду загружать вас перепрошивкой, скоростью и т.д., для упрощения процесса будет использована плата ArduinoMEGA, на которой есть 4 аппаратных последовательных порта (4 HWserialports) .

Порты на плате MEGA:

  • TX0 / RX0 ==> Pin 1, 0 (то же, что UNO) ==> "Serial 0"
  • TX1 / RX1 ==> Pin 18, 19 ==> "Serial1"
  • TX2 / RX2 ==> Pin 16, 17 ==> "Serial2"
  • TX3 / RX3 ==> Pin 14, 15 ==> "Serial3"

Для моих тестов я буду использовать последовательный порт 2 (Serial 2) (пины 16 и 17).

Давайте подробнее рассмотрим модуль:

  • Питание: 3.3 В. Это важно, т.к. модуль не работает с напряжением в 5 В, и может сгореть. Входные пины также не поддерживают напряжение 5 В, поэтому при получении сигнала Arduino важно использовать конвертер уровня напряжения (как раньше их называли «делитель напряжения»). Другая важная вещь – это иметь независимый источник питания на 3.3 В, т.к. не всегда Arduino выдает требуемый ток для корректной работы модуля.
  • Модуль имеет 6 пинов:
    • TX: он будет подсоединен к RX2 на плате MEGA (может быть соединен напрямую, т.к. MEGA интерпретирует 3.3 В как HIGH)
    • RX: TX2 подсоединен к MEGA через конвертер уровня напряжения
    • VCC: 3.3В
    • GND: Земля. Важно помнить, что необходимо подсоединять GND платы ESP8266 к GND на плате MEGA.
    • CH_PD (*) : подсоединен к пину 4 последовательного порта на плате MEGA, сброс для начала обмена данными
    • RST: Сброс, обычно подсоединяется к VCC
    • GPIO0: свободно (Интерфейс ввода/вывода общего назначения)
    • GPIO2: свободно (Интерфейс ввода/вывода общего назначения)

(*)На некоторых сайтах в интернете показано, что этот пин напрямую подсоединен к VCC. В моем случае без «сброса» по последовательному порту SW (устанавливает пин в значение LOW) ESP8266 не работает.

Продаются адаптеры для включения модуля в макетную плату, т.к. физически расстояние между пинами ESP8266 не совпадает с отверстиями на макетной плате. Для соединения я использовал обычный кабель «мама/папа» типа FTDI (см. ниже). Цвета совпадают с диаграммой соединений.

Шаг 2: Цепь, которая будет использована в тестах

Ничего особенного в диаграмме аппаратных последовательных соединений (HW). Красная пластина – это независимый источник питания 3.3 В, смонтированный на макетной плате. Обратите внимание, что желтый провод соединен с TX2 на Arduino, проходит через делитель напряжения (1K и 2.2K резисторы), таким образом TX2 – это HIGH (5В), ESP8266 получает примерно 3.3В (для него это HIGH).

Шаг 3: Тестирование ESP8266 с помощью AT-команд

Идея этого скетча состоит в тестировании и настройке модуля, который позволяет вводить AT-команды и видеть вывод в программе SerialMonitor.

В части «комментарии» перечислены основные AT-команды. В начале загрузки программы после имени модуля вы увидите много ненужного для нас текста в окне SerialMonitor, затем слово «ready». С этого момента вы можете вводить AT-команды.

Начните с простого «АТ», модуль должен ответить «ОК», протестируйте другие команды.

Картинка показывает, что должно появляться в окне SerialMonitor после того, как вы ввели различные команды.

  • AT для тестовых примеров:
    • AT =====> ESP8266 возвращает OK
    • AT + RST =====> ESP8266 рестарт и возврат OK
    • AT + GMR =====> ESP8266 возвращает версию AT; SDK version; id; OK
    • AT + CWMODE? => ESP8266 возвращает режим работы
    • AT + CWLAP ===> ESP8266 возвращает обнаруженные точки доступа
    • AT + CIFSR ===> ESP8266 возвращает установленный IP
    • AT + CIPMUX = 1 ==> Устанавливает плате ESP8266 режим работы с несколькими соединениями
    • AT + CIOBAUD = 9600 ==> Изменить скорость обмена данными ==> ESP8266 возвращает OK
    • AT + CIPSERVER = 1.80 ==> Устанавливает режим SERVER порт: 4040
    • AT + CWMODE = 3 ==> Работа ESP8266 в комбинированном режиме (точка доступа (2) и сервер (1))
    • AT + CWSAP = "Acc_Point_name", "password", wifi_Channel, cript # ==> j.
    • AT + CWSAP = "ESP_8266_AP," 1234 ", 3.0
    • AT + CWJAP = "SSID", "password" ==> Подключается к сети WiFi
    • * = AT + CWJAP "ROVAI TIMECAP", "-1 mjr747"

****************************************************************** /