Операционная среда операционной системы предприятия. Конспект лекций по дисциплине «операционные системы. Прикладное программирование под unix и windows

Предмет: Операционные системы.
Вопрос: №1

ПО — неотъемлемая часть любой ЭВМ, без которой невозможно получить необходимые результаты всевозможных вычислительных операций. Можно все программное обеспечение разделить на классы : ОС и сервисные программы (это специальные системные программы, с помощью которых можно обслуживать как саму ОС, так и подготавливать для работы носители данных, выполнять перекодирование данных и производить некоторые другие работы связанные с обслуживаем ОС), инструментальные языки и среды программирования, прикладные программы.

Под ОС понимают: комплекс управляющих и обрабатывающих программ, который, с одной стороны, выступает как интерфейс между аппаратной частью компьютера и пользователем с его задачами, а с другой – предназначен для наиболее эффективного использования ресурсов вычислительной системы и организации надежных вычислений. Любой и компонентов прикладного ПО обязательно работает под управлением ОС.

Основные функции ОС:

1.прием от пользователя заданий и команд, сформулированных на соответствующем языке виде команд или указаний (специальных команд) с помощью соответствующего манипулятора (например, мыши), и их обработка.

2. прием и исполнение программных запросов на запуск, приостановку, остановку других программ.

4. инициация программы (передача данной конкретной программе управления, в результате чего процессор приступает к её выполнению.)

5. идентификация всех программ и данных 6. организация и управление всеми операциями ввода/вывода.

6. распределение памяти и организация виртуальной памяти. 7. планирование и диспетчеризация задач.

8. организация механизмов обмена сообщениями и данными между выполняющимися программами.

9. защита одной программы от влияния другой.

10. предоставление услуг в случае частичного сбоя системы.

11 обеспечение работы систем программирования.

12. обеспечение работы СУБД.

13. обеспечение работы систем управления файлами (организация удобного доступа к данным, организованным как файлы. Именно благодаря данной системе вместо низкоуровнего доступа к данным с указанием конкретных физических адресов записи используется логический доступ с указанием имени файла и записи в нем. СУФ можно выделить как отдельную категорию ПО).

Любая программа имеет дело с некоторыми исходными данными, которые она обрабатывает, порождая в конечном итоге некоторые выходные данные и результаты вычислений. Исходные данные с периферийных устройств попадают в оперативную память, с которой непосредственно работает процессор, выполняя вычисления по программе. Результаты вычислений также должны быть выведены на внешние устройства. Программирование операций ввода/ вывода относится к самым трудоемким задачам. При создании таких программ нужно знать не только архитектуру процессора, но и архитектуру подсистемы ввода/вывода (протоколы обмена данными, алгоритм работы контроллера устройства ввода/вывода). В пятидесятые годы при разработке первых систем программирования прежде всего создавали программные модули для системы ввода/вывода. Благодаря этому при создании прикладных программ программисты могли просто обращаться к соответствующим функциям ввода/вывода. Состав и количество библиотек систем программирования постоянно увеличивались. В конечном итоге возникла ситуация, когда при создании программ в двоичных машинных кодах программистам уже не требовалось знание множества особенностей управления конкретными ресурсами вычислительной системы, а необходимо было только конкретное обращение к некоторой программной подсистеме с целью получения требуемых сервисов. Эта программная подсистема и есть ОС. А набор её функций, сервисов и правил обращения к ним как раз и образует то базовое понятие, которое называется операционной средой .

Операционная среда – это набор соответствующих интерфейсов, необходимых программа и пользователям для обращения к ОС с целью получения определенных сервисов.

Классификация ОС:

ОС могут различаться особенностями реализации внутренних алгоритмов управления основными ресурсами компьютера (процессорами, памятью, устройствами), особенностями используемых методов проектирования, типов аппаратных платформ, областей применения и многими другими свойствами.

В зависимости от особенностей исполь-зуемого алгоритма управления процессором выделяют следующие типы ОС:

Поддержка многозадачности: по числу одновременно выполняемых задач ОС: однозадачные (MSDOS), многозадачные (Unix, Windows). Многозадачные системы подразделяются на три типа в соответствии с использованными при их разработке критериями эффективности: /системы пакетной обработки (ОС ЕС, предназначались для решения задач вычислительного характера, не требующих быстрого получения результатов. В начале работы формируется пакет заданий, каждое задание содержит требования к системным ресурсам; из пакета заданий формируется мульти-программная смесь, т.е. множество одновременно выполняемых задач. После выполнения всего пакета заданий пользователю выдается результат. В настоящее время такие системы почти не используются.); /системы разделения времени (Unix, Windows, призваны исправить основной недостаток систем пакетной обработки – изоляцию пользователя- программиста от процесса выполнения его задач. Каждому пользователю предоставляется терминал, с которого он может вести диалог со своей программой. Каждой задаче выделяется только квант процессорного времени.); /системы реального времени (QNX, RT/11 применяются для управления различными техническими объектами. Способность выдержать заранее заданные интервалы времени между запуском программы и получением результата. Это время называется временем реакции системы. Мультипрограммная смесь представляет собой фиксированный набор заранее разработанных программ, а выбор программы на выполнение осуществляется исходя из текущего состояния объекта или исходя из расписания.)

Поддержка многопользовательского режима: по числу одновременно работающих пользователей: однопользовательские (MSDOS, Windows 3.x), многопользовательские (Unix, Windows на платформе NT). Главное отличие многопольз. систем от однопольз. – наличие средств защиты информации каждого пользователя.

Многопроцессорная обработка: отсутствие или наличие в ОС средств поддержки многопроцессорной обработки. Такие функции имеются (Solaris фирмы Sun, Open Server фирмы Santa Crus Operations, OS/2 фирмы IBM, Windows NT фирмы Microsoft, NetWare фирмы Novell). Данные системы могут классифицироваться по способу организации вычислительного процесса в системе: /Ассиметричная ОС – целиком выполняется только на одном из процессоров системы, распределяя прикладные задачи по остальным процессорам. /Симметричная ОС – полностью децентрализована и использует весь пул процессоров, разделяя их между системными и прикладными задачами.

Поддержка многонитивости: системы поддерживающие и не поддерживающие распараллелива-ния.

По основному архитектурному принципу ОС разделяются на:

микроядерные (QNX; микроядро также работает в привилегированном режиме, но выполняет только минимум функций по управлению аппаратурой. Функции ОС более высокого уровня выполняют специализированные компаненты ОС – серверы, работающие в пользовательском режиме.),

монолитные (Windows 9.x, OS Linux; используется монолитное ядро, которое компонуется как одна программа, работающая а привилегированном режиме и использующая быстрые переходы от одной процедуры на другую, не требующие переключения из привилегированного режима в пользовательский и наоборот).

Нет похожих постов...

Из чего состоит любая вычислительная система? Из того, что в англоязычных странах принято называть словом hardware, или техническое обеспечение: процессор, память, монитор, дисковые устройства и т.д., объединенные магистральным соединением, которое называется шиной.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


екция 1 Операционные системы, среды и оболочки стр. 18 из 18

Лекция 1

Лекция 1 –Введение в операционные системы – определение, назначение и история развития.

Что такое операционная система

Структура вычислительной системы

Что такое ОС

Операционная система как виртуальная машина

Операционная система как менеджер ресурсов

Операционная система как защитник пользователей и программ

Операционная система как постоянно функционирующее ядро

Краткая история эволюции вычислительных систем

Первый период (1945–1955 гг.). Ламповые машины. Операционных систем нет

Второй период (1955 г.–начало 60-х). Компьютеры на основе транзисторов. Пакетные операционные системы

Третий период (начало 60-х – 1980 г.). Компьютеры на основе интегральных микросхем. Первые многозадачные ОС

Четвертый период (с 1980г. по настоящее время). Персональные компьютеры. Классические, сетевые и распределенные системы

Основные понятия, концепции ОС

Системные вызовы

Прерывания

Исключительные ситуации

Файлы

Процессы, нити

Архитектурные особенности ОС

Монолитное ядро

Многоуровневые системы (Layered systems)

Виртуальные машины

Микроядерная архитектура

Смешанные системы

Классификация ОС

Реализация многозадачности

Поддержка многопользовательского режима

Многопроцессорная обработка

Системы реального времени

Заключение

Приложение 1.

Некоторые сведения об архитектуре компьютера

Взаимодействие с периферийными устройствами

  1. Лекция 1 –Введение в операционные системы – определение, назначение и история развития.
  2. Что такое операционная система
    1. Структура вычислительной системы

Из чего состоит любая вычислительная система? Во-первых, из того, что в англоязычных странах принято называть словом hardware, или техническое обеспечение: процессор , память, монитор, дисковые устройства и т.д., объединенные магистральным соединением, которое называется шиной.

Во-вторых, вычислительная система состоит из программного обеспечения. Все программное обеспечение принято делить на две части: прикладное и системное. К прикладному программному обеспечению, как правило, относятся разнообразные банковские и прочие бизнес-программы, игры, текстовые процессоры и т. п. Под системным программным обеспечением обычно понимают программы, способствующие функционированию и разработке прикладных программ. Надо сказать, что деление на прикладное и системное программное обеспечение является отчасти условным и зависит от того, кто осуществляет такое деление. Так, обычный пользователь, неискушенный в программировании, может считать Microsoft Word системной программой, а, с точки зрения программиста, это – приложение. Компилятор языка Си для обычного программиста – системная программа, а для системного – прикладная. Несмотря на эту нечеткую грань, данную ситуацию можно отобразить в виде последовательности слоев (см. рис. 1.1), выделив отдельно наиболее общую часть системного программного обеспечения – операционную систему:

Рис. 1.1. Слои программного обеспечения компьютерной системы

  1. Что такое ОС

Большинство пользователей имеет опыт эксплуатации операционных систем , но тем не менее они затруднятся дать этому понятию точное определение. Давайте кратко рассмотрим основные точки зрения.

  1. Операционная система как виртуальная машина

При разработке ОС широко применяется абстрагирование, которое является важным методом упрощения и позволяет сконцентрироваться на взаимодействии высокоуровневых компонентов системы, игнорируя детали их реализации. В этом смысле ОС представляет собой интерфейс между пользователем и компьютером.

Архитектура большинства компьютеров на уровне машинных команд очень неудобна для использования прикладными программами. Например, работа с диском предполагает знание внутреннего устройства его электронного компонента – контроллера для ввода команд вращения диска, поиска и форматирования дорожек, чтения и записи секторов и т. д.

Ясно, что средний программист не в состоянии учитывать все особенности работы оборудования (в современной терминологии – заниматься разработкой драйверов устройств), а должен иметь простую высокоуровневую абстракцию, скажем, представляя информационное пространство диска как набор файлов. Файл можно открывать для чтения или записи, использовать для получения или сброса информации, а потом закрывать. Это концептуально проще, чем заботиться о деталях перемещения головок дисков или организации работы мотора. Аналогичным образом, с помощью простых и ясных абстракций, скрываются от программиста все ненужные подробности организации прерываний , работы таймера, управления памятью и т. д. Более того, на современных вычислительных комплексах можно создать иллюзию неограниченного размера операционной памяти и числа процессоров . Всем этим занимается операционная система . Таким образом, операционная система представляется пользователю виртуальной машиной , с которой проще иметь дело, чем непосредственно с оборудованием компьютера.

  1. Операционная система как менеджер ресурсов

Операционная система предназначена для управления всеми частями весьма сложной архитектуры компьютера. Представим, к примеру, что произойдет, если несколько программ, работающих на одном компьютере, будут пытаться одновременно осуществлять вывод на принтер. Мы получили бы мешанину строчек и страниц, выведенных различными программами. Операционная система предотвращает такого рода хаос за счет буферизации информации, предназначенной для печати, на диске и организации очереди на печать. Для многопользовательских компьютеров необходимость управления ресурсами и их защиты еще более очевидна. Следовательно, операционная система , как менеджер ресурсов , осуществляет упорядоченное и контролируемое распределение процессоров , памяти и других ресурсов между различными программами.

  1. Операционная система как защитник пользователей и программ

Если вычислительная система допускает совместную работу нескольких пользователей, то возникает проблема организации их безопасной деятельности. Необходимо обеспечить сохранность информации на диске, чтобы никто не мог удалить или повредить чужие файлы. Нельзя разрешить программам одних пользователей произвольно вмешиваться в работу программ других пользователей. Нужно пресекать попытки несанкционированного использования вычислительной системы. Всю эту деятельность осуществляет операционная система как организатор безопасной работы пользователей и их программ. С такой точки зрения операционная система представляется системой безопасности государства, на которую возложены полицейские и контрразведывательные функции.

  1. Операционная система как постоянно функционирующее ядро

Наконец, можно дать и такое определение: операционная система – это программа, постоянно работающая на компьютере и взаимодействующая со всеми прикладными программами . Казалось бы, это абсолютно правильное определение, но, как мы увидим дальше, во многих современных операционных системах постоянно работает на компьютере лишь часть операционной системы , которую принято называть ее ядром .

Как мы видим, существует много точек зрения на то, что такое операционная система . Невозможно дать ей адекватное строгое определение. Проще сказать не что есть операционная система , а для чего она нужна и что она делает . Для выяснения этого вопроса рассмотрим историю развития вычислительных систем.

  1. Краткая история эволюции вычислительных систем

Мы будем рассматривать историю развития именно вычислительных, а не операционных систем , потому что hardware и программное обеспечение эволюционировали совместно, оказывая взаимное влияние друг на друга. Появление новых технических возможностей приводило к прорыву в области создания удобных, эффективных и безопасных программ, а свежие идеи в программной области стимулировали поиски новых технических решений. Именно эти критерии – удобство, эффективность и безопасность – играли роль факторов естественного отбора при эволюции вычислительных систем.

  1. Первый период (1945–1955 гг.). Ламповые машины. Операционных систем нет

Мы начнем исследование развития компьютерных комплексов с появления электронных вычислительных систем (опуская историю механических и электромеханических устройств).

Первые шаги в области разработки электронных вычислительных машин были предприняты в конце Второй мировой войны. В середине 40-х были созданы первые ламповые вычислительные устройства, и появился принцип программы, хранящейся в памяти машины (John Von Neumann, июнь 1945 г.). В то время одна и та же группа людей участвовала и в проектировании, и в эксплуатации, и в программировании вычислительной машины. Это была скорее научно-исследовательская работа в области вычислительной техники, а не регулярное использование компьютеров в качестве инструмента решения каких-либо практических задач из других прикладных областей. Программирование осуществлялось исключительно на машинном языке. Об операционных системах не было и речи, все задачи организации вычислительного процесса решались вручную каждым программистом с пульта управления. За пультом мог находиться только один пользователь. Программа загружалась в память машины в лучшем случае с колоды перфокарт, а обычно с помощью панели переключателей.

Вычислительная система выполняла одновременно только одну операцию (ввод-вывод или собственно вычисления). Отладка программ велась с пульта управления с помощью изучения состояния памяти и регистров машины. В конце этого периода появляется первое системное программное обеспечение: в 1951–1952 гг. возникают прообразы первых компиляторов с символических языков (Fortran и др.), а в 1954 г. Nat Rochester разрабатывает Ассемблер для IBM-701.

Существенная часть времени уходила на подготовку запуска программы, а сами программы выполнялись строго последовательно. Такой режим работы называется последовательной обработкой данных. В целом первый период характеризуется крайне высокой стоимостью вычислительных систем, их малым количеством и низкой эффективностью использования.

  1. Второй период (1955 г.–начало 60-х). Компьютеры на основе транзисторов. Пакетные операционные системы

С середины 50-х годов начался следующий период в эволюции вычислительной техники, связанный с появлением новой технической базы – полупроводниковых элементов. Применение транзисторов вместо часто перегоравших электронных ламп привело к повышению надежности компьютеров. Теперь машины могут непрерывно работать достаточно долго, чтобы на них можно было возложить выполнение практически важных задач. Снижается потребление вычислительными машинами электроэнергии, совершенствуются системы охлаждения. Размеры компьютеров уменьшились. Снизилась стоимость эксплуатации и обслуживания вычислительной техники. Началось использование ЭВМ коммерческими фирмами. Одновременно наблюдается бурное развитие алгоритмических языков (LISP, COBOL, ALGOL-60, PL-1 и т.д.). Появляются первые настоящие компиляторы, редакторы связей, библиотеки математических и служебных подпрограмм. Упрощается процесс программирования. Пропадает необходимость взваливать на одних и тех же людей весь процесс разработки и использования компьютеров. Именно в этот период происходит разделение персонала на программистов и операторов, специалистов по эксплуатации и разработчиков вычислительных машин.

Изменяется сам процесс прогона программ. Теперь пользователь приносит программу с входными данными в виде колоды перфокарт и указывает необходимые ресурсы. Такая колода получает название задания. Оператор загружает задание в память машины и запускает его на исполнение. Полученные выходные данные печатаются на принтере, и пользователь получает их обратно через некоторое (довольно продолжительное) время.

Смена запрошенных ресурсов вызывает приостановку выполнения программ, в результате процессор часто простаивает. Для повышения эффективности использования компьютера задания с похожими ресурсами начинают собирать вместе, создавая пакет заданий.

Появляются первые системы пакетной обработки , которые просто автоматизируют запуск одной программы из пакета за другой и тем самым увеличивают коэффициент загрузки процессора . При реализации систем пакетной обработки был разработан формализованный язык управления заданиями, с помощью которого программист сообщал системе и оператору, какую работу он хочет выполнить на вычислительной машине. Системы пакетной обработки стали прообразом современных операционных систем , они были первыми системными программами, предназначенными для управления вычислительным процессом.

  1. Третий период (начало 60-х – 1980 г.). Компьютеры на основе интегральных микросхем. Первые многозадачные ОС

Следующий важный период развития вычислительных машин относится к началу 60-х – 1980г. В это время в технической базе произошел переход от отдельных полупроводниковых элементов типа транзисторов к интегральным микросхемам . Вычислительная техника становится более надежной и дешевой. Растет сложность и количество задач, решаемых компьютерами. Повышается производительность процессоров .

Повышению эффективности использования процессорного времени мешает низкая скорость работы механических устройств ввода-вывода (быстрый считыватель перфокарт мог обработать 1200 перфокарт в минуту, принтеры печатали до 600 строк в минуту). Вместо непосредственного чтения пакета заданий с перфокарт в память начинают использовать его предварительную запись, сначала на магнитную ленту, а затем и на диск. Когда в процессе выполнения задания требуется ввод данных, они читаются с диска. Точно так же выходная информация сначала копируется в системный буфер и записывается на ленту или диск, а печатается только после завершения задания. Вначале действительные операции ввода-вывода осуществлялись в режиме off-line, то есть с использованием других, более простых, отдельно стоящих компьютеров. В дальнейшем они начинают выполняться на том же компьютере, который производит вычисления, то есть в режиме on-line. Такой прием получает название spooling (сокращение от Simultaneous Peripheral Operation On Line ) или подкачки-откачки данных. Введение техники подкачки-откачки в пакетные системы позволило совместить реальные операции ввода-вывода одного задания с выполнением другого задания, но потребовало разработки аппарата прерываний для извещения процессора об окончании этих операций.

Магнитные ленты были устройствами последовательного доступа, то есть информация считывалась с них в том порядке, в каком была записана. Появление магнитного диска, для которого не важен порядок чтения информации, то есть устройства прямого доступа, привело к дальнейшему развитию вычислительных систем. При обработке пакета заданий на магнитной ленте очередность запуска заданий определялась порядком их ввода. При обработке пакета заданий на магнитном диске появилась возможность выбора очередного выполняемого задания. Пакетные системы начинают заниматься планированием заданий: в зависимости от наличия запрошенных ресурсов, срочности вычислений и т.д. на счет выбирается то или иное задание .

Дальнейшее повышение эффективности использования процессора было достигнуто с помощью мультипрограммирования. Идея мультипрограммирования заключается в следующем: пока одна программа выполняет операцию ввода-вывода, процессор не простаивает, как это происходило при однопрограммном режиме, а выполняет другую программу. Когда операция ввода-вывода заканчивается, процессор возвращается к выполнению первой программы. Эта идея напоминает поведение преподавателя и студентов на экзамене. Пока один студент (программа) обдумывает ответ на вопрос (операция ввода-вывода), преподаватель (процессор ) выслушивает ответ другого студента (вычисления). Естественно, такая ситуация требует наличия в комнате нескольких студентов. Точно так же мультипрограммирование требует наличия в памяти нескольких программ одновременно. При этом каждая программа загружается в свой участок оперативной памяти, называемый разделом, и не должна влиять на выполнение другой программы.

Появление мультипрограммирования потребовало настоящей революции в строении вычислительной системы. Особую роль здесь играет аппаратная поддержка (многие аппаратные новшества появились еще на предыдущем этапе эволюции), наиболее существенные особенности которой перечислены ниже:

  • Реализация защитных механизмов. Программы не должны иметь самостоятельного доступа к распределению ресурсов, что приводит к появлению привилегированных и непривилегированных команд. Привилегированные команды, например команды ввода-вывода, могут исполняться только операционной системой . Говорят, что она работает в привилегированном режиме. Переход управления от прикладной программы к ОС сопровождается контролируемой сменой режима. Кроме того, это защита памяти, позволяющая изолировать конкурирующие пользовательские программы друг от друга, а ОС – от программ пользователей.
  • Наличие прерываний . Внешние прерывания оповещают ОС о том, что произошло асинхронное событие, например завершилась операция ввода-вывода. Внутренние прерывания (сейчас их принято называть исключительными ситуациями ) возникают, когда выполнение программы привело к ситуации, требующей вмешательства ОС , например деление на ноль или попытка нарушения защиты.
  • Развитие параллелизма в архитектуре . Прямой доступ к памяти и организация каналов ввода-вывода позволили освободить центральный процессор от рутинных операций.

Не менее важна в организации мультипрограммирования роль операционной системы . Она отвечает за следующие операции:

  • Организация интерфейса между прикладной программой и ОС при помощи системных вызовов .
  • Организация очереди из заданий в памяти и выделение процессора одному из заданий потребовало планирования использования процессора .
  • Переключение с одного задания на другое требует сохранения содержимого регистров и структур данных, необходимых для выполнения задания, иначе говоря, контекста для обеспечения правильного продолжения вычислений.
  • Поскольку память является ограниченным ресурсом, нужны стратегии управления памятью, то есть требуется упорядочить процессы размещения, замещения и выборки информации из памяти.
  • Организация хранения информации на внешних носителях в виде файлов и обеспечение доступа к конкретному файлу только определенным категориям пользователей.
  • Поскольку программам может потребоваться произвести санкционированный обмен данными, необходимо их обеспечить средствами коммуникации.
  • Для корректного обмена данными необходимо разрешать конфликтные ситуации, возникающие при работе с различными ресурсами и предусмотреть координацию программами своих действий, т.е. снабдить систему средствами синхронизации.

Мультипрограммные системы обеспечили возможность более эффективного использования системных ресурсов (например, процессора , памяти, периферийных устройств), но они еще долго оставались пакетными . Пользователь не мог непосредственно взаимодействовать с заданием и должен был предусмотреть с помощью управляющих карт все возможные ситуации. Отладка программ по-прежнему занимала много времени и требовала изучения многостраничных распечаток содержимого памяти и регистров или использования отладочной печати.

Появление электронно-лучевых дисплеев и переосмысление возможностей применения клавиатур поставили на очередь решение этой проблемы. Логическим расширением систем мультипрограммирования стали time-sharing системы, или системы разделения времени . В них процессор переключается между задачами не только на время операций ввода-вывода, но и просто по прошествии определенного времени. Эти переключения происходят так часто, что пользователи могут взаимодействовать со своими программами во время их выполнения, то есть интерактивно. В результате появляется возможность одновременной работы нескольких пользователей на одной компьютерной системе. У каждого пользователя для этого должна быть хотя бы одна программа в памяти. Чтобы уменьшить ограничения на количество работающих пользователей, была внедрена идея неполного нахождения исполняемой программы в оперативной памяти. Основная часть программы находится на диске, и фрагмент, который необходимо в данный момент выполнять, может быть загружен в оперативную память, а ненужный – выкачан обратно на диск. Это реализуется с помощью механизма виртуальной памяти. Основным достоинством такого механизма является создание иллюзии неограниченной оперативной памяти ЭВМ.

В системах разделения времени пользователь получил возможность эффективно производить отладку программы в интерактивном режиме и записывать информацию на диск, не используя перфокарты, а непосредственно с клавиатуры. Появление on-line-файлов привело к необходимости разработки развитых файловых систем.

Параллельно внутренней эволюции вычислительных систем происходила и внешняя их эволюция. До начала этого периода вычислительные комплексы были, как правило, несовместимы. Каждый имел собственную операционную систему , свою систему команд и т. д. В результате программу, успешно работающую на одном типе машин, необходимо было полностью переписывать и заново отлаживать для выполнения на компьютерах другого типа. В начале третьего периода появилась идея создания семейств программно совместимых машин, работающих под управлением одной и той же операционной системы . Первым семейством программно совместимых компьютеров, построенных на интегральных микросхемах , стала серия машин IBM/360. Разработанное в начале 60-х годов, это семейство значительно превосходило машины второго поколения по критерию цена/производительность. За ним последовала линия компьютеров PDP, несовместимых с линией IBM, и лучшей моделью в ней стала PDP-11.

Сила "одной семьи" была одновременно и ее слабостью. Широкие возможности этой концепции (наличие всех моделей: от мини-компьютеров до гигантских машин; обилие разнообразной периферии; различное окружение; различные пользователи) порождали сложную и громоздкую операционную систему . Миллионы строчек Ассемблера, написанные тысячами программистов, содержали множество ошибок, что вызывало непрерывный поток публикаций о них и попыток исправления. Только в операционной системе OS/360 содержалось более 1000 известных ошибок. Тем не менее идея стандартизации операционных систем была широко внедрена в сознание пользователей и в дальнейшем получила активное развитие.

  1. Четвертый период (с 1980г. по настоящее время). Персональные компьютеры. Классические, сетевые и распределенные системы

Следующий период в эволюции вычислительных систем связан с появлением больших интегральных схем (БИС). В эти годы произошло резкое возрастание степени интеграции и снижение стоимости микросхем. Компьютер, не отличающийся по архитектуре от PDP-11, по цене и простоте эксплуатации стал доступен отдельному человеку, а не отделу предприятия или университета. Наступила эра персональных компьютеров. Первоначально персональные компьютеры предназначались для использования одним пользователем в однопрограммном режиме, что повлекло за собой деградацию архитектуры этих ЭВМ и их операционных систем (в частности, пропала необходимость защиты файлов и памяти, планирования заданий и т. п.).

Компьютеры стали использоваться не только специалистами, что потребовало разработки "дружественного" программного обеспечения.

Однако рост сложности и разнообразия задач, решаемых на персональных компьютерах, необходимость повышения надежности их работы привели к возрождению практически всех черт, характерных для архитектуры больших вычислительных систем.

В середине 80-х стали бурно развиваться сети компьютеров, в том числе персональных, работающих под управлением сетевых или распределенных операционных систем .

В сетевых операционных системах пользователи могут получить доступ к ресурсам другого сетевого компьютера, только они должны знать об их наличии и уметь это сделать. Каждая машина в сети работает под управлением своей локальной операционной системы , отличающейся от операционной системы автономного компьютера наличием дополнительных средств (программной поддержкой для сетевых интерфейсных устройств и доступа к удаленным ресурсам), но эти дополнения не меняют структуру операционной системы .

Распределенная система , напротив, внешне выглядит как обычная автономная система. Пользователь не знает и не должен знать, где его файлы хранятся – на локальной или удаленной машине – и где его программы выполняются. Он может вообще не знать, подключен ли его компьютер к сети. Внутреннее строение распределенной операционной системы имеет существенные отличия от автономных систем.

В дальнейшем автономные операционные системы мы будем называть классическими операционными системами .

Просмотрев этапы развития вычислительных систем, мы можем выделить шесть основных функций, которые выполняли классические операционные системы в процессе эволюции:

  • Планирование заданий и использования процессора .
  • Обеспечение программ средствами коммуникации и синхронизации.
  • Управление памятью.
  • Управление файловой системой.
  • Управление вводом-выводом.
  • Обеспечение безопасности

Каждая из приведенных функций обычно реализована в виде подсистемы, являющейся структурным компонентом ОС . В каждой операционной системе эти функции, конечно, реализовывались по-своему, в различном объеме. Они не были изначально придуманы как составные части операционных систем , а появились в процессе развития, по мере того как вычислительные системы становились все более удобными, эффективными и безопасными. Эволюция вычислительных систем, созданных человеком, пошла по такому пути, но никто еще не доказал, что это единственно возможный путь их развития. Операционные системы существуют потому, что на данный момент их существование – это разумный способ использования вычислительных систем. Рассмотрение общих принципов и алгоритмов реализации их функций и составляет содержание большей части нашего курса, в котором будут последовательно описаны перечисленные подсистемы.

  1. Основные понятия, концепции ОС

В процессе эволюции возникло несколько важных концепций , которые стали неотъемлемой частью теории и практики ОС . Рассматриваемые в данном разделе понятия будут встречаться и разъясняться на протяжении всего курса. Ниже дается их краткое описание.

  1. Системные вызовы

В любой операционной системе поддерживается механизм, который позволяет пользовательским программам обращаться к услугам ядра ОС . В операционных системах наиболее известной советской вычислительной машины БЭСМ-6 соответствующие средства "общения" с ядром назывались экстракодами, в операционных системах IBM они назывались системными макрокомандами и т.д. В ОС Unix такие средства называют системными вызовами .

Системные вызовы (system calls ) – это интерфейс между операционной системой и пользовательской программой. Они создают, удаляют и используют различные объекты, главные из которых – процессы и файлы.

Пользовательская программа запрашивает сервис у операционной системы , осуществляя системный вызов . Имеются библиотеки процедур, которые загружают машинные регистры определенными параметрами и осуществляют прерывание процессора , после чего управление передается обработчику данного вызова , входящему в ядро операционной системы . Цель таких библиотек – сделать системный вызов похожим на обычный вызов подпрограммы.

Основное отличие состоит в том, что при системном вызове задача переходит в привилегированный режим или режим ядра (kernel mode). Поэтому системные вызовы иногда еще называют программными прерываниями , в отличие от аппаратных прерываний , которые чаще называют просто прерываниями .

В этом режиме работает код ядра операционной системы , причем исполняется он в адресном пространстве и в контексте вызвавшей его задачи . Таким образом, ядро операционной системы имеет полный доступ к памяти пользовательской программы, и при системном вызове достаточно передать адреса одной или нескольких областей памяти с параметрами вызова и адреса одной или нескольких областей памяти для результатов вызова .

В большинстве операционных систем системный вызов осуществляется командой программного прерывания (INT ). Программное прерывание – это синхронное событие, которое может быть повторено при выполнении одного и того же программного кода.

  1. Прерывания

Прерывание (hardware interrupt ) – это событие, генерируемое внешним (по отношению к процессору ) устройством. Посредством аппаратных прерываний аппаратура либо информирует центральный процессор о том, что произошло какое-либо событие, требующее немедленной реакции (например, пользователь нажал клавишу), либо сообщает о завершении асинхронной операции ввода-вывода (например, закончено чтение данных с диска в основную память). Важный тип аппаратных прерываний – прерывания таймера, которые генерируются периодически через фиксированный промежуток времени. Прерывания таймера используются операционной системой при планировании процессов. Каждый тип аппаратных прерываний имеет собственный номер, однозначно определяющий источник прерывания . Аппаратное прерывание – это асинхронное событие, то есть оно возникает вне зависимости от того, какой код исполняется процессором в данный момент. Обработка аппаратного прерывания не должна учитывать, какой процесс является текущим.

  1. Исключительные ситуации

Исключительная ситуация (exception) – событие, возникающее в результате попытки выполнения программой команды, которая по каким-то причинам не может быть выполнена до конца. Примерами таких команд могут быть попытки доступа к ресурсу при отсутствии достаточных привилегий или обращения к отсутствующей странице памяти.

Исключительные ситуации , как и системные вызовы , являются синхронными событиями , возникающими в контексте текущей задачи. Исключительные ситуации можно разделить на исправимые и неисправимые. К исправимым относятся такие исключительные ситуации , как отсутствие нужной информации в оперативной памяти. После устранения причины исправимой исключительной ситуации программа может выполняться дальше. Возникновение в процессе работы операционной системы исправимых исключительных ситуаций считается нормальным явлением. Неисправимые исключительные ситуации чаще всего возникают в результате ошибок в программах (например, деление на ноль). Обычно в таких случаях операционная система реагирует завершением программы, вызвавшей исключительную ситуацию .

  1. Файлы

Файлы предназначены для хранения информации на внешних носителях, то есть принято, что информация, записанная, например, на диске, должна находиться внутри файла. Обычно под файлом понимают именованную часть пространства на носителе информации.

Главная задача файловой системы (file system ) – скрыть особенности ввода-вывода и дать программисту простую абстрактную модель файлов, независимых от устройств.

Для чтения, создания, удаления, записи, открытия и закрытия файлов также имеется обширная категория системных вызовов (создание, удаление, открытие, закрытие, чтение и т.д.). Пользователям хорошо знакомы такие связанные с организацией файловой системы понятия, как каталог, текущий каталог, корневой каталог, путь. Для манипулирования этими объектами в операционной системе имеются системные вызовы .

  1. Процессы, нити

Концепция процесса в ОС одна из наиболее фундаментальных . К ним примыкают понятия нитей, или легковесных процессов.

  1. Архитектурные особенности ОС

До сих пор говорилось о том, что делаю т операционные системы . Необходимо представлять, как они это делают, и что они представляют собой изнутри, какие подходы существуют к их построению.

  1. Монолитное ядро

По сути дела, операционная система – это обычная программа, поэтому было бы логично и организовать ее так же, как устроено большинство программ, то есть составить из процедур и функций. В этом случае компоненты операционной системы являются не самостоятельными модулями, а составными частями одной большой программы. Такая структура операционной системы называется монолитным ядром (monolithic kernel ). Монолитное ядро представляет собой набор процедур, каждая из которых может вызвать каждую. Все процедуры работают в привилегированном режиме.

Таким образом, монолитное ядро – это такая схема операционной системы , при которой все ее компоненты являются составными частями одной программы, используют общие структуры данных и взаимодействуют друг с другом путем непосредственного вызова процедур. Для монолитной операционной системы ядро совпадает со всей системой.

Во многих операционных системах с монолитным ядром сборка ядра , то есть его компиляция , осуществляется отдельно для каждого компьютера, на который устанавливается операционная система . При этом можно выбрать список оборудования и программных протоколов, поддержка которых будет включена в ядро. Так как ядро является единой программой, перекомпиляция – это единственный способ добавить в него новые компоненты или исключить неиспользуемые. Следует отметить, что присутствие в ядре лишних компонентов крайне нежелательно, так как ядро всегда полностью располагается в оперативной памяти . Кроме того, исключение ненужных компонентов повышает надежность операционной системы в целом.

Монолитное ядро – старейший способ организации операционных систем . Примером систем с монолитным ядром является большинство Unix-систем .

Даже в монолитных системах можно выделить некоторую структуру. Как в бетонной глыбе можно различить вкрапления щебенки, так и в монолитном ядре выделяются вкрапления сервисных процедур, соответствующих системным вызовам . Сервисные процедуры выполняются в привилегированном режиме, тогда как пользовательские программы – в непривилегированном. Для перехода с одного уровня привилегий на другой иногда может использоваться главная сервисная программа, определяющая, какой именно системный вызов был сделан, корректность входных данных для этого вызова и передающая управление соответствующей сервисной процедуре с переходом в привилегированный режим работы. Иногда выделяют также набор программных утилит, которые помогают выполнять сервисные процедуры.

  1. Многоуровневые системы (Layered systems)

Продолжая структуризацию, можно разбить всю вычислительную систему на ряд более мелких уровней с хорошо определенными связями между ними, так чтобы объекты уровня N могли вызывать только объекты уровня N-1. Нижним уровнем в таких системах обычно является hardware, верхним уровнем – интерфейс пользователя. Чем ниже уровень, тем более привилегированные команды и действия может выполнять модуль, находящийся на этом уровне. Впервые такой подход был применен при создании системы THE (Technishe Hogeschool Eindhoven) Дейкстрой (Dijkstra) и его студентами в 1968 г. Эта система имела следующие уровни:

Рис. 1.2. Слоеная система THE

Слоеные системы хорошо реализуются. При использовании операций нижнего слоя не нужно знать, как они реализованы, нужно лишь понимать, что они делают. Слоеные системы хорошо тестируются. Отладка начинается с нижнего слоя и проводится послойно. При возникновении ошибки мы можем быть уверены, что она находится в тестируемом слое. Слоеные системы хорошо модифицируются. При необходимости можно заменить лишь один слой, не трогая остальные. Но слоеные системы сложны для разработки: тяжело правильно определить порядок слоев и что к какому слою относится. Слоеные системы менее эффективны, чем монолитные. Так, например, для выполнения операций ввода-вывода программе пользователя придется последовательно проходить все слои от верхнего до нижнего.

  1. Виртуальные машины

В начале лекции мы говорили о взгляде на операционную систему как на виртуальную машину , когда пользователю нет необходимости знать детали внутреннего устройства компьютера. Он работает с файлами, а не с магнитными головками и двигателем; он работает с огромной виртуальной, а не ограниченной реальной оперативной памятью; его мало волнует, единственный он на машине пользователь или нет. Рассмотрим несколько иной подход. Пусть операционная система реализует виртуальную машину для каждого пользователя, но не упрощая ему жизнь, а, наоборот, усложняя. Каждая такая виртуальная машина предстает перед пользователем как голое железо – копия всего hardware в вычислительной системе, включая процессор , привилегированные и непривилегированные команды, устройства ввода-вывода, прерывания и т.д. И он остается с этим железом один на один. При попытке обратиться к такому виртуальному железу на уровне привилегированных команд в действительности происходит системный вызов реальной операционной системы , которая и производит все необходимые действия. Такой подход позволяет каждому пользователю загрузить свою операционную систему на виртуальную машину и делать с ней все, что душа пожелает

Рис. 1.3. Вариант виртуальной машины

Первой реальной системой такого рода была система CP/CMS, или VM/370, как ее называют сейчас, для семейства машин IBM/370.

Недостатком таких операционных систем является снижение эффективности виртуальных машин по сравнению с реальным компьютером, и, как правило, они очень громоздки. Преимущество же заключается в использовании на одной вычислительной системе программ, написанных для разных операционных систем .

  1. Микроядерная архитектура

Современная тенденция в разработке операционных систем состоит в перенесении значительной части системного кода на уровень пользователя и одновременной минимизации ядра. Речь идет о подходе к построению ядра, называемом микроядерной архитектурой (microkernel architecture) операционной системы , когда большинство ее составляющих являются самостоятельными программами. В этом случае взаимодействие между ними обеспечивает специальный модуль ядра, называемый микроядром . Микроядро работает в привилегированном режиме и обеспечивает взаимодействие между программами, планирование использования процессора , первичную обработку прерываний , операции ввода-вывода и базовое управление памятью.

Рис. 1.4. Микроядерная архитектура операционной системы

Остальные компоненты системы взаимодействуют друг с другом путем передачи сообщений через микроядро.

Основное достоинство микроядерной архитектуры – высокая степень модульности ядра операционной системы . Это существенно упрощает добавление в него новых компонентов. В микроядерной операционной системе можно, не прерывая ее работы, загружать и выгружать новые драйверы, файловые системы и т. д. Существенно упрощается процесс отладки компонентов ядра, так как новая версия драйвера может загружаться без перезапуска всей операционной системы . Компоненты ядра операционной системы ничем принципиально не отличаются от пользовательских программ, поэтому для их отладки можно применять обычные средства. Микроядерная архитектура повышает надежность системы, поскольку ошибка на уровне непривилегированной программы менее опасна, чем отказ на уровне режима ядра.

В то же время микроядерная архитектура операционной системы вносит дополнительные накладные расходы, связанные с передачей сообщений, что существенно влияет на производительность. Для того чтобы микроядерная операционная система по скорости не уступала операционным системам на базе монолитного ядра , требуется очень аккуратно проектировать разбиение системы на компоненты, стараясь минимизировать взаимодействие между ними. Таким образом, основная сложность при создании микроядерных операционных систем – необходимость очень аккуратного проектирования.

  1. Смешанные системы

Все рассмотренные подходы к построению операционных систем имеют свои достоинства и недостатки. В большинстве случаев современные операционные системы используют различные комбинации этих подходов. Так, например, ядро операционной системы Linux представляет собой монолитную систему с элементами микроядерной архитектуры . При компиляции ядра можно разрешить динамическую загрузку и выгрузку очень многих компонентов ядра – так называемых модулей. В момент загрузки модуля его код загружается на уровне системы и связывается с остальной частью ядра. Внутри модуля могут использоваться любые экспортируемые ядром функции.

Другим примером смешанного подхода может служить возможность запуска операционной системы с монолитным ядром под управлением микроядра. Так устроены 4.4BSD и MkLinux, основанные на микроядре Mach. Микроядро обеспечивает управление виртуальной памятью и работу низкоуровневых драйверов. Все остальные функции, в том числе взаимодействие с прикладными программами, осуществляется монолитным ядром . Данный подход сформировался в результате попыток использовать преимущества микроядерной архитектуры , сохраняя по возможности хорошо отлаженный код монолитного ядра .

Наиболее тесно элементы микроядерной архитектуры и элементы монолитного ядра переплетены в ядре Windows NT. Хотя Windows NT часто называют микроядерной операционной системой , это не совсем так. Микроядро NT слишком велико (более 1 Мбайт), чтобы носить приставку "микро". Компоненты ядра Windows NT располагаются в вытесняемой памяти и взаимодействуют друг с другом путем передачи сообщений, как и положено в микроядерных операционных системах . В то же время все компоненты ядра работают в одном адресном пространстве и активно используют общие структуры данных, что свойственно операционным системам с монолитным ядром . По мнению специалистов Microsoft, причина проста: чисто микроядерный дизайн коммерчески невыгоден, поскольку неэффективен.

Таким образом, Windows NT можно с полным правом назвать гибридной операционной системой

  1. Классификация ОС

Существует несколько схем классификации операционных систем . Ниже приведена классификация по некоторым признакам с точки зрения пользователя.

  1. Реализация многозадачности

По числу одновременно выполняемых задач операционные системы можно разделить на два класса:

  • многозадачные (Unix, OS/2, Windows);
  • однозадачные (например, MS-DOS).

Многозадачная ОС , решая проблемы распределения ресурсов и конкуренции, полностью реализует мультипрограммный режим в соответствии с требованиями раздела "Основные понятия, концепции ОС ".

Многозадачный режим, который воплощает в себе идею разделения времени, называется вытесняющим (preemptive). Каждой программе выделяется квант процессорного времени, по истечении которого управление передается другой программе. Говорят, что первая программа будет вытеснена. В вытесняющем режиме работают пользовательские программы большинства коммерческих ОС .

В некоторых ОС (Windows 3.11, например) пользовательская программа может монополизировать процессор , то есть работать в невытесняющем режиме. Как правило, в большинстве систем не подлежит вытеснению код собственно ОС . Ответственные программы, в частности задачи реального времени, также не вытесняются. Более подробно об этом рассказано в лекции, посвященной планированию работы процессора .

По приведенным примерам можно судить о приблизительности классификации. Так, в ОС MS-DOS можно организовать запуск дочерней задачи и наличие в памяти двух и более задач одновременно. Однако эта ОС традиционно считается однозадачной, главным образом из-за отсутствия защитных механизмов и коммуникационных возможностей.

  1. Поддержка многопользовательского режима

По числу одновременно работающих пользователей ОС можно разделить на:

  • однопользовательские (MS-DOS, Windows 3.x);
  • многопользовательские (Windows NT, Unix).

Наиболее существенное отличие между этими ОС заключается в наличии у многопользовательских систем механизмов защиты персональных данных каждого пользователя.

  1. Многопроцессорная обработка

Вплоть до недавнего времени вычислительные системы имели один центральный процессор . В результате требований к повышению производительности появились многопроцессорные системы , состоящие из двух и более процессоров общего назначения, осуществляющих параллельное выполнение команд. Поддержка мультипроцессирования является важным свойством ОС и приводит к усложнению всех алгоритмов управления ресурсами. Многопроцессорная обработка реализована в таких ОС , как Linux, Solaris, Windows NT, и ряде других.

Многопроцессорные ОС разделяют на симметричные и асимметричные. В симметричных ОС на каждом процессоре функционирует одно и то же ядро, и задача может быть выполнена на любом процессоре , то есть обработка полностью децентрализована. При этом каждому из процессоров доступна вся память.

В асимметричных ОС процессоры неравноправны. Обычно существует главный процессор (master) и подчиненные (slave), загрузку и характер работы которых определяет главный процессор .

  1. Системы реального времени

В разряд многозадачных ОС , наряду с пакетными системами и системами разделения времени , включаются также системы реального времени , не упоминавшиеся до сих пор.

Они используются для управления различными техническими объектами или технологическими процессами. Такие системы характеризуются предельно допустимым временем реакции на внешнее событие, в течение которого должна быть выполнена программа, управляющая объектом. Система должна обрабатывать поступающие данные быстрее, чем они могут поступать, причем от нескольких источников одновременно.

Столь жесткие ограничения сказываются на архитектуре систем реального времени , например, в них может отсутствовать виртуальная память, поддержка которой дает непредсказуемые задержки в выполнении программ. (См. также разделы, связанные с планированием процессов и реализацией виртуальной памяти.)

Приведенная классификация ОС не является исчерпывающей. Более подробно особенности применения современных ОС рассмотрены в Олифер, 2001 ].

Операционная среда – это комплекс системных программ, основным назначением которого является предоставление в распоряжение пользователя как интерфейса пользователя (UI ) так и интерфейса программного обеспечения (API ), существенно превосходящих по своим возможностям аналогичные интерфейсы, предоставляемые операционной системой. Отличительной чертой операционной среды является то, что она надстраивается над существующей ОС, т.е. ее работа невозможна без этой ОС.

Операционная оболочка – это комплекс системных программ, обеспечивающих дружественный интерфейс пользователя (UI ) с операционной системой, превосходящий по тем или иным параметрам (как правило - по уровню непроцедурности и близости к языку профессиональной деятельности пользователя) аналогичные средства интерфейса пользователя, предоставляемые самой ОС.

  1. Заключение

Мы рассмотрели различные взгляды на то, что такое операционная система ; изучили историю развития операционных систем ; выяснили, какие функции обычно выполняют операционные системы ; наконец, разобрались в том, какие существуют подходы к построению операционных систем . Следующую лекцию мы посвятим выяснению понятия "процесс" и вопросам планирования процессов.

  1. Приложение 1.
    1. Некоторые сведения об архитектуре компьютера

Основными аппаратными компонентами компьютера являются: основная память, центральный процессор и периферийные устройства. Для обмена данными между собой эти компоненты соединены группой проводов, называемой магистралью (см. рис.1.5 ).

Рис. 1.5. Некоторые компоненты компьютера

Основная память используется для запоминания программ и данных в двоичном виде и организована в виде упорядоченного массива ячеек, каждая из которых имеет уникальный цифровой адрес. Как правило, размер ячейки составляет один байт. Типовые операции над основной памятью – считывание и запись содержимого ячейки с определенным адресом.

Выполнение различных операций с данными осуществляется изолированной частью компьютера, называемой центральным процессором (ЦП). ЦП также имеет ячейки для запоминания информации, называемые регистрами. Их разделяют на регистры общего назначения и специализированные регистры. В современных компьютерах емкость регистра обычно составляет 4–8 байт. Регистры общего назначения используются для временного хранения данных и результатов операций. Для обработки информации обычно организовывается передача данных из ячеек памяти в регистры общего назначения, выполнение операции центральным процессором и передача результатов операции в основную память.

Специализированные регистры используются для контроля работы процессора . Наиболее важными являются: программный счетчик, регистр команд и регистр, содержащий информацию о состоянии программы.

Программы хранятся в виде последовательности машинных команд, которые должен выполнять центральный процессор . Каждая команда состоит из поля операции и полей операндов, то есть тех данных, над которыми выполняется данная операция. Весь набор машинных команд называется машинным языком.

Выполнение программы осуществляется следующим образом. Машинная команда, на которую указывает программный счетчик, считывается из памяти и копируется в регистр команд. Здесь она декодируется, после чего исполняется. После выполнения команды программный счетчик указывает на следующую команду. Эти действия, называемые машинным циклом, затем повторяются.

  1. Взаимодействие с периферийными устройствами

Периферийные устройства предназначены для ввода и вывода информации. Каждое устройство обычно имеет в своем составе специализированный компьютер, называемый контроллером или адаптером. Когда контроллер вставляется в разъем на материнской плате, он подключается к шине и получает уникальный номер (адрес). После этого контроллер осуществляет наблюдение за сигналами, идущими по шине, и отвечает на сигналы, адресованные ему.

Любая операция ввода-вывода предполагает диалог между ЦП и контроллером устройства. Когда процессору встречается команда, связанная с вводом-выводом, входящая в состав какой-либо программы, он выполняет ее, посылая сигналы контроллеру устройства. Это так называемый программируемый ввод-вывод.

В свою очередь, любые изменения с внешними устройствами имеют следствием передачу сигнала от устройства к ЦП. С точки зрения ЦП это является асинхронным событием и требует его реакции. Для того чтобы обнаружить такое событие, между машинными циклами процессор опрашивает специальный регистр , содержащий информацию о типе устройства, сгенерировавшего сигнал. Если сигнал имеет место, то ЦП выполняет специфичную для данного устройства программу, задача которой – отреагировать на это событие надлежащим образом (например, занести символ, введенный с клавиатуры, в специальный буфер). Такая программа называется программой обработки прерывания , а само событие прерыванием , поскольку оно нарушает плановую работу процессора . После завершения обработки прерывания процессор возвращается к выполнению программы. Эти действия компьютера называются вводом-выводом с использованием прерываний .

В современных компьютерах также имеется возможность непосредственного взаимодействия между контроллером и основной памятью, минуя ЦП, – так называемый механизм прямого доступа к памяти.

Вопросы

  1. Назначение ОС в вычислительных машинах;
  2. Краткая история развития вычислительных систем и операционных систем;
  3. Определения понятий теории и практики ОС: системные вызовы, прерывания, исключительные ситуации, файлы;
  4. Классификация ОС

Другие похожие работы, которые могут вас заинтересовать.вшм>

13757. Создание сетевой системы тестирования электронного сопровождения курса Операционные системы (на примере инструментальной оболочки Joomla) 1.83 MB
Программа для составления тестов позволит работать с вопросами в электронном виде использовать все виды цифровой информации для отображения содержания вопроса. Целью курсовой работы является создание современной модели webсервиса тестирования знаний с помощью средств webразработки и программная реализация для эффективной работы тестовой системы – защита от копирования информации и списывания при контроле знаний т. Последние два означают создание равных для всех условий прохождения контроля знаний невозможность списывания и...
6179. ОПЕРАЦИОННЫЕ СИСТЕМЫ 13.01 KB
Для рассмотрения функций операционной системы людей условно можно разделить на две группы: пользователи и программисты здесь понятие пользователя более ограничено чем понимание пользователя как любого человека общающегося с компьютером. Программисту от операционной системы требуется набор таких средств которые помогали бы ему в разработке и отладке конечного продукта программ. Командная строка строка экрана начинающаяся с приглашения операционной системы.
9146. Введение в операционные системы 11.94 KB
Операционная система. Определение и назначение. Функции операционных систем. Основные качества ОС. Поколения операционных систем. Краткий обзор современных ОС. Классификация операционных систем по особенностям алгоритмов управления ресурсами, особенностям аппаратных платформ, особенностям областей использования.
10804. Аллергические поражения слизистой оболочки полости рта у детей 47.16 KB
Мотивационная характеристика темы занятия: в результате практического занятия интерны должны приобрести следующие практические и теоретические навыки: изучить основные и дополнительные методы исследования детей с аллергическими поражениями слизистой оболочки полости рта; на основании полученных данных и сбора анамнеза уметь поставить предварительный диагноз; составить план лечения с учетом возраста ребенка; знать показания и противопоказания применения лекарственных средств при данной патологии. Это связано повидимому с загрязнением...
2622. Экология микроорганизмов, их экологические среды. Действие физических и химических факторов окружающей среды на микроорганизмы 41.12 KB
Действие физических и химических факторов окружающей среды на микроорганизмы.Влияние физических факторов на микроорганизмы.Влияние химических факторов на микроорганизмы. Распространение микроорганизмов в природе В природе микроорганизмы заселяют практически любую среду почва воздух вода и распространены гораздо шире чем другие живые существа.
8621. Языки программирования. Системы программирования. Среды визуального проектирования 21.13 KB
Bsic язык имеющий и компиляторы и интерпретаторы по популярности он занимает первое место в мире. Этот язык занимает по популярности второе место после Bsic. В настоящее время наиболее популярны следующие среды визуального программирования для языков...
16438. Анализ среды функционирования 39.84 KB
Все эти показатели называются частными одномерными показателями эффективности. Более объективные технологии оценки эффективности деятельности сложных систем появились лишь во второй половине XX го века. В настоящее время широко распространенные во всем мире в качестве инструмента для анализа эффективности сложных социально-экономических систем крупных нефтяных компаний банков производственных фирм объектов ЖКХ университетов больниц и других коммерческих и некоммерческих учреждений. При этом Фаррелл выделял следующие виды...
342. Инструментальные среды программирования 14.75 KB
Инструментальные среды программирования содержат прежде всего текстовый редактор позволяющий конструировать программы на заданном языке программирования инструменты позволяющие компилировать или интерпретировать программы на этом языке а также тестировать и отлаживать полученные программы. Различают следующие классы инструментальных сред программирования см. Инструментальные среды программирования общего назначения содержат набор программных инструментов поддерживающих разработку программ на разных языках программирования например...
561. Качество среды обитания 5.35 KB
Качество среды обитания Качество среды обитания это степень соответствия параметров среды потребностям людей и других живых организмов. Их требования к качеству среды обитания достаточно консервативны поэтому техносфера по качеству не должна значительно отличаться от природной среды. В результате значительных антропогенных нагрузок в большинстве городов происходит деградация растительности что ухудшает состояние городской среды. Загрязнение среды обитания вредными веществами неуклонно снижает качество потребляемых продуктов питания воды...
522. Восприятие среды обитания. Анализаторы 5.11 KB
Восприятие среды обитания. Анализаторы Человеку необходимы постоянные сведения о состоянии и изменении внешней среды и обработка этой информации. Возможность получать информацию об окружающей среде способность ориентироваться в пространстве и оценивать свойства окружающей среды обеспечиваются анализаторами. Информация поступающая из внешней среды анализируется в коре головного мозга высшем звене центральной нервной системы.

Министерство образования и науки Российской Федерации

«Санкт-Петербургский Национальный исследовательский

УТВЕРЖДАЮ

Заведующий кафедрой ИС

“____“ ___________20___ г.

КОНСПЕКТ ЛЕКЦИЙ

Модуль №: _3 _ Теория операционных систем

Тема лекционных занятий: Теория операционных систем

Литература :

Основная :

1. Столингс В. Операционные системы, 4-е изд. М.: "Вильямс", 2004. – 848 с.

2. Таненбаум Э. Современные операционные системы.- СПб.: Питер, 2003 г.– 992 с.

В асимметричных ОС процессоры неравноправны. Обычно существует главный процессор (master) и подчиненные (slave), загрузку и характер работы которых определяет главный процессор.

Системы реального времени

В разряд многозадачных ОС, наряду с пакетными системами и системами разделения времени, включаются также системы реального времени, не упоминавшиеся до сих пор.

Они используются для управления различными техническими объектами или технологическими процессами. Такие системы характеризуются предельно допустимым временем реакции на внешнее событие, в течение которого должна быть выполнена программа, управляющая объектом. Система должна обрабатывать поступающие данные быстрее, чем те могут поступать, причем от нескольких источников одновременно.

Столь жесткие ограничения сказываются на архитектуре систем реального времени, например, в них может отсутствовать виртуальная память, поддержка которой дает непредсказуемые задержки в выполнении программ.

Приведенная классификация ОС не является исчерпывающей

Лекция 3

Определение процессов

В общем случае процесс – это некоторая деятельность, связанная с исполнением программы на процессоре.

При исполнении программ на центральном процессоре чаще всего различают следующие характерные отдельные состояния:

1. порождение - подготавливаются условия для первого исполнения на процессоре

2. активное состояние , или состояние “Счет” - программа исполняется на процессоре

3. ожидание - программа не исполняется на процессоре по причине занятости какого-либо требуемого ресурса

4. готовность - программа не исполняется, но для исполнения предоставлены все необходимые в текущий момент ресурсы, кроме центрального процессора

5. окончание - нормальное или аварийное окончание исполнения программы, после которого процессор и другие ресурсы ей не предоставляются

Процесс находится в каждом из своих допустимых состояний в течение некоторого времени, после чего переходит в какое-то другое допустимое состояние. Состав допустимых состояний, а также допустимые переходы из состояния в состояние обычно задают в форме графа существования процесса

Для ОС процесс в такой трактовке рассматривается как объект, в отношении которого требуется обеспечить реализацию каждого из допустимых состояний, а также допустимые переходы из состояния в состояние в ответ на события, которые могут явиться причиной таких переходов. Такие события могут инициироваться и самими процессами, которые способны затребовать процессор или какой-либо другой ресурс, необходимый для исполнения программы.

Свойства и классификация

Процессы определяются рядом временных характеристик. В некоторый момент времени процесс может быть порожден (образован), а через некоторое время закончен. Интервал между этими моментами называют интервалом существования процесса .

В момент порождения последовательность и длительность пребывания процесса в каждом из своих состояний (трасса процесса) в общем случае непредсказуемы. Следовательно, непредсказуема и длительность интервала существования. Однако отдельные виды процессов требуют такого планирования, чтобы гарантировать окончание процесса до наступления некоторого конкретного момента времени. Процессы такого класса называют процессами реального времени . В другой класс входят процессы, время существования которых должно быть не более интервала времени допустимой реакции ЭВМ на запросы пользователя. Процессы такого класса называют интерактивными . Процессы, не вошедшие в эти классы, называют пакетными .

В любой ОС по требованию существующего или существовавшего процесса проводится работа по порождению процессов. Процесс, задающий данное требование, называют порождающим , а создаваемый по требованию - порожденным . Если порожденный процесс на интервале своего существования в свою очередь выдает требование на порождение другого процесса, то он одновременно становится и порождающим.

При управлении процессами важно обеспечить воспроизводимость результатов работы каждого процесса, учитывать и управлять той ситуацией, которая складывалась при развитии процесса. Поэтому часто оказывается важен не только результат счета, но и каким образом этот результат достигается. С этих позиций ОС сравнивает процессы по динамическим свойствам, используя понятие "трасса" - порядок и длительность пребывания процесса в допустимых состояниях на интервале существования.

Два процесса, которые имеют одинаковый конечный результат обработки одних и тех же исходных данных по одной и той же или даже различным программам на одном и том же или на различных процессорах, называют эквивалентными . Трассы эквивалентных процессов в общем случае не совпадают. Если в каждом из эквивалентных процессов обработка данных происходит по одной и той же программе, но трассы при этом в общем случае не совпадают, то такие процессы называют тождественными . При совпадении трасс у тождественных процессов их называют равными . Во всех остальных случаях процессы всегда различны.

Проблематичность управления процессами заключается в том, что в момент порождения процессов их трассы неизвестны. Кроме того, требуется учитывать, каким образом соотносятся во времени интервалы существования процессов. Если интервалы двух процессов не пересекаются во времени, то такие два процесса называют последовательными друг относительно друга. Если на рассматриваемом интервале времени существуют одновременно два процесса, то они на этом интервале являются параллельными друг относительно друга. Если на рассматриваемом интервале найдется хотя бы одна точка, в которой существует один процесс, но не существует другой, и хотя бы одна точка, в которой оба процесса существуют одновременно, то такие два процесса называют комбинированными .

В операционной системе принято различать процессы не только по времени, но и по месту их развития, т. е. на каком из процессоров исполняется программа процесса. Точкой отсчета принято считать центральный процессор (процессоры), на котором развиваются процессы, называемые программными или внутренними . Такое название указывает на возможность существования в системе процессов, называемых внешними . Это процессы, развитие которых происходит под контролем или управлением ОС на процессорах, отличных от центрального. Ими могут быть, например, процессы ввода - вывода, развивающиеся в канале. Деятельность любого пользователя ЭВМ, который в том или ином виде вводит посредством ОС информацию, требуемую для исполнения одной или нескольких программ, можно также рассматривать как внешний процесс.

Программные процессы принято делить на системные и пользовательские . При развитии системного процесса исполняется программа из состава операционной системы. При развитии пользовательского процесса исполняется пользовательская (прикладная) программа.

Процессы независимо от их вида могут быть взаимосвязанными или изолированными друг от друга. Два процесса являются взаимосвязанными, если между ними поддерживаются с помощью системы управления процессами какого-либо рода связи: функциональные, пространственно-временные, управляющие, информационные и т. д. В противном случае они являются изолированными (точнее - процессами со слабыми связями, так как при отсутствии явных связей они могут быть связаны косвенно и определенным образом влиять на развитие друг друга).

При наличии между процессами управляющей связи устанавливается отношение вида "порождающий-порождаемый", рассмотренное выше. Если два взаимосвязанных процесса при развитии используют совместно некоторые ресурсы, но информационно между собой не связаны, т. е. не обмениваются информацией, то такие процессы называют информационно-независимыми . Связь между такими процессами может быть либо функциональная, либо пространственно-временная. При наличии информационных связей между двумя процессами их называют взаимодействующими , причем схемы, а следовательно, и механизмы установления таких связей могут быть различными.

Особенность, во-первых, обусловлена динамикой процессов (т. е. являются ли взаимодействующие процессы последовательными, параллельными или комбинированными); во-вторых, выбранным способом связи (явным, с помощью явного обмена сообщениями между процессами, или неявным, с помощью разделяемых структур данных). Когда необходимо подчеркнуть связь между взаимосвязанными процессами по ресурсам, их называют конкурирующими .

3.2.1. Операционные системы, среды и оболочки

Операционные системы (ОС) в настоящее время являются обязательной составляющей системного ПО ЭВМ. Без ОС функционирование ЭВМ и выполнение ею пользовательских задач невозможны.
Операционная система — это комплекс взаимосвязанных программ, обеспечивающих интерфейс между приложениями и пользователями, с одной стороны, и аппаратурой компьютера — с другой, и реализующих рациональное управление ресурсами компьютера (в соответствии с некоторыми критериями).
Таким образом, с точки зрения обычного пользователя (не являющегося профессионалом в области информационных технологий), ОС выполняет две основные функции:
— предоставляет пользователю дружественный интерфейс;
— обеспечивает эффективное использование аппаратно- программных ресурсов ЭВМ.
Интерфейс, предоставляемый пользователю, действует как интерфейс между приложениями и пользователем, с одной стороны, и аппаратурой ЭВМ — с другой.Типичными объектами, с которыми манипулирует обычный пользователь, работая в среде той или иной ОС, являются диски, папки и файлы, окна и различные графические (если используется графический интерфейс пользователя) элементы окон (кнопки и т. п.). ОС обеспечивает для манипуляций с этими объектами интерфейс пользователя — UI (user interface). Задача ОС — обеспечить максимально дружественный, т. е. требующий в минимальном объеме специальных знаний, интуитивно понятный пользовательский интерфейс. В настоящее время для решения этой задачи в UI широко используется графика. Такой интерфейс получил название графического интерфейса пользователя — GUI (graphical user interface).
Программисту ОС предоставляет программный интерфейс (интерфейс прикладного программирования) — API (application programming interface). Он представляет собой стандартизированный набор функций, процедур, других программных компонентов, который освобождает программиста от выполнения рутинных операций. При помощи указанного набора функций приложение запрашивает функции нижнего уровня (как правило, функции операционной системы). Чем богаче этот набор, чем шире возможности той или иной функции из этого набора, тем проще программисту реализовать рутинные, типичные функции приложения при взаимодействии его с ОС. На рис. 3.4 представлена схема интерфейсов ОС.
Из этой схемы следует, что пользователь и приложения (программы) взаимодействуют между собой не непосредственно, а через ОС. Сами приложения также взаимодействуют между собой только через «посредника» — ОС.
Решение любой задачи на ЭВМ требует определенных информационных, программных и аппаратных средств, которые

выступают по отношению к решаемой задачи как ресурсы. В общем случае какой-либо процесс (процедура) решаемой программы либо другая программа (при выполнении на ЭВМ нескольких программ одновременно) могут потребовать доступа к ресурсу, который уже занят другой процедурой (программой). Возникает проблема оптимального, исходя из определенных критериев, распределения ограниченных ресурсов между процессами (программами). Именно эту проблему и должна решать ОС.
Наряду с указанными выше двумя основными функциями ОС выполняет и ряд других, в том числе сервисных, основными из которых являются:
— обработка нештатных (аварийных) ситуаций, возникающих при решении задач;
— диагностика и сервисное обслуживание дисков — исправление ошибок в адресации данных, расположенных на дисках, оптимизация расположения данных на диске;
— конфигурирование аппаратных средств ЭВМ под нужды пользователя.
В настоящее время специфика той или иной ОС во многом определяется типом аппаратуры (аппаратной платформы), на которую она ориентирована. Поэтому по типу аппаратных средств, для которых предназначена ОС, различают ОС мейнфреймов (больших ЭВМ) и ОС персональных ЭВМ.
ОС персональных ЭВМ можно разделить на:
— однозадачные и многозадачные (в зависимости от допустимого числа одновременно решаемых задач);
— однопользовательские и многопользовательские (в зависимости от допустимого числа одновременно обслуживаемых пользователей);
— одно- и многопроцессорные (в зависимости от допустимого количества процессоров в аппаратуре компьютера);
— локальные и сетевые (по ориентации на возможность работы в локальных вычислительных сетях; локальные ОС предназначены для автономного компьютера; сетевые ОС ориентированы на обеспечение работы компьютеров в локальной сети).
Следует отметить, что современные ОС, как правило, являются в той или иной степени сетевыми. Если в локальной сети выделен специальный компьютер (называемый сервером) для обслуживания сетевого взаимодействия, то ОС, ориентированная на такое обслуживание всей сети, называется серверной. В таком случае ОС, установленные на других компьютерах (клиентах), называют клиентскими (или ОС рабочей станции). Так, например, ОС Windows 98 не только поддерживает работу компьютера в автономном режиме, но и может выступать в роли клиентской ОС.
Более подробно о сетевых ОС рассказывается в гл. 5.
Рассмотрим эволюцию операционных систем. Первые ЭВМ не имели ОС. Одни и те же специалисты проектировали, программировали и эксплуатировали ЭВМ. Программирование велось на машинном языке. Никакого системного программного обеспечения не было. Постепенно, с совершенствованием аппаратуры, появились первые алгоритмические языки, применение которых позволило расширить круг пользователей ЭВМ. Это потребовало как более эффективной организации их работы на ЭВМ, так и более эффективного использования аппаратных ресурсов ЭВМ, прежде всего процессора (необходимо было свести к минимуму простои процессора при подготовке задания к выполнению на ЭВМ оператором). Для решения этой проблемы были разработаны системы пакетной обработки данных, автоматизировавшие работы оператора по подготовке вычислительного процесса и позволявшие запускать на выполнение не одну, а несколько задач (пакет). Эти системы стали первыми системными программами, прообразом ОС, т. е. появилось разделение программного обеспечения на системное и прикладное. На 1965—1975 гг. приходится «золотой век» в развитии ОС. Именно в эти годы были разработаны и реализованы все основные методы и механизмы, характеризующие современные ОС. Наиболее значимым событием стала промышленная реализация мультипрограммирования — способа организации вычислительного процесса, при котором в памяти ЭВМ размещается одновременно несколько программ, использующих один и тот же процессор. Это позволило существенно повысить эффективность использования дорогостоящих ЭВМ. Следующим достижением, уже непосредственно затрагивающим возможности интерфейса пользователя, стала разработка систем разделения времени, которые обеспечивали пользователю возможность работать за собственным монитором (терминалом) и при многопользовательском (многотерминальном) режиме работы создавали у пользователя иллюзию монопольного владения ресурсами ЭВМ (на основе мультипрограммного режима работы). Это существенно повышало удобство работы пользователей ЭВМ. В начале 70-х гг. появились первые сетевые ОС, что потребовало значительных усилий по стандартизации протоколов (правил) обмена в сетях. Начало 80-х гг. ознаменовалось появлением персональных компьютеров. Одной из основных задач, в связи с ориентацией этих ЭВМ на массового, обычного пользователя, стала задача разработки дружественного интерфейса пользователя. Другая важная задача — развитие сетевых компонентов ОС в целях приближения возможностей персональных ЭВМ при решении сложных задач к возможностям мощных больших ЭВМ — мейнфреймов (за счет «объединения» их вычислительных ресурсов в сети). Именно решение этих задач определяет направление разработки современных ОС.
Как указывалось выше, современные ОС предусматривают возможность работы ЭВМ в сети. Наиболее распространены в настоящее время ОС семейств Unix, Windows, Netware. ОС MS DOS — до недавнего времени одна из наиболее популярных ОС для персональных компьютеров — уже практически не используется в качестве ОС современного компьютера. Тем не менее существует достаточно много программ, ориентированных на работу под управлением именно этой ОС. Как достоинства, так и недостатки этой ОС оказали серьезное влияние на разработку более совершенных ОС. При разработке современных ОС большое внимание уделяется вопросам их переносимости (т. е. возможности функционирования) на разные аппаратные платформы, совершенствованию интерфейса пользователя с ОС, разработке методов организации параллельных вычислений, способных существенно ускорить решение задач на ЭВМ.
Типичный пример системного ПО наряду с ОС — операционные среды и оболочки, основной причиной разработки которых явилось стремление более полно удовлетворить требования пользователя к интерфейсу с ЭВМ. Обычный пользователь достаточно часто не совсем доволен возможностями той или иной операционной системы. Прежде всего данная ситуация характерна для тех ОС, которые требуют от пользователя жесткого соблюдения правил диалога с ЭВМ. Типичным представителем таких ОС является MS DOS. Однако даже развитые (в сравнении с MS DOS) средства интерфейса пользователя ОС семейства Windows могут по тем или иным причинам не устраивать пользователя.
Аналогичная ситуация имеет место и в том случае, когда пользователем является программист. Кроме удобного интерфейса, как и обычному пользователю, программисту требуются развитые средства интерфейса прикладного программирования (API), которые необходимы для взаимодействия приложений с операционной системой посредством вызова системных процедур.
Возможности API в первую очередь определяются тем инструментарием, который предоставляет программисту операционная система. Однако программист бывает часто неудовлетворен предоставляемыми ему возможностями, особенно таких ОС, как MS DOS.
Операционная среда — это комплекс системных программ, основным назначением которого является предоставление в распоряжение пользователя как интерфейса пользователя (UI), так и интерфейса прикладного программирования (API), существенно превосходящих по своим возможностям аналогичные интерфейсы, предоставляемые операционной системой. Отличительная черта операционной среды — то, что она надстраивается над существующей ОС, т. е. ее работа невозможна без этой ОС. Наиболее типичным примером удачной операционной среды является Windows-3.1, которая реализована как надстройка над ОС MS DOS.
Операционная оболочка — это комплекс системных программ, обеспечивающий дружественный интерфейс пользователя (UI) с операционной системой, превосходящий по тем или иным параметрам (как правило, по уровню непроцедурности и близости к языку профессиональной деятельности пользователя) аналогичные средства интерфейса пользователя, предоставляемые самой операционной системой.
Примером операционной оболочки является популярная системная программа Norton Commander.

Тема 1. Вычислительная система. Состав вычислительной системы

Одной из основных задач технических дисциплин является подбор средств и методов механизации и автоматизации работ. Автоматизация работ с данными имеет свои особенности и для ее реализации используются особые устройства.

Совокупность устройств, предназначенных для автоматической или автоматизированной обработки данных, называется вычислительной техникой .

Конкретный набор взаимодействующих между собой устройств и программ, который предназначен для обслуживания одного рабочего участка, называется вычислительной системой . Центральным устройством большинства вычислительных систем является компьютер . Он предназначен для автоматизации создания, хранения, обработки и передачи данных.

Состав вычислительной системы называется конфигурацией .

Отдельно рассматривают аппаратную конфигурацию вычислительных систем и их программную конфигурацию . Критериями выбора аппаратного или программного решения являются производительность и эффективность.

Рис. 1. Состав вычислительной системы

Аппаратное обеспечение

К аппаратному обеспечению вычислительных систем относятся устройства и приборы, образующие аппаратную конфигурацию. Современные компьютеры и вычислительные комплексы имеют блочно-модульную конструкцию - аппаратную конфигурацию, необходимую для исполнения конкретных видов работ, можно собирать из готовых узлов и блоков.

По способу расположения устройств относительно центрального процессора различают внутренние и внешние устройства. Внешними, как правило, являются большинство устройств ввода-вывода данных (их также называют периферийными устройствами) и некоторые устройства, предназначенные для длительного хранения данных.

Согласование между отдельными узлами и блоками выполняют с помощью переходных аппаратно-логических устройств, называемых аппаратными интерфейсами. Стандарты на аппаратные интерфейсы называют протоколами. Таким образом, протокол - это совокупность технических условий, которые должны быть обеспечены разработчиками устройств для успешного согласования их работы с другими устройствами.

Многочисленные интерфейсы, присутствующие в архитектуре любой вычислительной системы, можно условно разделить на две большие группы: последовательные и параллельные .

1. Через последовательный интерфейс данные передаются последовательно, бит за битом, их производительность измеряют битами в секунду (бит/с, Кбит/с, Мбит/с).

2. Через параллельный интерфейс данные передаются одновременно группами битов. Количество битов, участвующих в одной посылке, определяется разрядностью интерфейса, например, восьмиразрядные параллельные интерфейсы передают один байт (8 бит) за один цикл. Параллельные интерфейсы обычно имеют более сложное устройство, чем после­довательные, но обеспечивают более высокую производительность. Их применяют там, где важна скорость передачи данных: для подключения печатающих устройств, устройств ввода графической информации, устройств записи данных на внешний носитель и т. п. Производительность параллельных интерфейсов измеряют бай­тами в секунду (байт/с; Кбайт/с; Мбайт/с).

Первоначально последовательные интерфейсы применяли для подключения «медленных» устройств (простейших устройств печати низкого качества, устройств ввода и вывода знаковой и сигнальной информации, контрольных датчиков, малопроизводительных устройств связи и т. п.), а также в тех случаях, когда отсутствуют существенные ограничения по продолжительности обмена данными.

Однако с развитием техники появились новые, высокоскоростные последовательные интерфейсы, не уступающие параллельным, а нередко и превосходящие их по пропускной способности. Сегодня последовательные интерфейсы применяют для подключения к компьютеру любых типов устройств.

Программное обеспечение

Программы - это упорядоченные последовательности команд. Конечная цель любой компьютерной программы - управление аппаратными средствами.

Состав программного обеспечения вычислительной системы называют программ­ной конфигурацией . Между программами, как и между физическими узлами и блоками существует взаимосвязь - многие программы работают, опираясь на другие программы более низкого уровня, то есть мы можем говорить о межпрограммном интерфейсе . Возможность существования такого интерфейса тоже основана на существовании технических условий и протоколов взаимодействия, а на практике он обеспечивается распределением программного обеспечения на несколько взаимодействующих между собой уровней.

Уровни программного обеспечения представляют собой пирамидальную конструк­цию. Каждый следующий уровень опирается на программное обеспечение пред­шествующих уровней. Каждый вышележащий уровень повышает функциональность всей системы. Так, например, вычислительная система с про­граммным обеспечением базового уровня не способна выполнять большинство функций, но позволяет установить системное программ­ное обеспечение.

Рис. 2. Структура программного обеспечения

1. Базовый уровень. Самый низкий уровень программного обеспечения представляет базовое программное обеспечение. Оно отвечает за взаимодействие с базовыми аппаратными средствами. Как правило, базовые программные средства непосредственно входят в состав базового оборудования и хранятся в специальных микросхемах, называемых постоянными запоминающими устройствами (ПЗУ - ReadOnlyMemory, ROM). Программы и данные записываются («прошиваются») в микросхемы ПЗУ на этапе производства и не могут быть изменены в процессе эксплуатации.

2. Системный уровень. Системный уровень - переходный. Программы, работающие на этом уровне, обеспечивают взаимодействие прочих программ компьютерной системы с программами базового уровня и непосредственно с аппаратным обеспе­чением, то есть выполняют «посреднические» функции.

средства обеспечения пользовательского интерфейса – благодаря им компьютер получает возможность вводить данные в вычис­лительную систему, управлять ее работой и получать результат в удобной для себя форме.

драйверы – расширяют возможности ОС, позволяя ей работать с тем или иным подключенным устройством, обучая ее новому протоколу обмена данными и т. д.

Совокупность программного обеспечения системного уровня образует ядро операционной системы компьютера. Полное понятие операционной системы мы рассмотрим несколько позже, а здесь только отметим, что если компьютер оснащен программным обеспечением системного уровня, то он уже подготовлен к установке программ более высоких уровней, к взаимодействию программных средств с оборудованием и, самое главное, к взаимодействию с пользователем. То есть наличие ядра операционной системы - непременное условие для возможности практической работы человека с вычислительной системой.

3. Служебный уровень. Программное обеспечение этого уровня взаимодействует как с программами базового уровня, так и с программами системного уровня. Основное назначение служебных программ (их также называют утилитами) состоит в автоматизации работ по проверке, наладке и настройке компьютерной системы. Во многих случаях они используются для расширения или улучшения функций системных программ. Некоторые служебные программы (как правило, это программы обслуживания) изначально включают в состав операционной системы, но большинство служебных программ являются для операционной системы внешними и служат для расширения ее функций.

В разработке и эксплуатации служебных программ существует два альтернативных направления:

а) интеграция с операционной системой - служебные программы могут изменять потребительские свойства системных программ, делая их более удобными для практической работы.

б) автономное функционирование – служебные программыслабо связаны с системным программным обеспечением, но предоставляют пользователю больше возможностей для персональной настройки их взаимодействия с аппаратным и программным обеспечением.

4. Прикладной уровень. Программное обеспечение прикладного уровня представ­ляет собой комплекс прикладных программ, с помощью которых на данном рабочем месте выполняются конкретные задания.

Примеры прикладных программных средств

1. Текстовые редакторы.

Ввод и редактировании текстовых данных;

Автоматизация процессов ввода и редактирования.

Для операций ввода, вывода и сохранения данных текстовые редакторы вызывают и используют системное программное обеспечение (это характерно и для всех прочих видов прикладных программ)

2. Текстовые процессоры. Основное отличие текстовых процессоров от текстовых редакторов в том, что они позволяют не только вводить и редактировать текст, но и форматировать его, то есть оформлять. Соответственно, к основным средствам текстовых процессоров относятся средства обеспечения взаимодействия текста, графики, таблиц и других объектов, составляющих итоговый документ, а к допол­нительным - средства автоматизации процесса форматирования.

Современный стиль работы с документами подразумевает два альтернативных подхода - работу с бумажными документами и работу с электронными докумен­тами (по безбумажной технологии). Поэтому текстовые процессоры позволяют выполнять 2 виды форматирования - форматирование документов, предназначенных для печати , и форма­тирование электронных документов, предназначенных для отображения на экране . Приемы и методы в этих случаях существенно различаются. Соответственно, разли­чаются и текстовые процессоры, хотя многие из них успешно сочетают оба подхода.