Представленные числа хранятся в памяти компьютера. Выбор минимума из двух значений

| Планирование уроков на учебный год (ФГОС) | § 1.2. Представление чисел в компьютере

Уроки 6 - 7
§ 1.2. Представление чисел в компьютере

Ключевые слова:

Разряд
беззнаковое представление целых чисел
представление целых чисел со знаком
представление вещественных чисел

1.2.1. Представление целых чисел

Оперативная память компьютера состоит из ячеек, каждая из которых представляет собой физическую систему, состоящую из некоторого числа однородных элементов. Эти элементы обладают двумя устойчивыми состояниями, одно из которых соответствует нулю, а другое - единице. Каждый такой элемент служит для хранения одного из битов - разряда двоичного числа. Именно поэтому каждый элемент ячейки называют битом или разрядом (рис. 1.2).

Рис. 1.2. Ячейка памяти

Для компьютерного представления целых чисел используется несколько различных способов, отличающихся друг от друга количеством разрядов (под целые числа обычно отводится 8, 16, 32 или 64 разряда) и наличием или отсутствием знакового разряда. Беззнаковое представление можно использовать только для неотрицательных целых чисел, отрицательные числа представляются только в знаковом виде.

Беззнаковое представление используется для таких объектов, как адреса ячеек, всевозможные счётчики (например, число символов в тексте), а также числа, обозначающие дату и время, размеры графических изображений в пикселях и т. д.

Максимальное значение целого неотрицательного числа достигается в случае, когда во всех разрядах ячейки хранятся единицы. Для n-разрядного представления оно будет равно 2 n -1. Минимальное число соответствует п нулям, хранящимся в n разрядах памяти, и равно нулю.

Ниже приведены максимальные значения для беззнаковых целых n-разрядных чисел:

Для получения компьютерного представления беззнакового целого числа достаточно перевести число в двоичную систему счисления и дополнить полученный результат слева нулями до стандартной разрядности.

Пример 1 . Число 53 10 = 110101 2 в восьмиразрядном представлении имеет вид:

Это же число 53 в шестнадцати разрядах будет записано следующим образом:

При представлении со знаком самый старший (левый) разряд отводится под знак числа, остальные разряды - под само число. Если число положительное, то в знаковый разряд помещается 0, если число отрицательное - 1. Такое представление чисел называется прямым кодом.

В компьютере прямые коды используются для хранения положительных чисел в запоминающих устройствах, для выполнения операций с положительными числами.

На сайте Федерального центра информационно-образовательных ресурсов (http://fcior.edu.ru/) размещён информационный модуль «Число и его компьютерный код». С помощью этого ресурса вы можете получить дополнительную информацию по изучаемой теме.

Для выполнения операций с отрицательными числами используется дополнительный код, позволяющий заменить операцию вычитания сложением. Узнать алгоритм образования дополнительного кода вы можете с помощью информационного модуля «Дополнительный код», размещённого на сайте Федерального центра информационно-образовательных ресурсов (http://fcior.edu.ru/).

1.2.2. Представление вещественных чисел

Любое вещественное число А может быть записано в экспоненциальной форме:

где:

m - мантисса числа;

p - порядок числа.

Например, число 472 ООО ООО может быть представлено так: 4,72 10 8 , 47,2 10 7 , 472,0 10 6 и т. д.

С экспоненциальной формой записи чисел вы могли встречаться при выполнении вычислений с помощью калькулятора, когда в качестве ответа получали записи следующего вида: 4.72Е+8.

Здесь знак «Е» обозначает основание десятичной системы счисления и читается как «умножить на десять в степени».

Из приведённого выше примера видно, что положение запятой в записи числа может изменяться.

Для единообразия мантиссу обычно записывают как правильную дробь, имеющую после запятой цифру, отличную от нуля. В этом случае число 472 ООО ООО будет представлено как 0,472 10 9 .

Вещественное число может занимать в памяти компьютера 32 или 64 разряда. При этом выделяются разряды для хранения знака мантиссы, знака порядка, порядка и мантиссы.

Пример:

Диапазон представления вещественных чисел определяется количеством разрядов, отведённых для хранения порядка числа, а точность определяется количеством разрядов, отведённых для хранения мантиссы.

Максимальное значение порядка числа для приведённого выше примера составляет 1111111 2 = 127 10 , и, следовательно, максимальное значение числа:

0,11111111111111111111111 10 1111111

Попытайтесь самостоятельно выяснить, каков десятичный эквивалент этой величины.

Широкий диапазон представления вещественных чисел важен для решения научных и инженерных задач. Вместе с тем следует понимать, что алгоритмы обработки таких чисел более трудоёмки по сравнению с алгоритмами обработки целых чисел.

САМОЕ ГЛАВНОЕ

Для компьютерного представления целых чисел используются несколько различных способов, отличающихся друг от друга количеством разрядов (8, 16, 32 или 64) и наличием или отсутствием знакового разряда.

Для представления беззнакового целого числа его следует перевести в двоичную систему счисления и дополнить полученный результат слева нулями до стандартной разрядности.

При представлении со знаком самый старший разряд отводится под знак числа, остальные разряды - под само число. Бели число положительное, то в знаковый разряд помещается 0, если число отрицательное, то 1. Положительные числа хранятся в компьютере в прямом коде, отрицательные - в дополнительном.

При хранении в компьютере вещественных чисел выделяются разряды на хранение знака порядка числа, самого порядка, знака мантиссы и мантиссы. При этом любое число записывается так:

где:

m - мантисса числа;
q - основание системы счисления;
p - порядок числа.

Вопросы и задания

1. Ознакомьтесь с материалами презентации к параграфу, содержащейся в электронном приложении к учебнику. Используйте эти материалы при подготовке ответов на вопросы и выполнении заданий.

2. Как в памяти компьютера представляются целые положительные и отрицательные числа?

3. Любое целое число можно рассматривать как вещественное, но с нулевой дробной частью. Обоснуйте целесообразность наличия особых способов компьютерного представления целых чисел.

4. Представьте число 63 10 в беззнаковом 8-разрядном формате.

5. Найдите десятичные эквиваленты чисел по их прямым кодам, записанным в 8-разрядном формате со знаком:

а) 01001100;
б) 00010101.

6. Какие из чисел 443 8 , 101010 2 , 256 10 можно сохранить в 8-разрядном формате?

7. Запишите следующие числа в естественной форме:

а) 0,3800456 10 2 ;
б) 0,245 10 -3 ;
в) 1,256900Е+5;
г) 9,569120Е-3.

8. Запишите число 2010,0102 10 пятью различными способами в экспоненциальной форме.

9. Запишите следующие числа в экспоненциальной форме с нормализованной мантиссой - правильной дробью, имеющей после запятой цифру, отличную от нуля:

а) 217,934 10 ;
б) 75321 10 ;
в) 0,00101 10 .

10. Изобразите схему, связывающую основные понятия, рассмотренные в данном параграфе.

Числовые данные обрабатываются в компьютере в двоичной системе счисления. Числа хранятся в памяти компьютера в двоичном коде, т. е. в виде последовательности нулей и единиц, и могут быть представлены в формате с фиксированной или плавающей запятой.

Целые числа хранятся в памяти в формате с фиксированной запятой. При таком формате представления чисел для хранения целых неотрицательных чисел отводится регистр памяти, состоящий из восьми ячеек памяти (8 бит). Каждому разряду ячейки памяти соответствует всегда один и тот же разряд числа, а запятая находится справа после младшего разряда и вне разрядной сетки. Например, число 110011012 будет храниться в регистре памяти следующим образом:

Таблица 4

Максимальное значение целого неотрицательного числа, которое может храниться в регистре в формате с фиксированной запятой, можно определить из формулы: 2n – 1, где n – число разрядов числа. Максимальное число при этом будет равно 28 – 1 = 25510 = 111111112и минимальное 010 = 000000002. Таким образом, диапазон изменения целых неотрицательных чисел будет находиться в пределах от 0 до 25510.

В отличие от десятичной системы в двоичной системе счисления при компьютерном представлении двоичного числа отсутствуют символы, обозначающие знак числа: положительный (+) или отрицательный (-), поэтому для представления целых чисел со знаком в двоичной системе используются два формата представления числа: формат значения числа со знаком и формат дополнительного кода. В первом случае для хранения целых чисел со знаком отводится два регистра памяти (16 бит), причем старший разряд (крайний слева) используется под знак числа: если число положительное, то в знаковый разряд записывается 0, если число отрицательное, то – 1. Например, число 53610 = 00000010000110002 будет представлено в регистрах памяти в следующем виде:

Таблица 5

а отрицательное число -53610 = 10000010000110002 в виде:

Таблица 6

Максимальное положительное число или минимальное отрицательное в формате значения числа со знаком (с учетом представления одного разряда под знак) равно 2n-1 – 1 = 216-1 – 1 = 215 – 1 = 3276710 = 1111111111111112 и диапазон чисел будет находиться в пределах от -3276710 до 32767.

Наиболее часто для представления целых чисел со знаком в двоичной системе применяется формат дополнительного кода, который позволяет заменить арифметическую операцию вычитания в компьютере операцией сложения, что существенно упрощает структуру микропроцессора и увеличивает его быстродействие.

Для представления целых отрицательных чисел в таком формате используется дополнительный код, который представляет собой дополнение модуля отрицательного числа до нуля. Перевод целого отрицательного числа в дополнительный код осуществляется с помощью следующих операций:


1) модуль числа записать прямым кодом в n (n = 16) двоичных разрядах;

2) получить обратный код числа (инвертировать все разряды числа, т. е. все единицы заменить на нули, а нули – на единицы);

3) к полученному обратному коду прибавить единицу к младшему разряду.

Например, для числа -53610 в таком формате модуль будет равен 00000010000110002, обратный код – 1111110111100111, а дополнительный код – 1111110111101000.

Необходимо помнить, что дополнительный код положительного числа – само число.

Для хранения целых чисел со знаком помимо 16-разрядного компьютерного представления, когда используются два регистра памяти (такой формат числа называется также форматом коротких целых чисел со знаком), применяются форматы средних и длинных целых чисел со знаком. Для представления чисел в формате средних чисел используется четыре регистра (4 х 8 = 32 бит), а для представления чисел в формате длинных чисел – восемь регистров (8 х 8 = 64 бита). Диапазоны значений для формата средних и длинных чисел будут соответственно равны: -(231 – 1) … + 231 – 1 и -(263-1) … + 263 – 1.

Компьютерное представление чисел в формате с фиксированной запятой имеет свои преимущества и недостатки. К преимуществам относятся простота представления чисел и алгоритмов реализации арифметических операций, к недостаткам – конечный диапазон представления чисел, который может быть недостаточным для решения многих задач практического характера (математических, экономических, физических и т. д.).

Вещественные числа (конечные и бесконечные десятичные дроби) обрабатываются и хранятся в компьютере в формате с плавающей запятой. При таком формате представления числа положение запятой в записи может изменяться. Любое вещественное число К в формате с плавающей запятой может быть представлено в виде:

где А – мантисса числа; h – основание системы счисления; p – порядок числа.

Выражение (2.7) для десятичной системы счисления примет вид:

для двоичной -

для восьмеричной -

для шестнадцатеричной -

Такая форма представления числа также называется нормальной . С изменением порядка запятая в числе смещается, т. е. как бы плавает влево или вправо. Поэтому нормальную форму представления чисел называют формой с плавающей запятой . Десятичное число 15,5, например, в формате с плавающей запятой может быть представлено в виде: 0,155 · 102; 1,55 · 101; 15,5 · 100; 155,0 · 10-1; 1550,0 · 10-2 и т. д. Эта форма записи десятичного числа 15,5 с плавающей запятой не используется при написании компьютерных программ и вводе их в компьютер (устройства ввода компьютеров воспринимают только линейную запись данных). Исходя из этого выражение (2.7) для представления десятичных чисел и ввода их в компьютер преобразовывают к виду

где Р – порядок числа,

т. е. вместо основания системы счисления 10 пишут букву Е, вместо запятой – точку, и знак умножения не ставится. Таким образом, число 15,5 в формате с плавающей запятой и линейной записи (компьютерное представление) будет записано в виде: 0.155Е2; 1.55Е1; 15.5Е0; 155.0Е-1; 1550.0Е-2 и т.д.

Независимо от системы счисления любое число в форме с плавающей запятой может быть представлено бесконечным множеством чисел. Такая форма записи называется ненормализованной . Для однозначного представления чисел с плавающей запятой используют нормализованную форму записи числа, при которой мантисса числа должна отвечать условию

где |А| - абсолютное значение мантиссы числа.

Условие (2.9) означает, что мантисса должна быть правильной дробью и иметь после запятой цифру, отличную от нуля, или, другими словами, если после запятой в мантиссе стоит не нуль, то число называется нормализованным. Так, число 15,5 в нормализованном виде (нормализованная мантисса) в форме с плавающей запятой будет выглядеть следующим образом: 0,155 · 102, т. е. нормализованная мантисса будет A = 0,155 и порядок Р = 2, или в компьютерном представлении числа 0.155Е2.

Числа в форме с плавающей запятой имеют фиксированный формат и занимают в памяти компьютера четыре (32 бит) или восемь байт (64 бит). Если число занимает в памяти компьютера 32 разряда, то это число обычной точности, если 64 разряда, то это число двойной точности. При записи числа с плавающей запятой выделяются разряды для хранения знака мантиссы, знака порядка, мантиссы и порядка. Количество разрядов, которое отводится под порядок числа, определяет диапазон изменения чисел, а количество разрядов, отведенных для хранения мантиссы, – точность, с которой задается число.

При выполнении арифметических операций (сложение и вычитание) над числами, представленными в формате с плавающей запятой, реализуется следующий порядок действий (алгоритм) :

1) производится выравнивание порядков чисел, над которыми совершаются арифметические операции (порядок меньшего по модулю числа увеличивается до величины порядка большего по модулю числа, мантисса при этом уменьшается в такое же количество раз);

2) выполняются арифметические операции над мантиссами чисел;

3) производится нормализация полученного результата.

Практическая часть

Представление чисел в компьютере

Целые числа являются простейшими числовыми данными, с которыми оперирует ЭВМ. Целые числа в компьютере хранятся в формате с фиксированной запятой . В этом случае каждому разряду ячейки памяти соответствует всегда один и тот же разряд числа, а «запятая» находится справа после младшего разряда.

Для хранения целого неотрицательного числа отводится одна ячейка памяти 1 байт (8 бит), т.е диапазон чисел, которые могут храниться в оперативной памяти в формате целых неотрицательных чисел, от 0 до 255 (всего 256). Минимальное число 0 соответствует восьми нулям, а максимальное 255 соответствует восьми единицам (255 10 = 11111111 2).

Для представления целого числа со знаком самый старший (левый) бит отводится под знак числа, остальные разряды - под само число. Если число положительное, то в знаковый разряд помещается 0, если отрицательное - 1. Например, в байте можно представить знаковые числа от -128 до 127.

Для компьютерного представления целых чисел обычно используется один, два или четыре байта, то есть ячейка памяти будет состоять из восьми, шестнадцати или тридцати двух разрядов соответственно.

Представление числа в привычной форме "знак"-"величина", при которой старший разряд ячейки отводится под знак, а остальные - под запись числа в двоичной системе, называется прямым кодом двоичного числа.

Например, прямой код двоичных чисел 1001 и -1001 для 8-разрядной ячейки равен 0 0001001 и 1 0001001 соответственно.

Положительные числа в ЭВМ всегда представляются с помощью прямого кода. Прямой код числа полностью совпадает с записью самого числа в ячейке машины.

Прямой код отрицательного числа отличается от прямого кода соответствующего положительного числа лишь содержимым знакового разряда.
Но отрицательные целые числа не представляются в ЭВМ с помощью прямого кода, для их представления используется дополнительный код.

Дополнительный код положительного числа равен прямому коду этого числа.

Дополнительный код отрицательного числа m равен 2 n -|m|, где n - количество разрядов в ячейке.

Дополнительный код используется для упрощения выполнения арифметических операций. Если бы вычислительная машина работала с прямыми кодами положительных и отрицательных чисел, то при выполнении арифметических операций следовало бы выполнять ряд дополнительных действий. Например, при сложении нужно было бы проверять знаки обоих операндов и определять знак результата. Если знаки одинаковые, то вычисляется сумма операндов и ей присваивается тот же знак. Если знаки разные, то из большего по абсолютной величине числа вычитается меньшее и результату присваивается знак большего числа. То есть при таком представлении чисел (в виде только прямого кода) операция сложения реализуется через достаточно сложный алгоритм. Если же отрицательные числа представлять в виде дополнительного кода, то операция сложения, в том числе и разного знака, сводится к их поразрядному сложению.

Алгоритм получения дополнительного кода отрицательного числа.

Для получения дополнительного k-разрядного кода отрицательного числа необходимо:

    модуль отрицательного числа представить прямым кодом в k- двоичных разрядах;

    значение всех бит инвертировать: все нули заменить на единицы, а единицы на нули, таким образом, получается k-разрядный обратный код исходного числа);

    к полученному обратному коду прибавить единицу.

Пример:

Получим 8-разрядный дополнительный код числа -52:
00110100 - число |-52|=52 в прямом коде
11001011 - число -52 в обратном коде
11001100 - число -52 в дополнительном коде

Представление вещественных чисел в компьютере.

Для представления вещественных чисел в современных компьютерах принят способ представления с плавающей запятой .

Этот способ представления опирается на нормализованную (экспоненциальную) запись действительных чисел.
Нормализованная запись отличного от нуля действительного числа A - это запись вида:
А= m* q n ,
где
m - мантисса числа (правильная дробь, у которой первая цифра после запятой не равна нулю),
q - основание системы,
n - порядок числа.

Примеры:
1. 3,1415926 = 0, 31415926 * 101;
2. 1000=0,1 * 104;
3. 0,123456789 = 0,123456789 * 100;
4. 0,00001078 = 0,1078 * 8-4; (порядок записан в 10-й системе)
5. 1000,00012 = 0, 100000012 * 24.

При представлении чисел с плавающей запятой часть разрядов ячейки отводится для записи порядка числа, остальные разряды - для записи мантиссы. По одному разряду в каждой группе отводится для изображения знака порядка и знака мантиссы.

    Целые числа являются простейшими числовыми данными, с которыми оперирует ЭВМ. Для целых чисел существуют два представления: беззнаковое (только для неотрицательных целых чисел) и со знаком. Очевидно, что отрицательные числа можно представлять только в знаковом виде. Целые числа в компьютере хранятся в формате с фиксированной запятой .

  • Представление целых чисел в беззнаковых целых типах.

    Для беззнакового представления все разряды ячейки отводятся под представление самого числа. Например, в байте (8 бит) можно представить беззнаковые числа от 0 до 255. Поэтому, если известно, что числовая величина является неотрицательной, то выгоднее рассматривать её как беззнаковую.

    Представление целых чисел в знаковых целых типах. Для представления со знаком самый старший (левый) бит отводится под знак числа, остальные разряды - под само число. Если число положительное, то в знаковый разряд помещается 0, если отрицательное - 1. Например, в байте можно представить знаковые числа от -128 до 127.

    Прямой код числа. Представление числа в привычной форме "знак"-"величина", при которой старший разряд ячейки отводится под знак, а остальные - под запись числа в двоичной системе, называется прямым кодом двоичного числа. Например, прямой код двоичных чисел 1001 и -1001 для 8-разрядной ячейки равен 00001001 и 10001001 соответственно. Положительные числа в ЭВМ всегда представляются с помощью прямого кода. Прямой код числа полностью совпадает с записью самого числа в ячейке машины. Прямой код отрицательного числа отличается от прямого кода соответствующего положительного числа лишь содержимым знакового разряда. Но отрицательные целые числа не представляются в ЭВМ с помощью прямого кода, для их представления используется так называемый дополнительный код . Дополнительный код положительного числа равен прямому коду этого числа. Дополнительный код отрицательного числа m равен 2 k -|m|, где k - количество разрядов в ячейке. Как уже было сказано, при представлении неотрицательных чисел в беззнаковом формате все разряды ячейки отводятся под само число. Например, запись числа 243=11110011 в одном байте при беззнаковом представлении будет выглядеть следующим образом:

При представлении целых чисел со знаком старший (левый) разряд отводится под знак числа, и под собственно число остаётся на один разряд меньше. Поэтому, если приведённое выше состояние ячейки рассматривать как запись целого числа со знаком, то для компьютера в этой ячейке записано число -13 (243+13=256=28). Но если это же отрицательное число записать в ячейку из 16-ти разрядов, то содержимое ячейки будет следующим:

    Знаковый разряд Возникает вопрос: с какой целью отрицательные числа записываются в виде дополнительного кода и как получить дополнительный код отрицательного числа? Дополнительный код используется для упрощения выполнения арифметических операций. Если бы вычислительная машина работала с прямыми кодами положительных и отрицательных чисел, то при выполнении арифметических операций следовало бы выполнять ряд дополнительных действий. Например, при сложении нужно было бы проверять знаки обоих операндов и определять знак результата. Если знаки одинаковые, то вычисляется сумма операндов и ей присваивается тот же знак. Если знаки разные, то из большего по абсолютной величине числа вычитается меньшее и результату присваивается знак большего числа. То есть при таком представлении чисел (в виде только прямого кода) операция сложения реализуется через достаточно сложный алгоритм. Если же отрицательные числа представлять в виде дополнительного кода, то операция сложения, в том числе и разного знака, сводится к из поразрядному сложению. Для компьютерного представления целых чисел обычно используется один, два или четыре байта, то есть ячейка памяти будет состоять из восьми, шестнадцати или тридцати двух разрядов соответственно.

    Алгоритм получения дополнительного кода отрицательного числа. Для получения дополнительного k-разрядного кода отрицательного числа необходимо

    модуль отрицательного числа представить прямым кодом в k двоичных разрядах;

    значение всех бит инвертировать:все нули заменить на единицы, а единицы на нули(таким образом, получается k-разрядный обратный код исходного числа);

    к полученному обратному коду прибавить единицу. Пример: Получим 8-разрядный дополнительный код числа -52:

    00110100 - число |-52|=52 в прямом коде

    11001011 - число -52 в обратном коде

    11001100 - число -52 в дополнительном коде Можно заметить, что представление целого числа не очень удобно изображать в двоичной системе, поэтому часто используют шестнадцатеричное представление:

    Представление вещественных чисел в компьютере.

    Для представления вещественных чисел в современных компьютерах принят способ представления с плавающей запятой . Этот способ представления опирается на нормализованную (экспоненциальную) запись действительных чисел. Как и для целых чисел, при представлении действительных чисел в компьютере чаще всего используется двоичная система, следовательно, предварительно десятичное число должно быть переведено двоичную систему.

  • Представление чисел с плавающей запятой. При представлении чисел с плавающей запятой часть разрядов ячейки отводится для записи порядка числа, остальные разряды - для записи мантиссы. По одному разряду в каждой группе отводится для изображения знака порядка и знака мантиссы. Для того, чтобы не хранить знак порядка, был придуман так называемый смещённый порядок , который рассчитывается по формуле 2 a-1 +ИП, где a - количество разрядов, отводимых под порядок. Пример : Если истинный порядок равен -5, тогда смещённый порядок для 4-байтового числа будет равен 127-5=122.

    Алгоритм представления числа с плавающей запятой.

    Перевести число из p-ичной системы счисления в двоичную;

    представить двоичное число в нормализованной экспоненциальной форме;

    разместить знак, порядок и мантиссу в соответствующие разряды сетки.

    Пример: Представить число -25,625 в машинном виде с использованием 4 байтового представления (где 1 бит отводится под знак числа, 8 бит - под смещённый порядок, остальные биты - под мантиссу).

    25 10 =100011 2 0,625 10 =0,101 2 -25,625 10 = -100011,101 2 2. -100011,101 2 = -1,00011101 2 * 2 4 3. СП=127+4=131 4.

  • Можно заметить, что представление действительного числа не очень удобно изображать в двоичной системе, поэтому часто используют шестнадцатеричное представление:

  • Окончательный ответ: C1CD0000.

  • Записать внутреннее представление числа 250,1875 в форме с плавающей точкой.

  • 1) Приведем его в двоичную систему счисления с 24 значащими цифрами: 250,1875 10 =1111 1010 , 0011 0000 0000 0000 2 . 2) Запишем в форме нормлизованного двоичного числа с плавающей точкой: 0,1111 1010 0011 0000 0000 0000*10 2 1000 . Здесь мантисса, основание системы счисления (2 10 =10 2) и порядок (8 10 =1000 2) записаны в двоичной системе. 3) Вычислим машинный порядок в двоичной системе счисления: Mp 2 = 1000 + 100 0000 =100 1000. 4) Запишем представление числа в 4-х байтовой ячейке памяти с учетом знака числа:

  • Шестнадцатеричная форма: 48FA3000.

  • В семи двоичных разрядах помещаются двоичные числа в диапозоне от 0000000 до 1111111. Значит, машинный порядок изменяется в диапозоне от 0 до 127 (в десятичной системе счисления). Всего 128 значений. Порядок, очевидно, может быть как положительным так и отрицательным. Разумно эти 128 значений разделить поровну между положительным и отрицательным значениеями порядка: от -64 до 63.

    Машинный порядок смещен относительно математического и имеет только положительные значения. Смещение выбирается так, чтобы минимальному математическому значению порядка соответствовал нуль.

    Связь между машинным порядком (Мр) и математическим (р) в рассматриваемом случае выражается формулой: Мр = р + 64

    Полученная формула записана в десятичной системе. В двоичной системе формула имеет вид: Mp 2 =p 2 +1000000 2 Для записи внутреннего представления вещественного числа в 4-х байтовой ячейке необходимо: 1) перевести модуль данного числа в двоичную систему счисления с 24 значащими цифрами; 2) нормализовать двоичное число; 3) найти машинный порядок в двоичной системе счисления; 4) учитывая знак числа, выписать его представление в 4-х байтовом машинном слове.

Назначение сервиса . Онлайн-калькулятор предназначен для представления вещественных чисел в формат с плавающей точкой.

Число

представлено в 10 2 системы счисления.
Представить число в:
нормализованном экспоненциальном виде
денормализованном экспоненциальном виде
32 битный формат IEEE 754
64 битный формат IEEE 754
Перевести обратно в десятичное представление

Правила ввода чисел

  1. Числа в десятичной системе счисления могут вводиться как без дробной, так и с дробной частью (234234.455).
  2. Числа в двоичной системе счисления состоят только из цифр 0 и 1 (10100.01).
  3. Числа в шестнадцатеричной системе счисления состоят из цифр 0 ... 9 и букв A ... F .
  4. Можно также получать обратное представление кода (из шестнадцатеричной системы счисления в десятичную, 40B00000)
Пример №1 . Представить число 133,54 в форме числа с плавающей точкой.
Решение . Представим число 133.54 в нормализованном экспоненциальном виде:
1.3354*10 2 = 1.3354*exp 10 2
Число 1.3354*exp 10 2 состоит из двух частей: мантиссы M=1.3354 и экспоненты exp 10 =2
Если мантисса находится в диапазоне 1 ≤ M Представление числа в денормализованном экспоненциальном виде .
Если мантисса находится в диапазоне 0,1 ≤ M Представим число в денормализованном экспоненциальном виде: 0.13354*exp 10 3

Пример №2 . Представить двоичное число 101.10 2 в нормализованном виде, записать в 32-битом стандарте IEEE754.
Решение .
Представление двоичного числа с плавающей точкой в экспоненциальном нормализованном виде .
Сдвинем число на 2 разрядов вправо. В результате мы получили основные составляющие экспоненциального нормализованного двоичного числа:
Мантисса M=1.011
Экспонента exp 2 =2
Преобразование двоичного нормализованного числа в 32 битный формат IEEE 754 .
Первый бит отводится для обозначения знака числа. Поскольку число положительное, то первый бит равен 0
Следующие 8 бит (с 2-го по 9-й) отведены под экспоненту.
Для определения знака экспоненты, чтобы не вводить ещё один бит знака, добавляют смещение к экспоненте в половину байта +127. Таким образом, наша экспонента: 2 + 127 = 129
Переведем экспоненту в двоичное представление.
Оставшиеся 23 бита отводят для мантиссы. У нормализованной двоичной мантиссы первый бит всегда равен 1, так как число лежит в диапазоне 1 ≤ M Для перевода целой части необходимо умножить разряд числа на соответствующую ему степень разряда.
01100000000000000000000 = 2 22 *0 + 2 21 *1 + 2 20 *1 + 2 19 *0 + 2 18 *0 + 2 17 *0 + 2 16 *0 + 2 15 *0 + 2 14 *0 + 2 13 *0 + 2 12 *0 + 2 11 *0 + 2 10 *0 + 2 9 *0 + 2 8 *0 + 2 7 *0 + 2 6 *0 + 2 5 *0 + 2 4 *0 + 2 3 *0 + 2 2 *0 + 2 1 *0 + 2 0 *0 = 0 + 2097152 + 1048576 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 = 3145728
В десятичном коде мантисса выражается числом 3145728
В результате число 101.10 представленное в IEEE 754 c одинарной точностью равно.
Переведем в шестнадцатеричное представление.
Разделим исходный код на группы по 4 разряда.
2 = 0100 0000 1011 0000 0000 0000 0000 0000 2
Получаем число:
0100 0000 1011 0000 0000 0000 0000 0000 2 = 40B00000 16