Размыкание цепи. Ток при замыкании и размыкании цепей. Токи при размыкании и замыкании цепи

При всяком изменении силы тока в проводящем контуре возникает э.д.с. самоиндукции, в результате чего в контуре появляются дополнительные токи, называемые экстратоками самоиндукции . Экстратоки самоиндукции, согласно правилу Ленца, всегда направлены так, чтобы препятствовать изменениям тока в цепи, т.е. направлены противоположно току, создаваемому источником. При выключении источника тока экстратоки имеют такое же направление, что и ослабевающий ток. Следовательно, наличие индуктивности в цепи приводит к замедлению исчезновения или установления тока в цепи.

Рассмотрим процесс выключения тока в цепи, содержащей источник тока с э.д.с. E i , сопротивление R и индуктивность L . Под действием внешней э.д.с. в цепи течет постоянный ток I o =E/R (внутренним сопротивлением источника тока пренебрегаем).

В момент времени t = 0 отключим источник тока. Ток через катушку индуктивности начнет уменьшаться, что приведет к возникновению эдс самоиндукции E s = –L (dI /dt ), препятствующей, согласно правилу Ленца, уменьшению тока. В каждый момент времени ток в цепи определяется законом Ома I =E s /R , или

IR =–L (dI /dt ). (18.1)

Разделив переменные, получим dI /I = – R dt /L . Интегрируя это уравнение по I (от I o до I ) и t (от 0 до t ), находим ln(I /I o) = – Rt /L , или

I (t ) =I o exp (– t /τ ), (18.2)

где τ =L /R – постоянная, называемая временем релаксации, равная времени, в течение которого сила тока уменьшается в е раз.

Таким образом, в процессе отключения источника э.д.с. сила тока убывает по экспоненциальному закону (18.2) и определяется кривой 1 на рис. (19). Чем больше индуктивность цепи и меньше сопротивление, тем больше τ и, следовательно, тем медленнее уменьшается ток в цепи при ее размыкании.

При замыкании цепи помимо внешней э.д.с E возникает э.д.с самоиндукции E s = –L (dI /dt ), препятствующая, согласно правилу Ленца, возрастанию тока. По закону Ома IR = E + E s или

IR = E –L (dI /dt ). Введя новую переменную u = IR – E, преобразу- Рис.19. ем это уравнение к виду du /u = – dt /τ , где τ – время релаксации.

В момент замыкания (t = 0) сила тока I =0 и u = –E. Следовательно, интегрируя по u (от –E до IR –E) и t (от 0 до t ), находим ln[(IR –E)/(–E)] = –t /τ , или

I (t )=I o , (18.3)

где I o = E/R – установившийся ток (при t → ¥).

Таким образом, в процессе включения источника э.д.с нарастание силы тока в цепи задается функцией (18.3) и определяется кривой 2 на рис.19. Сила тока возрастает от начального значения I =0 и асимптотически стремится к установившемуся значению I o = E/R . Скорость нарастания тока определяется тем же временем релаксации τ =L /R , что и убывание тока. Установление тока происходит тем быстрее, чем меньше индуктивность цепи и больше ее сопротивление.


Трансформаторы.

Принцип действия трансформаторов, применяемых для повышения или понижения напряжения переменного тока, основан на явлении взаимной индукции. Первые трансформаторы были сконструированы и введены в практику русским электротехником П.Н.Яблочковым (1847 – 1894) и русским физиком И.Ф.Усагиным (1855 – 1919). Принципиальная схема трансформатора показана на рис. 20.

Первичная и вторичная катушки (обмотки), имеющие соответственно n 1 и n 2 витков, укреплены на замкнутом железном сердечнике. Так как концы первичной обмотки присоединены к источнику переменного напряжения с э.д.с. E 1 , то в ней возникает переменный ток создающий в сердечнике трансформатора переменный магнитный поток Ф, который практически полностью локализован в

железном сердечнике и, следовательно, почти целиком

пронизывает витки вторичной обмотки. Изменение этого потока вызывает во вторичной обмотке появление э.д.с. электромагнитной индукции, а в первичной – э.д.с. самоиндукции .

По закону Ома, ток I 1 , первичной обмотки определяется алгебраической суммой внешней э.д.с. и э.д.с. самоиндукции: I 1 R 1 =, где R 1 – сопротивление первичной обмотки. Падение напряжения I 1 R 1 на сопротивлении R 1 , при быстропеременных полях мало по сравнению с каждой из двух э.д.с., поэтому E 1 »n 1 dФ/dt .

Э.д.с. электромагнитной индукции, возникающая во вторичной обмотке,

E 2 = –[(dn 2 Ф)/dt ] = – n 2 (dФ/dt ). (19.1)

Сравнивая выражения для E 1 и E 2 , получим, что э.д.с., возникающая во вторичной обмотке,

E 2 = –(n 2 /n 1) E 1 , (19.2)

где знак минус показывает, что э.д.с. в первичной и вторичной обмотках противоположны по фазе. Отношение числа витков n 1 /n 2 показывающее, во сколько раз э.д.с. во вторичной обмотке трансформатора больше (или меньше), чем в первичной, называется коэффициентом трансформации .

Пренебрегая потерями энергии, которые в современных трансформаторах не превышают 2% и связаны в основном с выделением в обмотках джоулевой теплоты и появлением вихревых токов, и применяя закон сохранения энергии, можем записать, что мощности тока в обеих обмотках трансформатора практически одинаковы:

E 2 I 2 ≈ E 1 I 1 , (19.3)

откуда, учитывая соотношение (19.2), найдем E 2 /E 1 = I 1 /I 2 = n 2 /n 1 , т.е. токи в обмотках трансформатора обратно пропорциональны числу витков в этих обмотках .

Если n 2 /n 1 >1, то имеем дело с повышающим трансформатором , увеличивающим переменную э.д.с. и понижающим ток (применяется, например, для передачи электроэнергии на большие расстояния, так как в данном случае потери на джоулеву теплоту, пропорциональные квадрату силы тока, снижаются). Если n 2 /n 1 <1, то имеем дело с понижающим трансформатором , уменьшающим э.д.с. и повышающим ток (применяется, например, при электросварке, так как для нее требуется большой ток при низком напряжении).

Трансформаторы, используемые в радиотехнике, имеют 4–5 обмоток, обладающих разными рабочими напряжениями. Трансформатор, состоящий из одной обмотки, называется автотрансформатором . В случае повышающего автотрансформатора э.д.с. подводится к части обмотки, а вторичная э.д.с. снимается со всей обмотки. В понижающем автотрансформаторе напряжение сети подается на всю обмотку, а вторичная э.д.с. снимается с части обмотки.

При всяком изменении силы тока в про­водящем контуре возникает э.д.с. само­индукции, в результате чего в контуре появляются дополнительные токи, называ­емые экстратоками самоиндукции. Экстра­токи самоиндукции, согласно правилу Ленца, всегда направлены так, чтобы пре­пятствовать изменениям тока в цепи, т. е. направлены противоположно току, со­здаваемому источником. При выключении источника тока экстратоки имеют такое же направление, что и ослабевающий ток. Следовательно, наличие индуктивности в цепи приводит к замедлению исчезнове­ния или установления тока в цепи.

Рассмотрим процесс выключения тока в цепи, содержащей источник тока с э.д.с. ξ, резистор сопротивлением R и катушку индуктивностью L. Под дей­ствием внешней э.д.с. в цепи течет по­стоянный ток

I 0 =ξ/R

(внутренним сопротивлением источника тока пренебрегаем).

В момент времени t= 0отключим источник тока. Ток через катушку индук­тивности L начнет уменьшаться, что при­ведет к возникновению э.д.с. самоиндук­ции ξ s =-LdI/dt, препятствующей, со­гласно правилу Ленца, уменьшению тока. В каждый момент времени ток в цепи определяется законом Ома I=ξ s /R, или

IR=-LdI/dt. (127.1)

Разделив в выражении (127.1) переменные, получим dI/I =-(R/L)dt. Интегрируя

это уравнение по I (от I 0 до I) и t (от 0 до t), находим ln(I/I 0)=-Rt/L, или

где t=L/R - постоянная, называемая временем релаксации. Из (127.2) следует, что т есть время, в течение которого сила тока уменьшается в е раз.

Таким образом, в процессе отключения источника э.д.с. сила тока убывает по экспоненциальному закону (127.2) и опре­деляется кривой 1 на рис. 183. Чем больше индуктивность цепи и меньше ее сопро­тивление, тем больше т и, следовательно, тем медленнее уменьшается ток в цепи при ее размыкании.

При замыкании цепи помимо внешней э.д.с.ξ возникает э.д.с. самоиндукции

ξ s =-LdI/dt, препятствующая, согласно

правилу Ленца, возрастанию тока. По за­кону Ома, IR=ξ+ξ s , или

IR =ξ-LdI/dt .

Введя новую переменную u=IR-ξ, пре­образуем это уравнение к виду du/u=-dt/t,



где 1 - время релаксации.

В момент замыкания (t=0) сила тока I =0 и u=-ξ. Следовательно, интегри­руя по и (от -ξ до IR - ξ) и t (от 0 до t).

находим ln(IR -ξ)/-ξ=-t/t, или

где I 0 =ξ/R - установившийся ток (при t®¥)

Таким образом, в процессе включения источника э.д.с. нарастание силы тока в цепи задается функцией (127.3) и опре­деляется кривой 2 на рис. 183. Сила тока возрастает от начального значения I =0 и асимптотически стремится к устано­вившемуся значению I 0 =ξ/R. Скорость нарастания тока определяется тем же вре­менем релаксации t=L/R, что и убыва­ние тока. Установление тока происходит тем быстрее, чем меньше индуктивность цепи и больше ее сопротивление.

Оценим значение э.д.с. самоиндук­ции ξ s , возникающей при мгновенном уве­личении сопротивления цепи постоянного тока от R 0 До R. Предположим, что мы размыкаем контур, когда в нем течет уста­новившийся ток I 0 =ξ/R 0 . При размыка­нии цепи ток изменяется по формуле (127.2). Подставив в нее выражение для I 0 и t, получим

Э.д.с. самоиндукции

т. е. при значительном увеличении сопро­тивления цепи (R/R 0 >> 1) обладающей большой индуктивностью, э.д.с. самоин­дукции может во много раз превышать э.д.с. источника тока, включенного в цепь. Таким образом, необходимо учиты­вать, что контур, содержащий индуктив­ность, нельзя резко размыкать, так как это (возникновение значительных э.д.с. само­индукции) может привести к пробою изо­ляции и выводу из строя измерительных приборов. Если в контур сопротивление вводить постепенно, то э.д.с. самоиндук­ции не достигнет больших значений.

Взаимная индукция

Рассмотрим два неподвижных контура (1 к 2), расположенных достаточно близко друг от друга (рис. 184). Если в конту­ре 1 течет ток I 1 , то магнитный поток, со­здаваемый этим током (поле, создающее этот поток, на рисунке изображено сплош­ными линиями), пропорционален I 1 . Обоз-

начим через Ф 2 1 ту часть потока, которая пронизывает контур 2. Тогда

Ф 21 =L 21 /I 1 , (128.1)

где L 21 - коэффициент пропорциональ­ности.

Если ток I 1 изменяется, то в конту­ре 2 индуцируется э.д.с. ξ i2 , которая по закону Фарадея (см. (123.2)) равна и противоположна по знаку скорости из­менения магнитного потока Ф 2 1 , созданно­го током в первом контуре и пронизываю­щего второй:

Аналогично, при протекании в конту­ре 2 тока I 2 магнитный поток (его поле изображено на рис. 184 штриховой линией) пронизывает первый контур. Если Ф 12 - часть этого потока, пронизывающего кон­тур 1 , то

Ф 12 =L 12 I 2 .

Если ток I 2 изменяется, то в контуре 1 ин­дуцируется э.д.с. ξ i1 , которая равна и противоположна по знаку скорости из­менения магнитного потока Ф 1 2 , созданно­го током во втором контуре и пронизываю­щего первый:

Явление возникновения э.д.с. в одном из контуров при изменении силы тока в другом называется взаимной индукцией. Коэффициенты пропорциональности L 21 и L 12 называются взаимной индуктивно­стью контуров. Расчеты, подтверждаемые опытом, показывают, что l 21 и L 12 равны друг другу, т. е.

L I2 = L 2I . (128.2)

Коэффициенты L 12 и L 21 зависят от гео­метрической формы, размеров, взаимного расположения контуров и от магнитной проницаемости окружающей контуры сре­ды. Единица взаимной индуктивности та же, что и для индуктивности,- ген­ри (Гн).

Рассчитаем взаимную индуктивность двух катушек, намотанных на общий торо­идальный сердечник. Этот случай имеет большое практическое значение (рис. 185). Магнитная индукция поля, со­здаваемого первой катушкой с числом вит­ков N 1 , током I 1 и магнитной проницаемо­стью m, сердечника, согласно (119.2),

B=m 0 mN 1 I 1 /l, где l - длина сердечника

по средней линии. Магнитный поток через один виток второй катушки Ф 2 =BS=m 0 m(N 1 I 1 /l )S Тогда полный магнитный поток (потокосцепление) сквозь вторичную обмот­ку, содержащую N2 витков,

Поток yсоздается током I 1 , поэтому, со­гласно (128.1), получаем

Если вычислить магнитный поток, создава­емый катушкой 2 сквозь катушку 1 , то для L 12 получим выражение в соответст­вии с формулой (128.3). Таким образом, взаимная индуктивность двух катушек, намотанных на общий тороидальный сер­дечник,

Трансформаторы

Принцип действия трансформаторов, при­меняемых для повышения или понижения напряжения переменного тока, основан на явлении взаимной индукции. Впервые трансформаторы были сконструированы и введены в практику русским электро­техником П. Н. Яблочковым (1847-1894) и русским физиком И. Ф. Усагиным (1855-1919). Принципиальная схема трансформатора показана на рис. 186.

Первичная и вторичная катушки (обмот­ки), имеющие соответственно n 1 и N 2 вит­ков, укреплены на замкнутом железном сердечнике. Так как концы первичной об­мотки присоединены к источнику перемен­ного напряжения с э.д.с. ξ 1 , то в ней возникает переменный ток I 1 , создающий в сердечнике трансформатора переменный магнитный поток Ф, который практически полностью локализован в железном сер­дечнике и, следовательно, почти целиком пронизывает витки вторичной обмотки. Изменение этого потока вызывает во вто­ричной обмотке появление э.д.с. взаим­ной индукции, а в первичной - э.д.с. самоиндукции.

Ток I 1 первичной обмотки определяется согласно закону Ома:

где R 1 - сопротивление первичной обмот­ки. Падение напряжения I 1 R 1 на сопро­тивлении R 1 при быстропеременных полях мало по сравнению с каждой из двух э.д.с., поэтому

Э.д.с. взаимной индукции, возникающая во вторичной обмотке,

Сравнивая выражения (129.1) и (129.2), получим, что э.д.с. , возникающая во вто­ричной обмотке,

где знак минус показывает, что э.д.с. в первичной и вторичной обмотках противоположны по фазе.

Отношение числа витков N 2 /N 1 , по­казывающее, во сколько раз э.д.с. во вторичной обмотке трансформатора боль­ше (или меньше), чем в первичной, на­зывается коэффициентом трансформации.

Пренебрегая потерями энергии, кото­рые в современных трансформаторах не превышают 2 % и связаны в основном с выделением в обмотках джоулевой теп­лоты и появлением вихревых токов, и при­меняя закон сохранения энергии, можем записать, что мощности тока в обеих об­мотках трансформатора практически оди­наковы:

ξ 2 I 2 »ξ 1 I 1 , откуда, учитывая соотношение (129.3), найдем

ξ 2 /ξ 1 =I 1 /I 2 = N 2 /N 1 ,

т. е. токи в обмотках обратно пропорцио­нальны числу витков в этих обмотках.

Если N 2 /N 1 >1, то имеем дело с повы­шающим трансформатором, увеличиваю­щим переменную э.д.с. и понижающим ток (применяются, например, для переда­чи электроэнергии на большие расстояния, так как в данном случае потери на джоулеву теплоту, пропорциональные квадрату силы тока, снижаются); если N 2 /N 1 <1, то имеем дело с понижающим трансформатором, уменьшающим э.д.с. и повышающим ток (применяются, на­пример, при электросварке, так как для нее требуется большой ток при низком напряжении).

Мы рассматривали трансформаторы, имеющие только две обмотки. Однако

трансформаторы, используемые в радио­устройствах, имеют 4-5 обмоток, обла­дающих разными рабочими напряжениями. Трансформатор, состоящий из одной об­мотки, называется автотрансформатором. В случае повышающего автотрансформа­тора э.д.с. подводится к части обмотки, а вторичная э.д.с. снимается со всей об­мотки. В понижающем автотрансформато­ре напряжение сети подается на всю об­мотку, а вторичная э.д.с. снимается с части обмотки.

Энергия магнитного поля

Проводник, по которому протекает элек­трический ток, всегда окружен магнитным полем, причем магнитное поле появляется и исчезает вместе с появлением и исчезно­вением тока. Магнитное поле, подобно электрическому, является носителем энер­гии. Естественно предположить, что энер­гия магнитного поля равна работе, которая затрачивается током на создание этого поля.

Рассмотрим контур индуктивностью L, по которому течет ток I . С данным контуром сцеплен магнитный поток (см. (126.1)) Ф=LI , причем при измене­нии тока на dI магнитный поток изменяет­ся на dФ=L dI . Однако для изменения магнитного потока на величину dФ (см. § 121) необходимо совершить работу dA =I dФ=LI dI. Тогда работа по созда­нию магнитного потока Ф будет равна

Следовательно, энергия магнитного поля, связанного с контуром,

W=LI 2 /2. (130.1)

Исследование свойств переменных маг­нитных полей, в частности распростране­ния электромагнитных волн, явилось до­казательством того, что энергия магнитно­го поля локализована в пространст­ве. Это соответствует представлениям те­ории поля.

Энергию магнитного поля можно пред-

ставить как функцию величин, характери­зующих это поле в окружающем простран­стве. Для этого рассмотрим частный слу­чай - однородное магнитное поле внутри длинного соленоида. Подставив в формулу (130.1) выражение (126.2), получим

Так как I=Вl/ (m 0 mN) (см. (119.2)) и В=m 0 mH (см. (109.3)), то

где Sl =V - объем соленоида.

Магнитное поле соленоида однородно и сосредоточено внутри него, поэтому энергия (см. (130.2)) заключена в объеме соленоида и распределена в нем с постоянной объемной плотностью

Выражение (130.3) для объемной плотности энергии магнитного поля имеет вид, аналогичный формуле (95.8) для объемной плотности энергии электроста­тического поля, с той разницей, что элек­трические величины заменены в нем маг­нитными. Формула (130.3) выведена для однородного поля, но она справедлива и для неоднородных полей. Выражение (130.3) справедливо только для сред, для которых зависимость В от Н линейная, т. е. оно относится только к пара- и диамагнетикам (см. § 132).

Контрольные вопросы

В чем заключается явление электромагнитной индукции? Проанализируйте опыты Фарадея.

Что является причиной возникновения э.д.с. индукции в замкнутом проводящем контуре? Отчего и как зависит э.д.с. индукции, возникающая в контуре?

Почему для обнаружения индукционного тока лучше использовать замкнутый проводник

в виде катушки, а не в виде одного витка провода?

Сформулируйте правило Ленца, проиллюстрировав его примерами.

Всегда ли при изменении потока магнитной индукции в проводящем контуре в нем возникает э.д.с. индукции? индукционный ток?

Возникает ли индукционный ток в проводящей рамке, поступательно движущейся в однород­ном магнитном поле?

Покажите, что закон Фарадея есть следствие закона сохранения энергии.

Какова природа э.д.с. электромагнитной индукции?

Выведите выражение для э.д.с. индукции в плоской рамке, равномерно вращающейся в одно­родном магнитном поле. За счет чего ее можно увеличить?

Что такое вихревые токи? Вредны они или полезны?

Почему сердечники трансформаторов не делают сплошными?

В чем заключаются явления самоиндукции и взаимной индукции? Вычислите э.д.с. индукции

для обоих случаев,

В чем заключается физический смысл времени релаксации t=L/R Докажите, что оно имеет

размерность времени.

Приведите соотношение между токами в первичной и вторичной обмотках повышающего транс­форматора.

Когда э.д.с. самоиндукции больше - при замыкании или размыкании цепи постоянного тока?

Какая физическая величина выражается в генри? Дайте определение генри.

В чем заключается физический смысл индуктивности контура? взаимной индуктивности двух контуров? От чего они зависят?

Запишите и проанализируйте выражения для объемной плотности энергии электростатического и магнитного полей. Чему равна объемная плотность энергии электромагнитного поля?

Напряженность магнитного поля возросла в два раза. Как изменилась объемная плотность энергии магнитного поля?

Задачи

15.1. Кольцо из алюминиевого провода (r=26 нОм м) помещено в магнитное поле перпендику­лярно линиям магнитной индукции. Диаметр кольца 20 см, диаметр провода 1 мм. Опреде­лить скорость изменения магнитного поля, если сила тока в кольце 0,5 А.

15.2. В однородном магнитном поле, индукция которого 0,5 Тл, равномерно с частотой 300 мин -1 вращается катушка, содержащая 200 витков, плотно прилегающих друг к другу. Площадь поперечного сечения катушки 100 см 2 . Ось вращения перпендикулярна оси катушки и направлению магнитного поля. Определить максимальную э.д.с., индуцируемую в катушке. .

15.3. Определить, сколько витков проволоки, вплотную прилегающих друг к другу, диаметром 0,3 мм с изоляцией ничтожной толщины надо намотать на картонный цилиндр диаметром 1 см, чтобы получить однослойную катушку с индуктивностью 1 мГн.

15.4. Определить, через сколько времени сила тока замыкания достигнет 0,98 предельного значе­ния, если источник тока замыкают на катушку сопротивлением 10 Ом и индуктивностью 0,4 Гн.

15.5. Два соленоида (индуктивность одного L 1 =0,36 Гн, второго L 2 = 0,64 Гн) одинаковой длины и практически равного сечения вставлены один в другой. Определить взаимную индуктив­ность соленоидов.

15.6. Автотрансформатор, понижающий напряжение с U 1 =5,5 кВ до U 2 =220 В, содержит в пер­вичной обмотке N 1 = 1500витков. Сопротивление вторичной обмотки R 2 =2 Ом. Сопротивле­ние внешней цепи (в сети пониженного напряжения) R =13 Ом. Пренебрегая сопротив­лением первичной обмотки, определить число витков во вторичной обмотке трансформатора.

По правилу Ленца дополнительные токи, возникающие вследствие самоиндукции, всегда направлены так, чтобы противодействовать изменениям тока в цепи. Это приводит к тому, что установление тока при замыкании цепи и убывание тока при размыкании цепи происходит не мгновенно, а постепенно.

Найдем сначала характер изменения тока при размыкании цепи. Пусть в цепь с не зависящей от I индуктивностью L и сопротивлением R включен источник тока э. д. с. е (рис. 10). В цепи будет течь постоянный ток

(сопротивление источника тока считаем пренебрежимо малым). В момент времени t=0 отключим источник тока, замкнув одновременно цепь накоротко переключателем П . Как только сила тока в цепи начнет убывать, возникнет э.д.с. самоиндукции, противодействующая этому убыванию.

Рисунок 8.1 - Электрическая цепь, которую размыкают

Сила тока в цепи будет удовлетворять уравнению

Уравнение (8.2) представляет собой линейное однородное дифференциальное уравнение первого порядка. Разделив переменные, получим

(имея в виду дальнейшие преобразования, мы постоянную интегрирования написали в виде ln const). Потенцирование этого соотношения дает

Выражение (8.3) является общим решением уравнения (8.2). Значение const найдем из начальных условий. При t=0 сила тока имела значение (8.1). Следовательно, const=I 0 . Подставив это значение в (8.3), придем к выражению

Итак, после отключения источника э. д. с. сила тока в цепи не обращается мгновенно в нуль, а убывает по экспоненциальному закону (8.4). График убывания I дан на рис. 8.2 (кривая 1). Скорость убывания определяется имею щей размерность времени величиной которую называют постоянной времен и цепи. Заменив в (8.4) R/L через 1/ф, получим

Рисунок 8.2 - Зависимость убывания тока при замыкании - размыкании цепи.

В соответствии с этой формулой ф есть время, в течение которого сила тока уменьшается в е раз. Из (8.5) видно, что чем больше индуктивность цепи L и меньше ее сопротивление R, тем больше постоянная времени ф и тем медленнее спадает ток в цепи.

Для упрощения расчетов мы считали, что цепь в момент отключения источника тока замыкается накоротко. Если просто разорвать цепь с большой индуктивностью, возникающее высокое индуцированное напряжение создает искру или дугу в месте разрыва.

Теперь рассмотрим случай замыкания цепи. После подключения источника э. д. с., до тех пор, пока сила тока не достигнет установившегося значения (8.1), в цепи кроме э. д. с. е будет действовать э. д. с. самоиндукции. Следовательно, в соответствии с законом Ома.

Мы пришли к линейному неоднородному дифференциальному уравнению, которое отличается от уравнения (8.2) лишь тем, что в правой части вместо нуля в нем стоит постоянная величина е/L. Из теории дифференциальных уравнений известно, что общее решение линейного неоднородного уравнения можно получить, прибавив любое его частное решение к общему решению соответствующего однородного уравнения. Общее решение однородного уравнения имеет вид (8.3). Легко убедиться в том, что I=е/R= I 0 является частным решением уравнения (8.8).

Следовательно, общим решением уравнения (8.8) будет функция

Эта функция описывает нарастание тока в цепи после подключения к ней источника э. д. с. График функции (8.9) дан на рис. 8.2 (кривая 2).

Опр. Индукционные токи, возникающие в массивных проводинах при их движении в магнитном поле или под влиянием переменного магнитного поля, называются вихревыми токами или токами Фуко.

Сила вихревого тока удовлетворяет соотношению , где потокосцепление замкнутого контура вихревого тока. электрическое сопротивление цепи этого тока. Сопротивление тем меньше, чем больше удельная проводимость материала проводника и чем больше его размеры. В массивных проводниках мало и вихревые токи могут достигать большой силы даже в не очень быстро меняющихся магнитных полях.

В соответствии с правилом Ленца токи Фуко выбирают внутри проводника такие пути и направления, чтобы своим действием возможно сильнее противиться причине, которая их вызывает.

Вихревые токи вызывают сильное нагревание проводников. Поэтому в индукционных печах, служащих для плавки металлов при помощи вихревых токов, магнитное поле создается переменным током высокой частоты. Печь - катушка, питаемая высокочастотным током большой силы. Если поместить внутрь катушки проводящее тело, то в нем возникнут интенсивные вихревые токи, кот могут разогреть тело до плавления. Таким способом осуществляют плавление металла в вакууме, что позволяет получать материалы исключительно высокой частоты.

В электрических машинах и трансформаторах вихревые токи приводят к значительным потерям энергии. Ввиду этого магнитные цепи электрических машин и сердечники трансформаторов делают не сплошными, а собирают из отдельных тонких листов железа, изолированных друг от друга специальным лаком или окалиной. Вихревые токи образуются в плоскостях, перпендикулярных линиям магнитной индукции (тока «охватывают» линии индукции). Поэтому плоскости пластин, из которых собирают магнитные цепи, следует располагать параллельно линиям магнитной индукции.

Токи Фуко используются в индукционных печах, при вакуумной плавке, для получения тепла в различных нагревательных устройствах.

На заводе Электросталь есть вакуумные индукционные печи (от 30 кг до тонны), в институте 150 кг

Токи Фуко, возникающие в проводах, по которым текут переменные токи, направлены так, что ослабляют ток внутри провода и усиливают вблизи поверхности. При прохождении по проводнику быстропеременных токов они вытесняются на поверхность проводника, а внутри проводника ток практически отсутствует. Это явление называют скин-эффектом (от английскогоskin-кожа) или поверхностным эффектом . В таких случаях проводники можно делать полыми. Этот эффект можно использовать для термической закалки проводников и отжига поверхностных дефектов.

2. Явление самоиндукции . При изменении магнитного поля тока, идущего по проводнику, э.д.с. индукции возникает не только в соседних проводниках, но и в нем самом, поскольку этот проводник находится в том же магнитном поле. Возникновение э.д.с. в каком – либо проводнике при изменении силы тока в нем же самом наз. самоиндукцией , а ток, индуцируемый в этом проводнике – током самоиндукции . Вследствие самоиндукции при замыкании цепи сила тока не сразу достигает своего установившегося значения, а через некоторый промежуток времени; при размыкании цепи э.д.с. исчезает не сразу, вследствие чего в месте размыкания появляется искра, а если есть другой замкнутый контур, то в нем продолжает идти слабый ток.



Магнитный поток, создаваемый током в контуре с индуктивностью : . Индуктивность зависит от геометрических свойств (формы и размеров) контура и магнитных свойств (магнитной проницаемости) окружающей среды. Единицы индуктивности: генри .

1Гн – индуктивность такого контура, магнитный поток самоиндукции которого при токе в 1А равен 1Вб. 1Гн=1Вб/А=1В*с/А.

Потокосцепление пропорционально силе тока, протекающего по контуру: .Линейная зависимость от наблюдается только в том случае, если среды, которой окружен контур, не зависит от напряженности поля , т.е. в отсутствие ферромагнетиков. Иначе зависит от и зависимостьот будет сложной. В этом случае , но индуктивность считается функцией от .

Электродвижущая сила самоиндукции . в замкнутом контуре (контур не деформируется и не меняется) при изменении силы тока в нем, пропорциональна скорости изменения силы тока со временем: , где индуктивность (коэффициент самоиндукции) контура. Знак минус показывает, что наличие индуктивности в контуре приводи к замедлению тока в нем.

Индуктивность соленоида (тороида) , где число витков контура, длина, объем.

Индуктивность бесконечно длинного соленоида : при протекании по соленоиду тока внутри соленоида возбуждается однородное поле, индукция которого . Поток через каждый из витков равен , а полный магнитный поток, сцепленный с соленоидом , где длина соленоида, которая предполагается очень большой, площадь поперечного сечения, число витков на единицу длины, - полное число витков. Т.к. или , где объем соленоида. В общем случае индуктивность контура зависит только от геометрической формы контура, его размеров и . Магнитная проницаемость соленоида (тороида) зависит от . Во всех случаях вычисления индуктивности соленоида (тороида) с сердечником для определения магнитной проницаемости следует пользоваться графиком зависимости от , а затем формулой . Индуктивность – аналог электрической емкости уединенного проводника.

При всяком изменении силы тока в проводящем контуре возникает э.д.с. самоиндукции, в результате чего в контуре появляются дополнительные токи, называемые экстратоками самоиндукции. Экстратоки самоиндукции, согласно правилу Ленца, всегда направлены так, чтобы препятствовать изменениям тока в цепи (направлены противоположно току, создаваемому источником). При выключении источника тока экстратоки имеют то же направление, сто и ослабевающий ток – наличие индуктивности в цепи приводит к замедлению исчезновения или установления тока цепи.

Мгновенное значение силы тока в цепи, обладающей сопротивлением и индуктивностью

· после замыкания цепи: , где э.д.с. источника тока, время, прошедшее после замыкания цепи. Величина постоянная, называемая временем релаксации.

· после размыкания цепи:, где значение силы тока в цепи при , время, прошедшее с момента размыкания цепи.

3. Взаимная индукция. Изменение магнитного потока может достигаться также изменением тока в соседнем контуре (явление взаимной индукции ). Возьмем два контура 1 и 2, расположенные близко друг к другу. Если в контуре 1 течет ток силой , он создает через контур 2 пропорциональный полный магнитный поток . При изменении тока в контуре 2 индуцируется э.д.с. , где индуктивность (коэффициент самоиндукции) контура. Аналогично, при протекании в контуре 2 тока силы возникает сцепленный с контуром 1 поток и . Контуры 1 и 2 наз. связанными . В отсутствии ферромагнетиков . Их величина зависит от формы, размеров и взаимного расположения контуров, а также от магнитной проницаемости окружающей среды.

Токи при размыкании и замыкании цепи

При всяком изменении силы тока в проводящем контуре возникает э. д. с. самоиндукции, в результате чего в контуре появляются дополнительные токи, называемые экстратоками самоиндукции. Экстратоки самоиндукции, согласно правилу Ленца, все гда направлены так, чтобы препятствовать изменениям тока в цепи, т. е. направлены противоположно току, создаваемому источником. При выключении источника тока экстратоки имеют такое же направление, что и ослабевающий ток. Следовательно, наличие индуктивности в цепи приводит к замедлению исчезновения или установления тока в цепи.

Рассмотрим процесс выключения тока в цепи, содержащей источник тока с э.д.с. x, резистор сопротивлением Rи катушку индуктивностью L. Под действием внешней э. д. с. в цепи течет постоянный ток

(внутренним сопротивлением источника тока пренебрегаем).

В момент времени t = 0 отключим источник тока. Ток в катушке индуктивностью L начнет уменьшаться, что приведет к возникновению э.д.с. самоиндукции препятствующей, согласно правилу Ленца, уменьшению тока. В каждый момент времени ток в цепи определяется законом Ома I = x S /R, или

(127.1)

Разделив в выражении (127.1) переменные, получим . Интегрируя это уравнение по I (от I 0 до I) и t(от 0 до f), находим In (I/I 0) = -Rt/L, или

(127.2)

где t = L/R- постоянная, называемая временем релаксации. Из (127.2) следует, что т есть время, в течение которого сила тока уменьшается в е раз.

Таким образом, в процессе отключения источника тока сила тока убывает по экспоненциальному закону (127.2) и определяется кривой 1на рис. 183. Чем больше индуктивность цепи и меньше ее сопротивление, тем больше t и, следовательно, тем медленнее уменьшается ток в цепи при ее размыкании.

При замыкании цепи помимо внешней э. д. с. x возникает э. д. с. самоиндукции препятствующая, согласно правилу Ленца, возрастанию тока. По закону Ома, IR = x + x S или

Введя новую переменную u = IR - x , преобразуем это уравнение к виду

где t - время релаксации.

В момент замыкания (t = 0)сила тока I = 0 и u = -ℰ . Следовательно, интегрируя по u(от - ℰ до IR - ℰ) и t(от 0 до t), находим In [(IR - ℰ)]/ -ℰ = -t/t, или

(127.3)

где I 0 = ℰ/R - установившийся ток (при t ® ¥).

Таким образом, в процессе включения источника тока нарастание силы тока в цепи задается функцией (127.3) и определяется кривой 2 на рис. 183. Сила тока возрастает от начального значения I = 0 и асимптотически стремится к установившемуся значению I 0 = ℰ / R. Скорость нарастания тока определяется тем же временем релаксации t = L/R, что и убывание тока. Установление тока происходит тем быстрее, чем меньше индуктивность цепи и больше ее сопротивление.

Оценим значение э.д.с. самоиндукции ℰ S , возникающей при мгновенном увеличении сопротивления цепи постоянного тока от R 0 до R. Предположим, что мы размыкаем контур, когда в нем течет установившийся ток I 0 = ℰ/R 0 . При размыкании цепи ток изменяется по формуле (1272). Подставив в нее выражение для I 0 и т, получим