Снс глонасс.  Принципы спутниковой навигации. Недостатки системы GPS

На смену бумажным картам местности пришли карты электронные, навигация по которым осуществляется с помощью спутниковой системы GPS. Из данной статьи вы узнаете, когда появилась спутниковая навигация, что представляет из себя сейчас и что ждет ее в ближайшем будущем.

Первые предпосылки

Во время Второй мировой войны у флотилий США и Великобритании появился весомый козырь – навигационная система LORAN, использующая радиомаяки. По окончанию боевых действий технологию в свое распоряжение получили гражданские суда «про-западных» стран. Спустя десятилетие СССР ввела в эксплуатацию свой ответ – навигационная система «Чайка», основанная на радиомаяках, используется по сей день.

Но у наземной навигации есть существенные недостатки: неровности земного рельефа становятся преградой, а влияние ионосферы негативно сказывается на времени передачи сигнала. Если между навигационным радиомаяком и судном слишком большое расстояние, погрешность определения координат может измеряться километрами, что недопустимо.

На смену наземным радиомаякам пришли спутниковые навигационные системы для военных целей, первая из которых – американская Transit (другое название NAVSAT) – была запущена в 1964 году. Шесть низкоорбитальных спутников обеспечивали точность определения координат до двух сотен метров.


В 1976 году СССР запустила аналогичную военную навигационную систему «Циклон», а через три года – еще и гражданскую под названием «Цикада». Большим недостатком ранних систем спутниковой навигации было то, что пользоваться ими можно было лишь короткое время на протяжении часа. Низкоорбитальные спутники, да еще и в малом количестве, были не способны обеспечить широкое покрытие сигнала.

GPS vs. ГЛОНАСС

В 1974 году армия США вывела на орбиту первый спутник новой в то время системы навигации NAVSTAR, которую позже переименовали в GPS (Global Positioning System). В середине 1980-х технологию GPS разрешили использовать гражданским кораблям и самолетам, но на протяжении длительного времени им было доступно в разы менее точное позиционирование, чем военным. Двадцать четвертый спутник GPS, последний требовавшийся для полного покрытия поверхности Земли, запустили в 1993 году.

В 1982 году свой ответ представила СССР – им стала технология ГЛОНАСС (Глобальная навигационная спутниковая система). Завершающий 24-й спутник ГЛОНАСС вышел на орбиту в 1995 году, но малый срок эксплуатации спутников (три-пять лет) и недостаточное финансирование проекта почти на десятилетие вывели систему из строя. Восстановить всемирное покрытие ГЛОНАСС удалось только в 2010 году.


Чтобы избежать подобных сбоев, и GPS, и ГЛОНАСС сейчас используют 31 спутник: 24 основных и 7 резервных, как говорится, на всякий «пожарный» случай. Летают современные навигационные спутники на высоте порядка 20 тыс. км и за сутки успевают дважды облететь Землю.

Принцип работы GPS

Позиционирование в сети GPS проводится путем измерения расстояния от приемника до нескольких спутников, местоположение которых в текущий момент времени точно известно. Расстояние до спутника измеряется путем умножения задержки сигнала на скорость света.
Связь с первым спутником дает информацию лишь о сфере возможных расположений приемника. Пересечение двух сфер даст окружность, трех – две точки, а четырех – единственно верную точку на карте. В роли одной из сфер чаще всего используют нашу планету, что позволяет вместо четырех спутников позиционироваться только по трем. В теории точность позиционирования GPS может достигать 2 метров (на практике же погрешность значительно больше).


Каждый спутник отправляет приемнику большой набор информации: точное время и его поправку, альманах, данные эфемерид и параметры ионосферы. Сигнал точного времени требуется для измерения задержки между его отправкой и приемом.

Навигационные спутники оснащаются высокоточными цезиевыми часами, тогда как приемники – куда менее точными кварцевыми. Поэтому для проверки времени осуществляется контакт с дополнительным (четвертым) спутником.


Но ошибаться могут и цезиевые часы, поэтому их сверяют с размещенными на земле водородными часами. Для каждого спутника в центре управления системой навигации индивидуально рассчитывается поправка времени, которая впоследствии вместе с точным временем отправляется приемнику.

Еще одним важным компонентом системы спутниковой навигации является альманах, который представляет собой таблицу параметров орбит спутников на месяц вперед. Альманах, как и поправка времени, рассчитываются в центре управления.


Передают спутники и индивидуальные данные эфемерид, на основе которых вычисляются отклонения орбиты. А учитывая что скорость света нигде кроме вакуума не постоянна, в обязательном порядке учитывается задержка сигнала в ионосфере.

Передача данных в сети GPS ведется строго на двух частотах: 1575,42 МГц и 1224,60 МГц. Разные спутники транслируют сигнал на одной и той же частоте, но используют кодовое разделение каналов CDMA. То есть сигнал спутника – всего лишь шум, раскодировать который можно только при наличии соответствующего PRN-кода.


Вышеописанный подход позволяет обеспечить высокую помехоустойчивость и использовать узкий частотный диапазон. Тем нее менее, иногда GPS-приемникам все равно приходится подолгу искать спутники, что вызвано рядом причин.

Во-первых, приемник изначально не знает, где находится спутник, удаляется он или приближается и какое смещение частоты его сигнала. Во-вторых, контакт со спутником считается удачным только тогда, когда от него получен полный набор информации. Скорость же передачи данных в сети GPS редко превышает показатель 50 бит/с. А стоит сигналу оборваться из-за радиопомех, как поиск начинается заново.


Будущее спутниковой навигации

Сейчас GPS и ГЛОНАСС широко применяются в мирных целях и, по сути, являются взаимозаменяемыми. Новейшие навигационные чипы поддерживают оба стандарта связи и подключаются к тем спутникам, которые находят первыми.

Американская GPS и российская ГЛОНАСС – далеко не единственные в мире системы спутниковой навигации. К примеру, Китай, Индия и Япония начали развертывать собственные ССН под названием BeiDou, IRNSS и QZSS соответственно, которые будут действовать только внутри своих стран, а потому потребуют сравнительно малого количества спутников.

Но самый большой интерес, пожалуй, вызывает проект Galileo, который разрабатывается Европейским союзом и должен быть запущен на полную мощность до 2020 года. Изначально Galileo задумывалась как сугубо европейская сеть, но о своем желании поучаствовать в ее создании уже заявили страны Ближнего Востока и Южной Америки. Так что в скором времени на рынке глобальных ССН может появиться «третья сила». Если и эта система будет совместима с существующими, а скорей всего так и будет, потребители только выиграют – скорость поиска спутников и точность позиционирования должны вырости.

  • 47.) Действия по оказанию помощи терпящему бедствие судну и спасение людей после его гибели.
  • 48. Фазовые рнс. Точные навигационные системы удс. Оценка точности.
  • 49. Определение места по звездам и планетам. Оценка точности.
  • 50. Управление буксирными составами и их формирование.
  • 51. Характеристики персональных компьютеров. Задачи, решаемые с их помощью на судне.
  • 52. Определение поправки компаса.
  • 53. Тропические циклоны и расхождение с ними.
  • 54. Составление грузового плана
  • 55. Выверка секстана
  • 1. Проверка параллельности оптической оси зрительной трубы плоскости азимутального лимба
  • 2. Проверка перпендикулярности большого зеркала плоскости азимутального лимба
  • 3. Проверка перпендикулярности малого зеркала плоскости азимутального лимба
  • 56. Плавание при помощи рлс
  • 1. Способ веера пеленгов и расстояний.
  • 2. Способ траверзных расстояний (рис. 21.2).
  • 21.3.2. Определение места судна по расстояниям до нескольких ориентиров
  • 1. Расстояния измеряются до точечных ориентиров (рис. 21.3).
  • 2. Расстояния измеряются до участка береговой черты с плавными очертаниями и «точечного» ориентира (рис. 21.4).
  • 3. Расстояния измеряются до участков береговой черты с плавными очертаниями (рис. 21.5).
  • 21.3.3. Определение места судна по радиолокационному пеленгу и расстоянию до одного ориентира (рис. 21.6)
  • 57. Международные документы по безопасной перевозке грузов
  • 58.Судовой Хронометр. Измерение времени на судне. Гринвичское, международное, стандартное корректируемое, поясное, местное и судовое время.
  • 59.Сигналы судовых тревог. Обязанности членов экипажа по тревогам. Аварийные партии, состав и снабжение. Тренировки членов аварийных партий и групп.
  • 60. Контроль технического состояния судна. Классификационные общества технического надзора
  • 61. Чтение украинских, английских и российских навигационных карт. Условные обозначения на картах.
  • 62. Якорное устройство
  • 63. Перевозка опасных грузов. Кодекс по перевозке опасных грузов (imdg-Code)
  • Часть I - Информация и инструкции для всех опасных грузов, включая Алфавитный иОон числовые списки
  • Часть II - Классы 1, 2 и 3:
  • Часть III - Классы 4.1, 4.2, 4.3, 5.1 и 5.2:
  • Часть IV - Классы 6.1, 6.2, 7, 8 и 9:
  • 64. Подборка английских или российских карт и пособий на переход. Навигационная проработка и подготовка к переходу.
  • 65. Грузовое устройство. Люковые закрытия. Оценка прочности. Правила технической эксплуатации.
  • 66.Перевозка сыпучих грузов
  • 67.Организация вахтенной службы при плавании в особых обстоятельствах
  • 69.Особенности перевозки грузов на танкерах
  • 70. Пособие «Океанские пути мира». Рекомендованные пути. Системы разделения движения. Принципы выбора пути перехода.
  • 71. Характеристика волнения и элементов волны. Штормование судов. Диаграммы Ремеза и Богданова
  • 72. Международня конвенция о грузовой марке 1966г. Виды судовых грузовых марок. Запас плавучести
  • 72. Международная Конвенция о грузовой марке 1966г.Виды грузовых марок.Запас плавучести.
  • 73. Английсикие и российские лоции.
  • 74. Ковенция солас-74
  • 75. Удифферентовка и устрвнение крена с использованием суд.Документации и приборов
  • 76. Предвычисление высоты уровней приливов и приливных течений по таблицам и картам
  • 77. Международная конвенция по подготовке,дипломированию моряков и несению вахты(пднв 78/95)
  • 78. Контроль общей и местной прочности с использованием судовой документации и приборов.
  • 79. Условные обозначения на факсимильных картах погоды и волнения.
  • 80. Международная конвенция по защите морской среды от загрязнения(марпол73/78) и недопущения разлива нефтепродуктов(ойлпол)
  • 81. Основные течения в Мировом океане.
  • 82.Основные характеристики барических образований:циклонов,антициклонов,фронтов
  • 83. Основыне судовые документы и документация судового мостика
  • 84.Обеспечение непотопляемости аварийного судна.Операивная информация о непотопляемости
  • 85. Система ограждения навигационных опасностей мамс
  • 86. Плавание судов в особых случаях
  • 87. Международный кодекс по упарвлению безопасностью судов и защите среды(мкуб)
  • 88. Питание рек.Особенности весеннего,летнего и зимнего режима.Течения в речнос потоке
  • 89. Информация капитану об остойчивости и прочности судна,ее использование при составлении грузового плана судна.
  • 90. Кодекс Торгового Мореплавания Украины
  • 39. Снс gps «Navstar» и «Глонасс».

    Снс NAVSTAR (GPS).

    Состоит из 24 навигационных ИСЗ наземного командно-измерительного комплекса аппаратуры потребителей. Она является глобальной, всепогодной, навигационной системой, обеспечивающей определение координат объектов с высокой точностью в трёхмерном околоземном пространстве. Спутникм GPS расположены на 6 средневысоких орбитах (высота 20183) и имеют период обращения 12 часов. Плоскости орбит расположены через 60о и наклонены к экватору под углом 55 о. На каждой орбите располагается 4 спутника, три основных и один запасной. 18 спутников – это минимальное количество для обеспечения видимости в каждой точке Земли не менее 4-х спутников. Система предназначена для обеспечения навигации воздушных и морских судов и определения времени с высокой точностью. Она имеет 2 режима определения места судна: 2D (определение навигационных параметров на поверхности Земли) и трёхмерный 3D (измерение навигационных параметров объектов над поверхностью Земли). Для нахождения положения объекта в трёхмерном режиме требуется измерить навигационные параметры не менее 4-х ИСЗ, а при двухмерной навигации – не менее 3-х. В системе используется псевдодальномерный метод определения положения и псевдорадиально-скоростной метод нахождения скорости объекта. Излучение навигационных сигналов спутниками GPS производится на 2- частотах: F1=1575,42 и F2=1227,60 МГц. Режим излучения – непрерывный с псевдошумовой модуляцией. Навигационные сигналы представляют собой защищённый Р-код (precision code), излучаемый на частотах F1, F2 и общедоступный С/А-код (coarse and acquisition code), излучаемый только на частоте F1. В GPS для каждого спутника определён свой уникальный С/А-код и уникальный Р-код. Такой вид разделения сигналов спутников называется кодовым. GPS предоставляет два уровня обслуживания потребителей: точные определения (PPS – precise positioning service) и стандартный определения (SPS – Standart positioning service), PPS основывается на точном Р-коде, а SPS – на общедоступном С/А-коде. Уровень обслуживания PPS предоставляется военным и федеральным службам США, а SPS – массовому гражданскому потребителю. Кроме кодов Р и С/А спутник регулярно передаёт сообщение, которое содержит информацию о состоянии спутника, его эфемеридах, системном времени, прогнозе ионосферной задержки, показателях работоспособности. Основными источниками погрешностей, влияющих на точность бортовой аппаратуры для массового потребителя являются:

    ионосферные погрешности, обусловленные задержками в распространении радиоволн в верхних слоях атмосферы, которые приводят к ошибкам определения положения порядка 20-30 м днём и 3-6 м ночью;

    тропосферные погрешности, причиной которых являются искажения в прохождении радиоволн через нижние слои атмосферы. Они не превышают 30 м;

    эфемеридная погрешность, обусловленная разностью между расчётным и действительным положениями спутника, которая составляет не более 3 м;

    погрешность определения расстояния до спутника, обычно не превышает 10 м.

    Средняя квадратическая величина погрешности режима селективного доступа (ошибки искусственного происхождения, вносимой до 2000 г. с целью загрубления навигационных измерений) составляла примерно 30 м. Следует также обратить внимание и на периодические возникновения в системе зон PDOP (Position dilution of precision), в которых не обеспечивается объявленная точность навигации. Эти зоны возникают в течении 5-15 минут в диапазоне 30-50о градусов северной широты. Основным способом повышения точности местоопределений GPS в режиме SPS является применение принципа дифференциальных навигационных измерений. Дифференциальный способ (DGPS) реализуется с помощью опорной станции с известными координатами, устанавливаемой в районе определений места. На станции располагается контрольный GPS-приёмник. Сравнивая свои известные координаты с измеренными, контрольный GPS-приёмник вырабатывает поправки, которые передаются потребителям по радиоканалу. Аппаратура потребителя в этом случае должна быть дополнена радиоприёмником для получения дифференциальных поправок. Поправки, принятые от опорной станции, автоматически вводятся в результаты измерений. Это позволяет установить в районе опорной станции координаты объекта с точностью 1-5 м. Точность DGPS-определений зависит от характеристик опорной станции и от расстояния от объекта до опорной станции. По этой причине опорноую станцию рекомендуется располагать не далее 500 км от объекта. Существенной проблемой, снижающей эффективность системы GPS, является неточность геодезической съёмки ряда районов Земли. GPS представляет координаты определяющихся объектов во всемирной географической системе WGS-84. Существуют поравки для перехода от этой системы к ряду других геодезических систем, одако не ко всем. В рюде районов Земли (например, о-ва Юго-Восточной Азии), съёмка которых производилась в далёком прошлом, из-за больших погрешностей опорных точек геодезической сети отличие координатной системы карт от WGS-84 может быть значительным. Из-за отсутствия поправок место судна в системе WGS-84, перенесённое на такую карту, может оказаться на берегу.

    Советская глобальная спутниковая навигационная система ГЛОНАСС состоит из 24 ИСЗ, неземного командно-измерительного комплекса и является глобальной, всепогодной, навигационной системой, обеспечивающей определение координат объектов с высокой точностью в трёхмерном околоземном пространстве. В полном объёме функционирование ГЛОНАСС началось с января 1996 г. Спутники ГЛОНАСС расположены на трёх средневысоких орбитах (высота 29100) и имеют период обращения 11 часов 15 минут. Плоскости орбит расположены через 120о и наклонены к экватору под углом 64,8о. На каждой орбите располагается 8 спутников. Каждый спутник излучает информацию о своей точной позиции и информацию о позициюх других спутников. Излучение навигационных сигналов спутниками ГЛОНАСС производится на двух несущих частотах: F1 и F2. Значения частот F1 всех спутников ГЛОНАСС лежат в диапазоне 1602,6-1615,5 МГц и отличаются для разных спутников на величину кратную 0,5625 МГц. Соответственно значения частот F2 находятся в диапазоне 1246,4-1256,5 МГц и отличаются для разных спутников на величину, кратную 0,4375 МГц. Навигационные сигналы представляют собой Р-код, излучаемый на частотах F1 и F2, и С/А-код, излучаемый только на частоте F1. В отличие от GPS, где коды Р и С/А для разных спутников разные, в ГЛОНАСС они одинаковы для всех спутников. Таким образом в отличие от применяемого в GPS кодового метода в ГЛОНАСС реализован частотный метод различения навигационных сигналов спутников. ГЛОНАСС даёт место в геодезической системе П390. Разница между положением объкта в П390 и WGS-84 не превышает 15 м, в среднем случае она составляет 5 м. Система ГЛОНАСС может использоваться совместно с GPS (GPS and GLONASS global navigation satellite system – GNSS). Это позволяет по сравнения с GPS повысить точночть числа наблюдаемых спутников, улучшения геометрии их расположения в высоких широтах, использования обоих кодов ГЛОНАСС в аппаратуре для массового потребителя, что даёт возможность более точно учесть в GPS ионосферную погрешность.

    "ВМ"-02-04

    Использование спутниковой навигационной системы

    для координатно-временного обеспечения ВС РФ

    Генерал-майор В.М. БУРЕНОК, доктор технических наук

    Капитан 1 ранга Е.Л. КОРЕПАНОВ

    СПУТНИКОВЫЕ навигационные системы (СНС) в настоящее время являются важнейшим средством координатно-временного обеспечения (КВО) видов Вооруженных Сил Российской Федерации и других силовых ведомств. Под КВО целесообразно понимать относительно самостоятельную часть навигационного обеспечения операций (боевых действий), предназначенную для снабжения потребителей информацией об их местоположении, времени и параметрах движения в интересах собственно навигации и других видов обеспечения: разведывательного, топогеодезического, картографического, поисково-спасательного и др.

    Исходя из специфики потребителей координатно-временной информации, можно выделить следующие виды КВО, связанные с областями применения: КВО в интересах неподвижных потребителей для получения точных текущих географических координат точки земной поверхности или объекта с целью топопривязки, геодезической съемки местности, картографирования и др.; КВО в интересах подвижных потребителей с целью решения задач навигации морских и речных судов, аэронавигации летательных аппаратов, навигации наземных мобильных средств, а также наведения высокоточных средств поражения воздушного, морского и наземного базирования, выброски воздушных десантов и грузов; КВО в интересах высокодинамичных потребителей с целью решения задач баллистического и эфемеридно-временного обеспечения применения ракет-носителей, разгонных блоков, космических аппаратов, баллистических ракет;

    КВО потребителей с целью временной привязки и частотной синхронизации их действий.

    В России применение навигационной аппаратуры потребителей (НАП) спутниковой навигационной системы ГЛОНАСС предусмотрено во всех видах Вооруженных Сил и родах войск, а также практически на всех перспективных образцах вооружения, которые составят основу ударной мощи видов ВС РФ в XXI веке. Можно отметить следующие достоинства использования СНС для обеспечения высокоточного поражения целей и управления войсками: обеспечение высокой точности попадания средств поражения при действиях по стационарным целям с известными координатами независимо от характера местности и времени года, освещенности (времени суток), облачности и видимости (условий погоды), конфигурации цели и ее радиолокационной, тепловой, визуальной и другой контрастности; сокращение продолжительности подготовки удара высокоточным оружием; увеличение дальности стрельбы высокоточными крылатыми ракетами (поскольку отпадает необходимость отклонения от оптимального маршрута для пролета над районами коррекции); возможность согласования с высокой точностью действий космических, воздушных, морских и наземных средств вооруженной борьбы в единой глобальной системе координат и времени и др.

    Важным направлением использования НАП СНС ГЛОНАСС является обеспечение траекторных измерений при проведении пусков баллистических ракет, ракет-носителей и разгонных блоков. Использование системы траекторных измерений на базе НАП СНС ГЛОНАСС после подтверждения ее характеристик позволит практически отказаться от наземного комплекса траекторных измерений. При экономии как финансовых затрат, так и кадровых ресурсов это обеспечит глобальность проведения измерений, что немаловажно при осуществлении пусков с морских стартовых позиций и в диапазонах азимутов пусков, не обеспечиваемых измерениями существующими средствами.

    Анализ существующей номенклатуры отечественной НАП СНС, используемой для навигационного обеспечения военных потребителей, свидетельствует о наличии ряда проблем в их создании и применении.

    Первая - низкие объемы поставок НАЛ СНС, в результате чего реальная оснащенность военных потребителей навигационной аппаратурой составляет единицы процентов, а выпускаемая промышленностью НАП СНС не обеспечивает решение большей части стоящих задач. Особенно острый недостаток в комплектах НАП СНС различной модификации испытывают Сухопутные войска.

    Вторая проблема- неудовлетворительные массогабаритные и точностные характеристики НАП СНС. В частности, НАП «Период», применяемая в настоящее время в Сухопутных войсках, имеет массу 16,5 кг, а принятая в 2003 году на вооружение НАП СНС «Грот» (2,1 кг) еще не получила широкого распространения. Применяемая для навигационного обеспечения операций и боевых действий ВВС НАП СНС имеет аналогичные недостатки (пример - одноканальная аппаратура А-724М). Низкоорбитные СНС, используемые в ВМФ, не удовлетворяют требованиям морских потребителей по точности, доступности, целостности и непрерывности навигационного обеспечения. НАП СНС ГЛОНАСС, применяемая в Ракетных войсках стратегического назначения для заблаговременной геодезической подготовки позиционных районов и при испытаниях новых образцов ракетного вооружения, а также в Космических войсках для навигационно-баллистического обеспечения управления космическими аппаратами, имеет недостатки, суть которых состоит в несоответствии требуемых и реально достигнутых характеристик точности и надежности, отсутствии методик использования корректирующей информации для штатного состава аппаратуры и др.

    Третья проблема - необходимость ограничения в мирное время доступа к корректирующей информации потребителей, не имеющих на это права, а в ходе операций и боевых действий - для недопущения или снижения эффективности применения средств дифференциальной навигации вероятным противником.

    Приемники СНС могут быть использованы для определения координат географических объектов, что в соответствии с Законом РФ «О государственной тайне» относится к секретным сведениям. Формально эксплуатация этой аппаратуры должна быть запрещена для всех физических лиц и разрешена только юридическим лицам, имеющим соответствующую лицензию. Однако указанное ограничение является негативным сдерживающим фактором в использовании СНС гражданскими потребителями. Причем экономические потери России отданного запрета, на наш взгляд, существенно выше возможного ущерба, который может быть нанесен в результате несанкционированного определения координат объектов приемниками СНС физических лиц. Правительство РФ своим постановлением от 29 марта 1999 года поручило федеральным органам исполнительной власти пересмотреть вышеуказанные ограничения, а также выработать меры, предотвращающие возможный ущерб национальной безопасности при использовании физическими лицами на территории страны высокоточных навигационных средств.

    Четвертая проблема (пожалуй, наиболее сложная) - технологическое отставание российской промышленности от зарубежной. По ряду архитектурных, программно-математических и схемотехнических решений отечественные разработки превосходят разработки передовых зарубежных стран. Однако технологии микроэлектронного производства отечественной элементной базы с требуемыми топологическими нормами, необходимыми для производства современной и перспективной навигационной аппаратуры ГЛОНАСС/GPS, в настоящее время отсутствуют.

    Разработка сложной в техническом отношении аппаратуры, которой является НАП СНС и аппаратура средств функциональных дополнений, невозможна без использования современных электронных средств и технологий. Применяемые электронные компоненты полностью определяют такие основные характеристики аппаратуры, как габариты, масса, потребляемая мощность.

    Главными тенденциями развития навигационной аппаратуры потребителей спутниковых навигационных систем являются микроминиатюризация, снижение энергопотребления и уменьшение стоимости . Основной путь достижения этих целей - использование специализированной элементной базы, в первую очередь специализированных больших интегральных схем (СБИС). Отсутствие необходимой для производства отечественной НАП элементной базы вынуждает производителей закупать ее за рубежом. Применение электрорадиоизделий иностранного производства в отечественных образцах вооружения и военной -техники является вынужденной мерой, обусловленной кризисным состоянием электронной промышленности и ее крупнейшей подотрасли - микроэлектроники. Для упорядочения этого процесса министром обороны в 2001 году была утверждена Инструкция о порядке применения электронных модулей, комплектующих изделий и конструкционных материалов иностранного производства в системах, комплексах, образцах вооружения и военной техники и их составных частях.

    Применение электрорадиоизделий иностранного производства в образцах отечественного вооружения и военной техники обусловливает необходимость решения дополнительно трех задач: обеспечения технологической независимости; оценки соответствия требованиям, установленным в комплексе государственных военных стандартов «Климат-7»; обеспечения информационной безопасности.

    Наиболее результативные технические решения в области СНС-технологий достигнуты в настоящее время только для системы GPS. Перспективные приемники этой системы построены на базе двух-трех сверхбольших интегральных схем, что позволяет достичь высоких эксплуатационных характеристик и низкой стоимости, а в сочетании с успешным функционированием GPS - и большого рыночного спроса. Существующие приемники сигналов СНС ГЛОНАСС из-за отсутствия соответствующей специализированной элементной базы уступают по энергопотреблению, массогабаритным характеристикам и стоимости приемникам GPS в 3-10 раз.

    Решение задачи создания современной отечественной элементной базы основано на внедрении перспективных микроэлектронных технологий с использованием лучших мировых достижений автоматизированного проектирования и серийного изготовления электронных компонентов и создании на их основе базовых навигационных модулей. Федеральной целевой программой «Глобальная навигационная система» на ОАО «Российский институт радионавигации и времени» возложена задача разработки и освоения производства СБИС, радиоэлектронных компонентов и базовых модулей для НАП и функциональных дополнений СНС ГЛОНАСС/GPS. К решению указанной задачи в качестве соисполнителей привлекаются отечественные предприятия, имеющие наибольший научно-технический и технологический потенциал. Ключевыми целями разработки являются: обеспечение энергосберегающих режимов функционирования; минимизация времени первого определения; обеспечение работоспособности аппаратуры при малых уровнях сигналов СНС, воздействиях помех; обеспечение высокой точности и стабильности измерений первичных радионавигационных параметров.

    Еще одна проблема в области развития СНС - значительная номенклатура и различное конструктивное исполнение навигационной аппаратуры потребителей . В условиях ограниченности финансовых ресурсов это сдерживает оснащение войск и сил флота указанной аппаратурой и требует проведения мероприятий по ее унификации. Основными целями при этом должны быть: сокращение затрат на их создание, закупку, эксплуатацию и техническое сопровождение; сокращение сроков их создания; обеспечение системной совместимости и взаимозаменяемости средств и их составных частей; снижение затрат и уменьшение сложности подготовки личного состава для работы с навигационной аппаратурой.

    Образцы НАП СНС первого поколения разрабатывались с учетом требований по унификации, однако в них была реализована только внутризаводская унификация. В настоящее время они выработали свой ресурс, морально устарели и проводить работы по их унификации, на наш взгляд, бессмысленно. Целесообразной представляется разработка унифицированных рядов НАП, создаваемых на основе базовых моделей. Базовые модели НАП - образцы, имеющие необходимый минимум конструктивно и программно реализованных технических решений, определяющих особую область применения. Они позволяют создавать модификации НАП, учитывающие специфические дополнительные требования. Каждый унифицированный ряд представляет собой развитие базовой модели в том или ином направлении. В настоящее время уже существует несколько унифицированных рядов НАП СНС.

    Первый . Семейство образцов разработки КБ «НАВИС», предназначенных для решения относительно неоперативных задач дальней навигации, присущих в основном ВМФ. Создается двухчастотная модификация, удовлетворяющая требованиям высокоточных целеуказаний, а также прибрежной и ближней навигации. Также создается двухчастотная модификация для решения задач топогеодезического обеспечения ВС РФ. Кроме того, существует малогабаритный носимый вариант НАП СНС этого типа.

    Второй . Семейство образцов разработки НИИ КП, предназначенных для решения задач с повышенной точностью и оперативностью, таких, как топогеодезическое обеспечение ударов ракетных войск и артиллерии, местоопределение подвижных мотострелковых и танковых подразделений, навигационное обеспечение действий десантных подразделений и особенно подразделений сил специального назначения.

    Третий . Семейство образцов НАП разработки МКБ «Компас», предназначенных для решения задач ВВС.

    Помимо указанных имеется унифицированный ряд НАП СНС разработки ОАО РИРВ для гражданских потребителей, возможность принятия которой на вооружение ВС РФ в настоящее время рассматривается.

    Основным видом унификации НАЛ СНС второго поколения является межпроектная унификация НАЛ и средств функциональных дополнений в рамках одного предприятия-производителя . Унификация между предприятиями практически не применяется. Связано это в первую очередь с особенностями современного проектирования и производства НАП фирмами-производителями на базе использования укрупненных модулей и элементов собственной разработки. Кроме того, имеются сложности в передаче предприятием-разработчиком другим фирмам оригинальных технологий производства комплектующих. Ликвидация этого существенного недостатка требует решения в рамках реформы, проводимой в оборонно-промышленном комплексе.

    Основными перспективными направлениями унификации образцов НАЛ военного назначения могут быть: унификация функциональных модулей, габаритных, присоединительных и установочных размеров;

    унификация протоколов внешнего и внутреннего информационного обмена, интерфейса пользователя; унификация перечня и содержания типовых процессов и операций подготовки, контроля, испытаний и выполнения основных целевых задач навигационных средств; унификация программного обеспечения.

    Широкое использование всех форм унификации позволит существенно повысить эффективность создания и применения навигационных средств военными потребителями.

    Подводя итог, можно отметить, что в целях повышения уровня координатно-временного обеспечения, а также для наиболее полной реализации потенциальных возможностей системы ГЛОНАСС необходимо проведение единой государственной и в первую очередь военно-технической политики в области применения спутниковой навигационной системы. Целесообразно активизировать работы по формированию единых требований к военной НАП СНС на основе системных межвидовых исследований, внедрения стандартов, определяющих все основные аспекты процесса разработки и применения военной НАП СНС.

    Для комментирования необходимо зарегистрироваться на сайте

    НАВИГАЦИОННЫЕ РАДИОСИГНАЛЫ

    Принцип работы системы
    навигации

    НАВИГАЦИОННОЕ СООБЩЕНИЕ

    CИСТЕМЫ КООРДИНАТ

    ФАКТОРЫ, ВЛИЯЮЩИЕ НА СНИЖЕНИЕ ТОЧНОСТИ

    СИСТЕМЫ ВРЕМЕНИ

    ПОВЫШЕНИЕ ТОЧНОСТИ НАВИГАЦИИ

    Основные элементы спутниковой системы навигации

    Космический сегмент

    Космический сегмент, состоящий из навигационных спутников, представляет собой совокупность источников радионавигационных сигналов, передающих одновременно значительный объем служебной информации. Основные функции каждого спутника - формирование и излучение радиосигналов, необходимых для навигационных определений потребителей и контроля бортовых систем спутника.

    Наземный сегмент

    В состав наземного сегмента входят космодром, командно-измерительный комплекс и центр управления. Космодром обеспечивает вывод спутников на требуемые орбиты при первоначальном развертывании навигационной системы, а также периодическое восполнение спутников по мере их выхода из строя или выработки ресурса. Главными объектами космодрома являются техническая позиция и стартовый комплекс. Техническая позиция обеспечивает прием, хранение и сборку ракет-носителей и спутников, их испытания, заправку и состыковку. В число задач стартового комплекса входят: доставка носителя с навигационным спутником на стартовую площадку, установка на пусковую систему, предполетные испытания, заправка носителя, наведение и пуск.

    Командно-измерительный комплекс служит для снабжения навигационных спутников служебной информацией, необходимой для проведения навигационных сеансов, а также для контроля и управления ими как космическими аппаратами.

    Центр управления, связанный информационными и управляющими радиолиниями с космодромом и командно-измерительным комплексом, координирует функционирование всех элементов спутниковой навигационной системы.

    Пользовательский сегмент

    В пользовательский сегмент входит аппаратура потребителей. Она предназначается для приема сигналов от навигационных спутников, измерения навигационных параметров и обработки измерений. Для решения навигационных задач в аппаратуре потребителя предусматривается специализированный встроенный компьютер. Разнообразие существующей аппаратуры потребителей обеспечивает потребности наземных, морских, авиационных и космических (в пределах ближнего космоса) потребителей.

    Принцип работы системы навигации

    Современная спутниковая навигация основывается на использовании принципа беззапросных дальномерных измерений между навигационными спутниками и потребителем. Это означает, что потребителю передается в составе навигационного сигнала информация о координатах спутников. Одновременно (синхронно) производятся измерения дальностей до навигационных спутников. Способ измерений дальностей основывается на вычислении временных задержек принимаемого сигнала от спутника по сравнению с сигналом, генерируемым аппаратурой потребителя.

    На рисунке приведена схема определений местоположения потребителя с координатами x, y, z на основе измерений дальности до четырех навигационных спутников. Цветными яркими линиями показаны окружности, в центре которых расположены спутники. Радиусы окружностей соответствуют истинным дальностям, т.е. истинным расстояниям между спутниками и потребителем. Цветные неяркие линии - это окружности с радиусами, соответствующими измеренным дальностям, которые отличаются от истинных и поэтому называются псевдодальностями. Истинная дальность отличается от псевдодальности на величину, равную произведению скорости света на уход часов b, т.е. величину смещения часов потребителя по отношению к системному времени. На рисунке показан случай, когда уход часов потребителя больше нуля – то есть часы потребителя опережают системное время, поэтому измеренные псевдодальности меньше истинных дальностей.

    В идеальном варианте, когда измерения производятся точно и показания часов спутников и потребителя совпадают для определения положения потребителя в пространстве достаточно произвести измерения до трех навигационных спутников.

    В действительности показания часов, которые входят в состав навигационной аппаратуры потребителя, отличаются от показаний часов на борту навигационных спутников. Тогда для решения навигационной задачи к неизвестным ранее параметрам (три координаты потребителя) следует добавить еще один - смещение между часами потребителя и системным временем. Отсюда следует, что в общем случае для решения навигационной задачи потребитель должен «видеть», как минимум, четыре навигационных спутника.

    Системы координат

    Для функционирования навигационных спутниковых систем необходимы данные о параметрах вращения Земли, фундаментальные эфемериды Луны и планет, данные о гравитационном поле Земли, о моделях атмосферы, а также высокоточные данные об используемых системах координат и времени.

    Геоцентрические системы координат - системы координат, начало которых совпадает с центром масс Земли. Их также называют общеземными или глобальными.

    Для построения и поддержания общеземных систем координат используются четыре основных метода космической геодезии:

    • радиоинтерферометрия со сверхдлинной базой (РСДБ),
    • лазерная локация космических аппаратов (SLR),
    • доплеровские измерительные системы (DORIS),
    • навигационные измерения космических аппаратов ГЛОНАСС и других ГНСС.

    Международная земная система координат ITRF является эталоном земной системы координат.

    В современных навигационных спутниковых системах используются различные, как правило национальные, системы координат.

    Системы времени

    В соответствии с решаемыми задачами применяются два типа систем времени: астрономические и атомные.

    Системы астрономического времени основаны на суточном вращении Земли. Эталоном для построения шкал астрономического времени служат солнечные или звездные сутки, в зависимости от точки небесной сферы, по которой производится измерение времени.

    Всемирное время UT (Universal Time) – это среднее солнечное время на гринвическом меридиане.

    Всемирное координированное время UTC синхронизировано с атомным временем и является международным стандартом, на котором базируется гражданское время.

    Атомное время (TAI) - время, в основу измерения которого положены электромагнитные колебания, излучаемые атомами или молекулами при переходе из одного энергетического состояния в другое. В 1967 году на Генеральной конференции мер и весов атомная секунда представляет собой переход между сверхтонкими уровнями F=4, M=0 и F=3, M=0 основного состояния 2S1/2 атома цезия-133, не возмущённого внешними полями, и что частоте этого перехода приписывается значение 9 192 631 770 Герц.

    Спутниковая радионавигационная система является пространственно-временной системой с зоной действия, охватывающей всё околоземное пространство, и функционирует в собственном системном времени. Важное место в ГНСС отводится проблеме временной синхронизации подсистем. Временная синхронизация важна и для обеспечения заданной последовательности излучения сигналов всех навигационных спутников. Она обусловливает возможность применения пассивных дальномерных (псевдодальномерных) методов измерений. Наземный командно-измерительный комплекс обеспечивает синхронизацию шкал времени всех навигационных КА путем их сверки и коррекции (непосредственной и алгоритмической).


    Навигационные радиосигналы

    Навигационных радиосигналы

    При выборе типов и параметров сигналов, используемых в спутниковых радионавигационных системах, учитывается целый комплекс требований и условий. Сигналы должны обеспечивать высокую точность измерения времени прихода (задержки) сигнала и его доплеровской частоты и высокую вероятность правильного декодирования навигационного сообщения. Также сигналы должны иметь низкий уровень взаимной корреляции для того, чтобы сигналы разных навигационных космических аппаратов надежно различались навигационной аппаратурой потребителей. Кроме того, сигналы ГНСС должны максимально эффективно использовать отведенную полосу частот при малом уровне внеполосного излучения, обладать высокой помехоустойчивостью.

    Почти все существующие навигационные спутниковые системы, за исключением индийской системы NAVIC, используют для передачи сигналов диапазон L. Система NAVIC будет излучать сигналы дополнительно и в S диапазоне.

    Диапазоны, занимаемые различными навигационными спутниковыми системами

    Виды модуляции

    По мере развития спутниковых навигационных систем изменялись используемые виды модуляции радиосигналов.
    В большинстве навигационных систем изначально использовались исключительно сигналы с бинарной (двухпозиционной) фазовой модуляцией – ФМ-2 (BPSK). В настоящее время в спутниковой навигации начался переход к новому классу модулирующих функций, получивших название BOC (Binary Offset Carrier)-сигналов.

    Принципиальное отличие BOC-сигналов от сигналов с ФМ-2 состоит в том, что символ модулирующей ПСП BOC-сигнала представляет собой не прямоугольный видеоимпульс, а отрезок меандрового колебания, включающий в себя некоторое постоянное число периодов k. Поэтому сигналы с BOC-модуляцией часто называют меандровыми шумоподобными сигналами.

    Использование сигналов с BOC-модуляцией повышает потенциальную точность измерения и разрешающую способность по задержке. Одновременно с этим, уменьшается уровень взаимных помех при совместном функционировании навигационных систем, использующих традиционные и новые сигналы.

    Навигационное сообщение

    Каждый спутник принимает с наземных станций управления навигационную информацию, которая передается обратно пользователям в составе навигационного сообщения. Навигационное сообщение содержит разные типы информации, необходимые для того, чтобы определить местоположение пользователя и синхронизовать его шкалу времени с национальным эталоном.

    Типы информации навигационного сообщения
    • Эфемеридная информация, необходимая для вычисления координат спутника с достаточной точностью
    • Погрешность расхождения бортовой шкалы времени относительно системной шкалы времени для учета смещения времени космического аппарата при навигационных измерениях
    • Расхождение между шкалой времени навигационной системы и национальной шкалой времени, для решения задачи синхронизации потребителей
    • Признаки пригодности с информацией о состоянии спутника для оперативного исключения спутников с выявленными отказами из навигационного решения
    • Альманах с информацией об орбитах и состоянии всех аппаратов в группировке для долгосрочного грубого прогноза движения спутников и планирования измерений
    • Параметры модели ионосферы, необходимые одночастотным приемникам для компенсации погрешностей навигационных измерений, связанных с задержкой распространения сигналов в ионосфере
    • Параметры вращения Земли для точного пересчета координат потребителя в разных системах координат

    Признаки пригодности обновляются в течение нескольких секунд при обнаружении отказа. Параметры эфемерид и времени, как правило, обновляются не чаще, чем раз в полчаса. При этом период обновления для разных систем сильно отличается и может достигать четырех часов, в то время как альманах обновляется не чаще, чем раз в день.

    По своему содержанию навигационное сообщение подразделяется на оперативную и неоперативную информацию и передается в виде потока цифровой информации (ЦИ). Изначально во всех навигационных спутниковых системах использовалась структура вида «суперкадр/кадр/строка/слово». При этой структуре поток ЦИ формируется в виде непрерывно повторяющихся суперкадров, суперкадр состоит из нескольких кадров, кадр состоит из нескольких строк.
    В соответствии со структурой «суперкадр/кадр/строка/слово» формировались сигналы системы БЕЙДОУ, ГАЛИЛЕО (кроме E6), GPS (LNAV данные, L1), сигналы ГЛОНАСС с частотным разделением. В зависимости от системы, размеры суперкадров, кадров и строк могут отличаться, но принцип формирования остается похожим.

    Сейчас в большинстве сигналов используется гибкая строковая структура. В этой структуре навигационное сообщение формируется в виде переменного потока строк различных типов. Каждый тип строки имеет свою уникальную структуру и содержит определённый тип информации (указаны выше). НАП выделяет из потока очередную строку, определяет её тип и в соответствии с типом выделяет информацию, содержащуюся в этой строке.

    Гибкая строковая структура навигационного сообщения позволяет значительно более эффективно использовать пропускную способность канала передачи данных. Но главным достоинством навигационного сообщения с гибкой строковой структурой является возможность её эволюционной модернизации при соблюдении принципа обратной совместимости. Для этого в ИКД для разработчиков НАП специально указывается, что если НАП в навигационном сообщении встречает строки неизвестных ей типов, то она должна их игнорировать. Это позволяет добавлять в процессе модернизации ГНСС к ранее существовавшим типам строк строки с новыми типами. НАП, выпущенная ранее, игнорирует строки с новыми типами и, следовательно, не использует те новации, которые вводятся в процессе модернизации ГНСС, но при этом её работоспособность не нарушается.
    Сообщения сигналов ГЛОНАСС с кодовым разделением имеют строковую структуру.

    Факторы, влияющие на снижение точности

    На точность определения потребителем своих координат, скорости движения и времени влияет множество факторов, которые можно разделить на категории:

    1. Системные погрешности, вносимые аппаратурой космического комплекса

      Погрешности, связанные с функционированием бортовой аппаратуры спутника и наземного комплекса управления ГНСС обусловлены в основном несовершенством частотно-временного и эфемеридного обеспечения.

    2. Погрешности, возникающие на трассе распространения сигнала от космического аппарата до потребителя

      Погрешности обусловлены отличием скорости распространения радиосигналов в атмосфере Земли от скорости их распространения в вакууме, а также зависимостью скорости от физических свойств различных слоёв атмосферы.

    3. Погрешности, возникающие в аппаратуре потребителя

      Аппаратурные погрешности подразделяются на систематическую погрешность аппаратурной задержки радиосигнала в АП и флуктуационные погрешности, обусловленные шумами и динамикой потребителя.

    Кроме того, на точность навигационно-временного определения существенно влияет взаимное расположение навигационных спутников и потребителя.
    Количественной характеристикой погрешности определения местоположения и поправки показаний часов, связанной с особенностями пространственного положения спутника и потребителя, служит так называемый геометрический фактор Γ Σ или коэффициент геометрии. В англоязычной литературе используется обозначение GDOP - Geometrical delusion of precision.
    Геометрический фактор Γ Σ показывает, во сколько раз происходит уменьшение точности измерений и зависит от следующих параметров:

    • Г п - геометрический фактор точности определения местоположения потребителя ГНСС в пространстве.
      Соответствует PDOP - Position delusion of precision.
    • Г г - геометрический фактор точности определения местоположения потребителя ГНСС по горизонтали.
      Соответствует HDOP - Horizontal delusion of precision.
    • Г в - геометрический фактор точности определения местоположения потребителя ГНСС по вертикали.
      Соответствует VDOP - Vertical delusion of precision.
    • Г т - геометрический фактор точности определения поправки показаний часов потребителя ГНСС.
      Соответствует TDOP - Time delusion of precision.

    Повышение точности навигации

    Существующие в настоящее время глобальные навигационные спутниковые системы (ГНСС) GPS и ГЛОНАСС позволяют удовлетворить потребности в навигационном обслуживании обширный круг потребителей. Но существует ряд задач, которые требуют высоких точностей навигации. К этим задачам относятся: взлет, заход на посадку и посадка самолетов, судовождение в прибрежных водах, навигация вертолетов и автомобилей и другие.

    Классическим методом повышения точности навигационных определений является использование дифференциального (относительного) режима определений.

    Дифференциальный режим предполагает использование одного или более базовых приёмников, размещённых в точках с известными координатами, которые одновременно с приёмником потребителя (подвижным, или мобильным) осуществляют приём сигналов одних и тех же спутников.

    Повышение точности навигационных определений достигается за счёт того, что ошибки измерения навигационных параметров потребительского и базовых приёмников являются коррелированными. При формировании разностей измеряемых параметров большая часть таких погрешностей компенсируется.

    В основе дифференциального метода лежит знание координат опорной точки – контрольно-корректирующей станции (ККС) или системы опорных станций, относительно которых могут быть вычислены поправки к определению псевдодальностей до навигационных спутников. Если эти поправки учесть в аппаратуре потребителя, то точность расчета, в частности, координат может быть повышена в десятки раз.

    Для обеспечения дифференциального режима для большого региона – например, для России, стран Европы, США - передача корректирующих дифференциальных поправок осуществляется при помощи геостационарных спутников. Системы, реализующие такой подход, получили название широкозонные дифференциальные системы.

    Спутниковые системы позиционирования и навигации, изначально разрабатывавшиеся для военных нужд, в последнее время находят широкое применение в гражданской сфере. GPS/ГЛОНАСС мониторинг транспорта, наблюдение за нуждающимися в опеке людьми, контроль перемещений сотрудников, слежение за животными, отслеживание багажа , геодезия и картография – это основные направления использования спутниковых технологий.

    В настоящее время существует две глобальных системы спутникового позиционирования, созданных в США и РФ, и две региональных, охватывающих Китай, страны Евросоюза и еще ряд стран Европы и Азии. В России доступен ГЛОНАСС мониторинг и GPS мониторинг.

    Системы GPS и ГЛОНАСС

    GPS (Global Position System, Глобальная система позиционирования) – это спутниковая система, разработка которой началась в Америке с 1977 года. К 1993 программу развернули, а к июлю 1995 – добились полной готовности системы. В настоящее время космическая сеть GPS состоит из 32 спутников: 24 основных, 6 резервных. Они вращаются вокруг Земли по средневысокой орбите (20 180 км) в шести плоскостях, по четыре основных спутника в каждой.

    На земле расположена главная контрольная станция и десять станций слежения, три из которых передают спутникам последнего поколения корректировочные данные, а те распределяют их на всю сеть.

    Разработка системы ГЛОНАСС (Глобальной навигационной спутниковой системы) начата еще в СССР в 1982 году. О завершении работ заявили в декабре 2015 года. Для работы ГЛОНАСС требуется 24 спутника, для покрытия территории и РФ достаточно 18, а общее число спутников, находящихся в данный момент на орбите (включая резервные) – 27. Они также движутся по средневысокой орбите, но на меньшей высоте (19 140 км), в трех плоскостях, по восемь основных спутников в каждой.

    Наземные станции ГЛОНАСС расположены в России (14), Антарктиде и Бразилии (по одной), намечается развертывание ряда дополнительных станций.

    Предшественником системы GPS была система Transit, разработанная в 1964 году для управления запуском ракет с подводных лодок. Она могла определить местонахождение исключительно неподвижных объектов с точностью до 50 м, а единственный спутник находился в поле видимости всего один час в сутки. Программа GPS ранее носила названия DNSS и NAVSTAR. В СССР создание навигационной спутниковой системы велось с 1967 года в рамках программы «Циклон».

    Основные отличия системs мониторинга ГЛОНАСС от GPS:

    • американские спутники движутся синхронно с Землей, а российские – асинхронно;
    • разная высота и количество орбит;
    • разный угол их наклона (около 55° для GPS, 64,8° для ГЛОНАСС);
    • разный формат сигналов и рабочие частоты.
    • Преимущества системы GPS

    • GPS – старейшая из существующих систем позиционирования, приведена в полную готовность раньше российской.
    • Надежность обусловлена использованием большего числа резервных спутников.
    • Позиционирование происходит с меньшей погрешностью, чем у ГЛОНАСС (в среднем 4 м, а для спутников последнего поколения – 60–90 см).
    • Множество устройств поддерживает систему.


    Преимущества системы ГЛОНАСС

    • Положение асинхронных спутников на орбите более стабильное, что облегчает управление ими. Регулярное внесение корректив не требуется. Данное преимущество важно для специалистов, а не потребителей.
    • Система создана в России, поэтому обеспечивает уверенный прием сигнала и точность позиционирования в северных широтах. Это достигается за счет большего угла наклона спутниковых орбит.
    • ГЛОНАСС – это отечественная система, и останется доступной для россиян в случае отключения GPS.
    • Недостатки системы GPS

    • Спутники вращаются синхронно вращению Земли, поэтому для точного позиционирования требуется работа корректирующих станций.
    • Низкий угол наклона не обеспечивает хорошего сигнала и точного позиционирования в полярных областях и высоких широтах.
    • Право управления системой принадлежит военным, а они могут искажать сигнал или вообще отключить GPS для гражданских лиц или для других стран в случае конфликта с ними. Поэтому хотя GPS для транспорта точнее и удобнее, а ГЛОНАСС – надежнее.
    • Недостатки системы ГЛОНАСС

    • Разработка системы началась позже и до недавнего времени велась со значительным отставанием от американцев (кризис, финансовые злоупотребления, хищения).
    • Неполный комплект спутников. Продолжительность службы российских спутников ниже, чем американских, они чаще нуждаются в ремонте, поэтому точность навигации в ряде областей снижается.
    • Спутниковый мониторинг транспорта ГЛОНАСС дороже, чем GPS из-за высокой стоимости устройств, адаптированных к работе с отечественной системой позиционирования.
    • Недостаток программного обеспечения для смартфонов, КПК. Модули ГЛОНАСС проектировали для навигаторов. Для компактных портативных устройств на сегодняшний день более распространенный и доступный вариант – это поддержка GPS-ГЛОНАСС или только GPS.


    Резюме

    Системы GPS и ГЛОНАСС являются взаимодополняемыми. Оптимальное решение – это спутниковый GPS-ГЛОНАСС мониторинг. Устройства с двумя системами, например, GPS-маркеры с ГЛОНАСС-модулем «М-Плата» обеспечивают высокую точность позиционирования и уверенную работу. Если для позиционирования исключительно по ГЛОНАСС погрешность в среднем составляет 6 м, а для GPS – 4 м, то при использовании двух систем одновременно она снижается до 1,5 м. Но такие приборы с двумя микрочипами стоят дороже.

    ГЛОНАСС разработана специально для российских широт и потенциально способна обеспечить высокую точность, из-за ее недоукомплектованности спутниками реальное преимущество пока на стороне GPS. Плюсы американской системы – это доступность и широкий выбор устройств с поддержкой GPS.