Как реализовать многомерные массивы в java. Изучаем Java. Объявление массива в Java

Представьте себе ячейки в камере хранения. Каждая из них имеет свой номер, и в каждой из них хранится какой-то объект “Багаж”. Или винная карта, в которой все виды вина пронумерованы и когда вы делаете заказ, вам достаточно назвать номер напитка. Или список студентов группы, в котором в первой ячейке будет записан студент “Андреев”, а в последней - “Яковлев”. Или список пассажиров самолёта, за каждым из которых закреплено место с определённым номером. В Java чтобы работать с подобными структурами, то есть множеством однородных данных, часто используют массивы.

Что такое массив?

Массив - это структура данных, в которой хранятся элементы одного типа. Его можно представить, как набор пронумерованных ячеек, в каждую из которых можно поместить какие-то данные (один элемент данных в одну ячейку). Доступ к конкретной ячейке осуществляется через её номер. Номер элемента в массиве также называют индексом . В случае с Java массив однороден , то есть во всех его ячейках будут храниться элементы одного типа. Так, массив целых чисел содержит только целые числа (например, типа int), массив строк - только строки, массив из элементов созданного нами класса Dog будет содержать только объекты Dog . То есть в Java мы не можем поместить в первую ячейку массива целое число, во вторую String , а в третью - “собаку”.

Объявление массива

Как объявить массив?

Как и любую переменную, массив в Java нужно объявить. Сделать это можно одним из двух способов. Они равноправны, но первый из них лучше соответствует стилю Java. Второй же - наследие языка Си (многие Си-программисты переходили на Java, и для их удобства был оставлен и альтернативный способ). В таблице приведены оба способа объявления массива в Java: В обоих случаях dataType - тип переменных в массиве. В примерах мы объявили два массива. В одном будут храниться целые числа типа int , в другом - объекты типа Object . Таким образом при объявлении массива у него появляется имя и тип (тип переменных массива). ArrayName - это имя массива.

Создание массива

Как создать массив?

Как и любой другой объект, создать массив Java, то есть зарезервировать под него место в памяти, можно с помощью оператора new . Делается это так: new typeOfArray [ length] ; Где typeOfArray - это тип массива, а length - его длина (то есть, количество ячеек), выраженная в целых числах (int). Однако здесь мы только выделили память под массив, но не связали созданный массив ни с какой объявленной ранее переменной. Обычно массив сначала объявляют, а потом создают, например: int myArray; // объявление массива myArray = new int [ 10 ] ; // создание, то есть, выделение памяти для массива на 10 элементов типа int Здесь мы объявили массив целых чисел по имени myArray , а затем сообщили, что он состоит из 10 ячеек (в каждой из которых будет храниться какое-то целое число). Однако гораздо чаще массив создают сразу после объявления с помощью такого сокращённого синтаксиса: int myArray = new int [ 10 ] ; // объявление и выделение памяти “в одном флаконе” Обратите внимание: После создания массива с помощью new , в его ячейках записаны значения по умолчанию. Для численных типов (как в нашем примере) это будет 0, для boolean - false , для ссылочных типов - null . Таким образом после операции int myArray = new int [ 10 ] ; мы получаем массив из десяти целых чисел, и, пока это не измениться в ходе программы, в каждой ячейке записан 0.

Длина массива в Java

Как мы уже говорили выше, длина массива - это количество элементов, под которое рассчитан массив. Длину массива нельзя изменить после его создания. Обратите внимание: в Java элементы массива нумеруются с нуля. То есть, если у нас есть массив на 10 элементов, то первый элемент массива будет иметь индекс 0, а последний - 9. Получить доступ к длине массива можно с помощью переменной length . Пример: int myArray = new int [ 10 ] ; // создали массив целых чисел на 10 элементов и присвоили ему имя myArray System. out. println (myArray. length) ; // вывели в консоль длину массива, то есть количество элементов, которые мы можем поместить в массив Вывод программы: 10

Инициализация массива и доступ к его элементам

Как создать массив в Java уже понятно. После этой процедуры мы получаем не пустой массив, а массив, заполненный значениями по умолчанию. Например, в случае int это будут 0, а если у нас массив с данными ссылочного типа, то по умолчанию в каждой ячейке записаны null . Получаем доступ к элементу массива (то есть записываем в него значение или выводим его на экран или проделываем с ним какую-либо операцию) мы по его индексу. Инициализация массива - это заполнение его конкретными данными (не по умолчанию). Пример: давайте создадим массив из 4 пор года и заполним его строковыми значениями - названиями этих пор года. String seasons = new String [ 4 ] ; /* объявили и создали массив. Java выделила память под массив из 4 строк, и сейчас в каждой ячейке записано значение null (поскольку строка - ссылочный тип)*/ seasons[ 0 ] = "Winter" ; /* в первую ячейку, то есть, в ячейку с нулевым номером мы записали строку Winter. Тут мы получаем доступ к нулевому элементу массива и записываем туда конкретное значение */ seasons[ 1 ] = "Spring" ; // проделываем ту же процедуру с ячейкой номер 1 (второй) seasons[ 2 ] = "Summer" ; // ...номер 2 seasons[ 3 ] = "Autumn" ; // и с последней, номер 3 Теперь во всех четырёх ячейках нашего массива записаны названия пор года. Инициализацию также можно провести по-другому, совместив с инициализацией и объявлением: String seasons = new String { "Winter" , "Spring" , "Summer" , "Autumn" } ; Более того, оператор new можно опустить: String seasons = { "Winter" , "Spring" , "Summer" , "Autumn" } ;

Как вывести массив в Java на экран?

Вывести элементы массива на экран (то есть, в консоль) можно, например, с помощью цикла for . Ещё один, более короткий способ вывода массива на экран будет рассмотрен в пункте “ . А пока рассмотрим пример с циклическим выводом массива: String seasons = new String { "Winter" , "Spring" , "Summer" , "Autumn" } ; for (int i = 0 ; i < 4 ; i++ ) { System. out. println (seasons[ i] ) ; } В результате программа выведет следующий результат: Winter Spring Summer Autumn

Одномерные и многомерные Java массивы

А что, если мы захотим создать не массив чисел, массив строк или массив каких-то объектов, а массив массивов? Java позволяет это сделать. Уже привычный нам массив int myArray = new int - так называемый одномерный массив. А массив массивов называется двумерным. Он похож на таблицу, у которой есть номер строки и номер столбца. Или, если вы учили начала линейной алгебры, - на матрицу. Для чего нужны нужны такие массивы? В частности, для программирования тех же матриц и таблиц, а также объектов, напоминающих их по структуре. Например, игровое поле для шахмат можно задать массивом 8х8. Многомерный массив объявляется и создается следующим образом: Int myTwoDimentionalArray = new int [ 8 ] [ 8 ] ; В этом массиве ровно 64 элемента: myTwoDimentionalArray , myTwoDimentionalArray , myTwoDimentionalArray , myTwoDimentionalArray и так далее вплоть до myTwoDimentionalArray . Так что если мы с его помощью представим шахматную доску, то клетку А1 будет представлять myTwoDimentionalArray , а E2 - myTwoDimentionalArray . Где два, там и три. В Java можно задать массив массивов… массив массивов массивов и так далее. Правда, трёхмерные и более массивы используются очень редко. Тем не менее, с помощью трёхмерного массива можно запрограммировать, например, кубик Рубика.

Полезные методы для работы с массивами

Для работы с массивами в Java есть класс java.util.Arrays (arrays на английском и означает “массивы”). В целом с массивами чаще всего проделывают следующие операции: заполнение элементами (инициализация), извлечение элемента (по номеру), сортировка и поиск. Поиск и сортировка массивов - тема отдельная. С одной стороны очень полезно потренироваться и написать несколько алгоритмов поиска и сортировки самостоятельно. С другой стороны, все лучшие способы уже написаны и включены в библиотеки Java, и ими можно законно пользоваться.

Статьи на поиск и сортировку:

Сортировка и поиск в курсе CS50:

Вот три полезных метода этого класса

Сортировка массива

Метод void sort(int myArray, int fromIndex, int toIndex) сортирует массив целых чисел или его подмассив по возрастанию.

Поиск в массиве нужного элемента

int binarySearch(int myArray, int fromIndex, int toIndex, int key) . Этот метод ищет элемент key в уже отсортированном массиве myArray или подмассиве, начиная с fromIndex и до toIndex . Если элемент не найден, возвращает номер элемента или fromIndex-1 .

Преобразование массива к строке

Метод String toString(int myArray) преобразовывает массив к строке. Дело в том, что в Java массивы не переопределяют toString() . Это значит, что если вы попытаетесь вывести целый массив (а не по элементам, как в пункте “ ”) на экран непосредственно (System.out.println(myArray)), вы получите имя класса и шестнадцатеричный хэш-код массива (это определено определено Object.toString()). Если вы - новичок, вам, возможно, непонятно пояснение к методу toString . На первом этапе это и не нужно, зато с помощью этого метода упрощается вывод массива. Java позволяет легко выводить массив на экран без использования цикла. Об этом - в примере ниже.

Пример на sort, binarySearch и toString

Давайте создадим массив целых чисел, выведем его на экран с помощью toString , отсортируем с помощью метода sort и найдём в нём какое-то число. class Main { public static void main (String args) { int array = { 1 , 5 , 4 , 3 , 7 } ; //объявляем и инициализируем массив System. out. println (array) ; //пытаемся вывести наш массив на экран без метода toString - получаем 16-ричное число //печатаем массив "правильно" Arrays. sort (array, 0 , 4 ) ; //сортируем весь массив от нулевого до четвёртого члена System. out. println (Arrays. toString (array) ) ; //выводим отсортированный массив на экран int key = Arrays. binarySearch (array, 5 ) ; // ищем key - число 5 в отсортированном массиве. //метод binarySearch выдаст индекс элемента остортированного массива, в котором "спрятано" искомое число System. out. println (key) ; //распечатываем индекс искомого числа System. out. println (Arrays. binarySearch (array, 0 ) ) ; //а теперь попробуем найти число, которого в массиве нет, // и сразу же выведем результат на экран } } Вывод программы: 3 -1 В первой строке - попытка вывода на экран массива без toString , во второй - вывод массива посредством toString , в третьей выведен отсортированный массив, в четвёртой - индекс искомого числа 5 в отсортированном массиве (помните, что считаем с нуля, поэтому четвёртый элемент массива имеет индекс 3). В пятой строке видем -1. Такого индекса у массива не бывает. Вывод сигнализирует о том, что искомого элемента (в данном случае, 0) в массиве нет.

Главное о массивах

    Главные характеристики массива: тип помещённых в него данных, имя и длина.
    Последнее решается при инициализации (выделении памяти под массив), первые два параметра определяются при объявлении массива.

    Размер массива (количество ячеек) нужно определять в int

    Изменить длину массива после его создания нельзя.

    Доступ к элементу массива можно получить по его индексу.

    В массивах, как и везде в Java, элементы нумеруются с нуля.

    После процедуры создания массива он наполнен значениями по умолчанию.

    Массив в языке Java значительно отличается от массива в языке C++. Однако он практически совпадает с указателем на динамический массив.

Полезные материалы о массивах

Хотите знать больше о массивах? Обратите внимание на статьи ниже. Там много интересного и полезного по этой теме.

    Хорошая подробная статья о массивах

    В статье описаны некоторые методы класса Array

    Первая лекция JavaRush, посвящённая массивам.

  • Java ,
  • Алгоритмы
    • Tutorial

    Думаю, мало кто из готовящихся к своему первому интервью, при приеме на первую работу в должности (pre)junior программиста, ответит на этот вопрос отрицательно. Или хотя бы усомнится в положительном ответе. Конечно, такая простая структура данных с прямым доступом по индексу - никаких подвохов! Нет, в некоторых языках типа JavaScript или PHP массивы, конечно, реализованы очень интересно и по сути являются много большим чем просто массив. Но речь не об этом, а о «традиционной» реализации массивов в виде «сплошного участка памяти». В этом случае на основании индексов и размера одного элемента просто вычисляется адрес и осуществляется доступ к соответствующему значению. Что тут сложного?
    Давайте разберемся. Например, на Java. Просим ничего не подозревающего претендента создать массив целых чисел n x n . Человек уверено пишет что-то в духе:
    int g = new int[n][n];
    Отлично. Теперь просим инициализировать элементы массива чем-нибудь. Хоть единицами, хоть суммой индексов. Получаем:
    for(int i = 0; i < n; i++) { for(int j = 0; j < n; j++) { g[i][j] = i + j; } }
    Даже чаще пишут
    for(int i = 0; i < g.length; i++) { for(int j = 0; j < g[i].length; j++) { g[i][j] = i + j; } }
    что тоже повод для беседы, но сейчас речь о другом. Мы ведь пытаемся выяснить, что человек знает и посмотреть, как он думает. По этому обращаем его внимание на тот факт, что значения расположены симметрично и просим сэкономить на итерациях циклов. Конечно, зачем пробегать все значения индексов, когда можно пройти только нижний треугольник? Испытуемый обычно легко соглашается и мудро выделяя главную диагональ старательно пишет что-то в духе:
    for(int i = 0; i < n; i++) { g[i][i] = 2* i; for(int j = 0; j < i; j++) { g[j][i] = g[i][j] = i + j; } }
    Вместо g[i][i] = 2* i; часто пишут g[i][i] = i + i; или g[i][i] = i << 1; и это тоже повод поговорить. Но мы идем дальше и задаем ключевой вопрос: На сколько быстрее станет работать программа? . Обычные рассуждения такие: почти в 2 раза меньше вычислений индексов; почти в 2 раза меньше вычислений значений (суммирование); столько же присваиваний. Значит быстрее процентов на 30. Если у человека за плечами хорошая математическая школа, то можно даже увидеть точное количество сэкономленных операций и более аргументированную оценку эффективности оптимизации.
    Теперь самое время для главного удара. Запускаем оба варианта кода на каком-нибудь достаточно большом значении n (порядка нескольких тысяч), например, так .

    Код с контролем времени

    class A { public static void main(String args) { int n = 8000; int g = new int[n][n]; long st, en; // one st = System.nanoTime(); for(int i = 0; i < n; i++) { for(int j = 0; j < n; j++) { g[i][j] = i + j; } } en = System.nanoTime(); System.out.println("\nOne time " + (en - st)/1000000.d + " msc"); // two st = System.nanoTime(); for(int i = 0; i < n; i++) { g[i][i] = i + i; for(int j = 0; j < i; j++) { g[j][i] = g[i][j] = i + j; } } en = System.nanoTime(); System.out.println("\nTwo time " + (en - st)/1000000.d + " msc"); } }


    Что же мы видим? Оптимизированный вариант работает в 10-100 раз медленнее! Теперь самое время понаблюдать за реакцией претендента на должность. Какая будет реакция на необычную (точнее обычную в практике разработчика) стрессовую ситуацию. Если на лице подзащитного изобразился азарт и он стал жать на кнопочки временно забыв о Вашем существовании, то это хороший признак. До определенной степени. Вы ведь не хотите взять на работу исследователя, которому плевать на результат проекта? Тогда не задавайте ему вопрос «Почему?». Попросите переделать второй вариант так, чтобы он действительно работал быстрее первого.
    Теперь можно смело заниматься некоторое время своими делами. Через пол часа у Вас будет достаточно материала, для того, чтобы оценить основные личностные и профессиональные качества претендента.
    Кстати, когда я коротко описал эту задачку на своем рабочем сайте, то наиболее популярный комментарий был «Вот такая эта Ваша Java кривая». Специально для них выкладываю код на Великом и Свободном. А счастливые обладатели Free Pascal под Windows могут заглянуть

    под спойлер

    program Time; uses Windows; var start, finish, res: int64; n, i, j: Integer; g: Array of Array of Integer; begin n:= 10000; SetLength(g, n, n); QueryPerformanceFrequency(res); QueryPerformanceCounter(start); for i:=1 to n-1 do for j:=1 to n-1 do g := i + j; QueryPerformanceCounter(finish); writeln("Time by rows:", (finish - start) / res, " sec"); QueryPerformanceCounter(start); for i:=1 to n-1 do for j:=1 to n-1 do g := i + j; QueryPerformanceCounter(finish); writeln("Time by cols:", (finish - start) / res, " sec"); end.


    В приведенном коде на Паскале я убрал «запутывающие» моменты и оставил только суть проблемы. Если это можно назвать проблемой.
    Какие мы в итоге получаем вопросы к подзащитному?
    1. Почему стало работать медленнее? И поподробнее…
    2. Как сделать инициализацию быстрее?

    Если есть необходимость копнуть глубже именно в реализацию Java, то просим соискателя понаблюдать за временем выполнения для небольших значений n . Например, на ideone.com для n=117 «оптимизированный» вариант работает вдвое медленнее. Но для следующего значения n=118 он оказывается уже в 100 (сто) раз быстрее не оптимизированного! Предложите поэкспериментировать на локальной машине. Пусть поиграет с настройками.
    Кстати, а всем понятно, что происходит?

    Несколько слов в оправдание

    Хочу сказать несколько слов в оправдание такого способа собеседования при найме. Да, я не проверяю знание синтаксиса языка и владение структурами данных. Возможно, при цивилизованном рынке труда это все работает. Но в наших условиях тотальной нехватки квалифицированных кадров, приходится оценивать скорее перспективную адекватность претендента той работе с которой он столкнется. Т.е. способность научиться, прорваться, разобраться, сделать.
    По духу это похоже на «собеседованию» при наборе легионеров в древнем Риме. Будущего вояку сильно пугали и смотрели краснеет он или бледнеет. Если бледнеет, то в стрессовой ситуации у претендента кровь отливает от головы и он склонен к пассивной реакции. Например, упасть в обморок. Если же соискатель краснел, то кровь у него к голове приливает. Т.е. он склонен к активным действиям, бросаться в драку. Такой считался годным.
    Ну и последнее. Почему я рассказал об этой задаче всем, а не продолжаю использовать её на собеседованиях? Просто, эту задачу уже «выучили» потенциальные соискатели и приходится использовать другие.
    Собственно на этот эффект я обратил внимание именно в связи с реальной задачей обработки изображений. Ситуация была несколько запутанная и я не сразу понял почему у меня так просел fps после рефакторинга. А вообще таких чуднЫх моментов наверное много накопилось у каждого.

    Пока лидирует версия, что «виноват» кэш процессора. Т.е. последовательный доступ в первом варианте работает в пределах хэша, который обновляется при переходе за определенную границу. При доступе по столбцам хэш вынужден постоянно обновляться и это занимает много времени. Давайте проверим эту версию в самом чистом виде. Заведем массив и сравним, что быстрее - обработать все элементы подряд или столько же раз обработать элементы массива со случайным номером? Вот эта программа - ideone.com/tMaR2S . Для 100000 элементов массива случайный доступ обычно оказывается заметно быстрее. Что же это означает?
    Тут мне совершенно справедливо указали (Big_Lebowski), что перестановка циклов меняет результаты в пользу последовательного варианта. Пришлось для чистоты эксперимента поставить цикл для разогрева. Заодно сделал несколько повторов, чтобы вывести среднее время работы как советовал leventov. Получилось так ideone.com/yN1H4g . Т.е. случайный доступ к элементам большого массива на ~10% медленнее чем последовательный. Возможно и в правду какую-то роль может сыграть кэш. Однако, в исходной ситуации производительность проседала в разы. Значит есть еще что-то.

    Постепенно в лидеры выходит версия про дополнительные действия при переходе от одной строки массива к другой. И это правильно. Осталось разобраться, что же именно там происходит.

    Теги:

    • Программирование
    • массивы
    • память
    Добавить метки

    Массивы (arrays) _ это упорядоченные наборы элементов одного типа. Элементами массива могут служить объекты простых и ссылочных типов, в том Числе и ссылки на другие массивы. Массивы сами по себе являются объектами и

    наследуют класс Object. Объявление

    int ia = new int;

    Определяет массив с именем ia, который изначально указывает на набор из трех Элементов типа int.

    В объявлении массива его размерность не указывается. Количество элементов массива задается при его создании посредством оператора new. Длина массива фиксируется в момент создания и в дальнейшем изменению не поддается. Впрочем, переменной типа массива (в нашем примере – ia) в любой момент может быть поставлен в соответствие новый массив с другой размерностью.

    Доступ к элементам массива осуществляется по значениям их номеров-индексов.

    Первый элемент массива имеет индекс, равный нулю (0), а последний – length – 1. Обращение к элементу массива выполняется посредством задания имени массива и значения индекса, заключенного в квадратные скобки, [ и ]. в предыдущем примере первым элементом массива ia будет ia, а последним – ia. При каждом обращении к элементу массива по индексу исполняющая система Java проверяет, находится ли значение индекса в допустимых пределах, и генерирует исключение типа ArraylndexOutOfBoundsException, если результат проверки ложен. 6 Выражение индекса должно относиться к типу int – только этим и ограничивается максимальное количество элементов массива.

    Длину массива легко определить с помощью поля length объекта массива (которое неявно снабжено признаками publiс и final). Ниже приведен дополненный код прежнего примера, в котором предусмотрено выполнение Цикла, обеспечивающего вывод на экран содержимого каждого элемента массива ia:

    for (int i = о; i < ia.length; i++)

    system.out.println(i + ": " + ia[i]);

    Массив нулевой длины (т.е. такой, в котором нет элементов) принято называть пустым. Обратите внимание, что ссылка на массив, равная значению null, и ссылка на пустой массив – это совершенно разные вещи. Пустой массив это реальный массив, в котором попросту отсутствуют элементы. Пустой массив представляет собой удобную альтернативу значению null при возврате из метода. Если метод способен возвращать null, прикладной код, в котором выполняется обращение к методу, должен сравнить возвращенное значение с null прежде, чем перейти к выполнению оставшихся операций. Если же метод возвращает массив (возможно, пустой), никакие дополнительные проверки не нужны – разумеется, помимо тех, которые касаются длины массива и должны выполняться в любом случае.

    Допускается и иная форма объявления массива, в которой квадратные скобки задаются после идентификатора массива, а не после наименования его типа:

    int ia = new int;

    Прежний синтаксис, однако, считается более предпочтительным, поскольку описание типа в таком случае выглядит более компактным.

    Модификаторы в объявлениях массивов

    Правила употребления в объявлениях массивов тех или иных модификаторов обычны и зависят только от того, к какой категории относится массив – к полям или Локальным переменным. Существует единственная особенность, которую важно помнить, – модификаторы применяются к массиву как таковому, но не к его отдельным элементам. Если в объявлении массива указан признак final, это значит только то, что ссылка на массив не может быть изменена после его создания, но никак не запрещает возможность изменения содержимого отдельных элементов массива. Язык не позволяет задавать каких бы то ни было модификаторов (скажем, final или уоlatilе) для элементов массива.

    Многомерные массивы

    В Java поддерживается возможность объявления многомерных массивов (multidimensional arrays) (т.е. массивов, элементами которых служат другие массивы), Код, предусматривающий объявление двумерной матрицы и вывод на экран содержимого ее элементов, может выглядеть, например, так:

    float mat = new float;

    setupMatrix(mat);

    for (int у = о; у < mat.length; у++) {

    for (int х = о; х < mat[y].length; х++)

    system.out.print(mat[y][x] + " ");

    system.out.println();

    При создании массива должна быть указана, по меньшей мере, его первая, "самая левая", размерность. Другие размерности разрешается не задавать – в этом случае их придется определить позже. Указание в операторе new единовременно всех размерностей – это самый лаконичный способ создания массива, позволяющий избежать необходимости использования дополнительных операторов new. Выражение объявления и создания массива mat, приведенное выше, равнозначно следующему фрагменту кода:

    float mat = new float;

    for (int у = о; у < mat.length; у++)

    mat[y] = new float;

    Такая форма объявления обладает тем преимуществом, что позволяет наряду с получением массивов с одинаковыми размерностями (скажем, 4 х 4) строить и массивы массивов различных размерностей, необходимых для хранения тех или иных последовательностей данных.

    Инициализация массивов

    При создании массива каждый его элемент получает значение, предусмотренное по умолчанию и зависящее от типа массива: нуль (0) – для числовых типов, ‘\u0000′ _ для char, false – для boolean и null – для ссылочных типов. Объявляя массив ссылочного типа, мы на самом деле определяем массив переменных этого типа. Рассмотрим следующий фрагмент кода:

    Attr attrs = new Attr;

    for (int i = о; i < attrs.length; i++)

    attrs[i] = new Attr(names[i], values[i]);

    После выполнения первого выражения, содержащего оператор new, переменная attrs получит ссылку на массив из 12 переменных, которые инициализированы значением null, Объекты Attr как таковые будут созданы только в процессе про хождения цикла.

    Массив может инициализироваться (одновременно с объявлением) посредством конструкции в фигурных скобках, в которой перечислены исходные Значения его элементов:

    String dangers = { "Львы", "Тигры", "Медведи" };

    Следующий фрагмент кода даст тот же результат:

    String dangers = new String; dangers = "Львы";

    dangers = "Тигры";

    dangers = "Медведи";

    Первая форма, предусматривающая задание списка инициализаторов в фигурных скобках, не требует явного использования оператора new – он вызывается косвенно исполняющей системой. Длина массива в этом случае определяется Количеством значений-инициализаторов. Допускается и возможность явного задания оператора new, но размерность все равно следует опускать она, как и раньше, определяется исполняющей системой:

    String dangers = new String { "Львы", "Тигры", "Медведи" };

    Подобную форму объявления и инициализации массива разрешается применять в любом месте кода, например в выражении вызова метода:

    printStringsCnew String { "раз", "два", "три" });

    Массив без названия, который создается таким образом, называют анонимным (anonymous).

    Массивы массивов могут инициализироваться посредством вложенных последовательностей исходных значений. Ниже приведен пример объявления массива, содержащего несколько первых строк так называемого треугольника Паскаля, где каждая строка описана собственным массивом значений.

    int pascalsTriangle = {

    { 1, 4, 6, 4, 1 },

    Индексы многомерных массивов следуют в порядке от внешнего к внутренним. Так, например, pascalsTriangle , где new - ключевое слово, выделяющее память для указанного в скобках количества элементов. Например, nums = new int; - в этом выражении создается массив из четырех элементов int, и каждый элемент будет иметь значение по умолчанию - число 0.

    Также можно сразу при объявлении массива инициализировать его:

    Int nums = new int; // массив из 4 чисел int nums2 = new int; // массив из 5 чисел

    При подобной инициализации все элементы массива имеют значение по умолчанию. Для числовых типов (в том числе для типа char) это число 0, для типа boolean это значение false , а для остальных объектов это значение null . Например, для типа int значением по умолчанию является число 0, поэтому выше определенный массив nums будет состоять из четырех нулей.

    Однако также можно задать конкретные значения для элементов массива при его создании:

    // эти два способа равноценны int nums = new int { 1, 2, 3, 5 }; int nums2 = { 1, 2, 3, 5 };

    Стоит отметить, что в этом случае в квадратных скобках не указывается размер массива, так как он вычисляется по количеству элементов в фигурных скобках.

    После создания массива мы можем обратиться к любому его элементу по индексу, который передается в квадратных скобках после названия переменной массива:

    Int nums = new int; // устанавливаем значения элементов массива nums = 1; nums = 2; nums = 4; nums = 100; // получаем значение третьего элемента массива System.out.println(nums); // 4

    Индексация элементов массива начинается с 0, поэтому в данном случае, чтобы обратиться к четвертому элементу в массиве, нам надо использовать выражение nums .

    И так как у нас массив определен только для 4 элементов, то мы не можем обратиться, например, к шестому элементу: nums = 5; . Если мы так попытаемся сделать, то мы получим ошибку.

    Длина массива

    Важнейшее свойство, которым обладают массивы, является свойство length , возвращающее длину массива, то есть количество его элементов:

    Int nums = {1, 2, 3, 4, 5}; int length = nums.length; // 5

    Нередко бывает неизвестным последний индекс, и чтобы получить последний элемент массива, мы можем использовать это свойство:

    Int last = nums;

    Многомерные массивы

    Ранее мы рассматривали одномерные массивы, которые можно представить как цепочку или строку однотипных значений. Но кроме одномерных массивов также бывают и многомерными. Наиболее известный многомерный массив - таблица, представляющая двухмерный массив:

    Int nums1 = new int { 0, 1, 2, 3, 4, 5 }; int nums2 = { { 0, 1, 2 }, { 3, 4, 5 } };

    Визуально оба массива можно представить следующим образом:

    Одномерный массив nums1
    Двухмерный массив nums2

    Поскольку массив nums2 двухмерный, он представляет собой простую таблицу. Его также можно было создать следующим образом: int nums2 = new int; . Количество квадратных скобок указывает на размерность массива. А числа в скобках - на количество строк и столбцов. И также, используя индексы, мы можем использовать элементы массива в программе:

    // установим элемент первого столбца второй строки nums2=44; System.out.println(nums2);

    Объявление трехмерного массива могло бы выглядеть так:

    Int nums3 = new int;

    Зубчатый массив

    Многомерные массивы могут быть также представлены как "зубчатые массивы". В вышеприведенном примере двухмерный массив имел 3 строчки и три столбца, поэтому у нас получалась ровная таблица. Но мы можем каждому элементу в двухмерном массиве присвоить отдельный массив с различным количеством элементов:

    Int nums = new int; nums = new int; nums = new int; nums = new int;

    foreach

    Специальная версия цикла for предназначена для перебора элементов в наборах элементов, например, в массивах и коллекциях. Она аналогична действию цикла foreach , который имеется в других языках программирования. Формальное ее объявление:

    For (тип_данных название_переменной: контейнер){ // действия }

    Например:

    Int array = new int { 1, 2, 3, 4, 5 }; for (int i: array){ System.out.println(i); }

    В качестве контейнера в данном случае выступает массив данных типа int . Затем объявляется переменная с типом int

    То же самое можно было бы сделать и с помощью обычной версии for:

    Int array = new int { 1, 2, 3, 4, 5 }; for (int i = 0; i < array.length; i++){ System.out.println(array[i]); }

    В то же время эта версия цикла for более гибкая по сравнению for (int i: array) . В частности, в этой версии мы можем изменять элементы:

    Int array = new int { 1, 2, 3, 4, 5 }; for (int i=0; i

    Перебор многомерных массивов в цикле

    int nums = new int { {1, 2, 3}, {4, 5, 6}, {7, 8, 9} }; for (int i = 0; i < nums.length; i++){ for(int j=0; j < nums[i].length; j++){ System.out.printf("%d ", nums[i][j]); } System.out.println(); }

    Сначала создается цикл для перебора по строкам, а затем внутри первого цикла создается внутренний цикл для перебора по столбцам конкретной строки. Подобным образом можно перебрать и трехмерные массивы и наборы с большим количеством размерностей.

    Массив - это структура данных, которая предназначена для хранения однотипных данных. Массивы в Java работают иначе, чем в C/C++. Особенности:

    • Поскольку массивы являются объектами, мы можем найти их длину. Это отличается от C/C++, где мы находим длину с помощью sizeof.
    • Переменная массива может также быть .
    • Переменные упорядочены и имеют индекс, начинающийся с 0.
    • Может также использоваться как статическое поле, локальная переменная или параметр метода.
    • Размер массива должен быть задан значением int, а не long или short.
    • Прямым суперклассом типа массива является Object.
    • Каждый тип массива реализует интерфейсы Cloneable and java.io.Serializable.

    Инициализация и доступ к массиву

    Одномерные Массивы: общая форма объявления

    Type var-name; или type var-name;

    Объявление состоит из двух компонентов: типа и имени. type объявляет тип элемента массива. Тип элемента определяет тип данных каждого элемента.

    Кроме типа int, мы также можем создать массив других типов данных, таких как char, float, double или определяемый пользователем тип данных (объекты класса).Таким образом, тип элемента определяет, какой тип данных будет храниться в массиве. Например:

    // both are valid declarations int intArray; or int intArray; byte byteArray; short shortsArray; boolean booleanArray; long longArray; float floatArray; double doubleArray; char charArray; // an array of references to objects of // the class MyClass (a class created by // user) MyClass myClassArray; Object ao, // array of Object Collection ca; // array of Collection // of unknown type

    Хотя приведенное выше первое объявление устанавливает тот факт, что intArray является переменной массива, массив фактически не существует. Он просто говорит компилятору, что эта переменная типа integer.

    Чтобы связать массив int с фактическим физическим массивом целых чисел, необходимо обозначить его с помощью new и назначить int.

    Как создать массив в Java

    При объявлении массива создается только ссылка на массив. Чтобы фактически создать или предоставить память массиву, надо создать массив следующим образом: общая форма new применительно к одномерным и выглядит следующим образом:
    var-name = new type ;

    Здесь type указывает тип данных, size — количество элементов в массиве, а var-name-имя переменной массива.

    Int intArray; //объявление intArray = new int; // выделение памяти

    Int intArray = new int; // объединение

    Важно знать, что элементы массива, выделенные функцией new, автоматически инициализируются нулем (для числовых типов), ложью (для логических типов) или нулем (для ссылочных типов).
    Получение массива — это двухэтапный процесс. Во-первых, необходимо объявить переменную нужного типа. Во-вторых, необходимо выделить память, которая будет содержать массив, с помощью new, и назначить ее переменной. Таким образом, в Java все массивы выделяются динамически.

    Литералы массива

    В ситуации, когда размер массива и переменные уже известны, можно использовать литералы.

    Int intArray = new int{ 1,2,3,4,5,6,7,8,9,10 }; // Declaring array literal

    • Длина этого массива определяет длину созданного массива.
    • Нет необходимости писать int в последних версиях Java

    Доступ к элементам массива Java с помощью цикла for

    Доступ к каждому элементу массива осуществляется через его индекс. Индекс начинается с 0 и заканчивается на (общий размер)-1. Все элементы могут быть доступны с помощью цикла for.

    For (int i = 0; i < arr.length; i++) System.out.println("Element at index " + i + " : "+ arr[i]);

    // Пример для иллюстрации создания array
    // целых чисел, помещает некоторые значения в массив,
    // и выводит каждое значение.

    class GFG
    {
    {
    int arr;

    // allocating memory for 5 integers.
    arr = new int;


    arr = 10;


    arr = 20;

    //so on...
    arr = 30;
    arr = 40;
    arr = 50;

    // accessing the elements of the specified array
    for (int i = 0; i < arr.length; i++)
    System.out.println("Element at index " + i +
    " : "+ arr[i]);
    }
    }
    В итоге получаем:

    Element at index 0: 10 Element at index 1: 20 Element at index 2: 30 Element at index 3: 40 Element at index 4: 50

    Массивы объектов

    Массив объектов создается так же, как элементов данных следующим образом:

    Student arr = new Student;

    StudentArray содержит семь элементов памяти каждый из класса student, в котором адреса семи объектов Student могут быть сохранены. Student объекты должны быть созданы с помощью конструктора класса student и их ссылки должны быть присвоены элементам массива следующим образом:

    Student arr = new Student;

    // Java program to illustrate creating an array of
    // objects

    class Student
    {
    public int roll_no;
    public String name;
    Student(int roll_no, String name)
    {
    this.roll_no = roll_no;
    this.name = name;
    }
    }

    // Elements of array are objects of a class Student.
    public class GFG
    {
    public static void main (String args)
    {
    // declares an Array of integers.
    Student arr;

    // allocating memory for 5 objects of type Student.
    arr = new Student;

    // initialize the first elements of the array
    arr = new Student(1,"aman");

    // initialize the second elements of the array
    arr = new Student(2,"vaibhav");

    // so on...
    arr = new Student(3,"shikar");
    arr = new Student(4,"dharmesh");
    arr = new Student(5,"mohit");

    // accessing the elements of the specified array
    for (int i = 0; i < arr.length; i++)
    System.out.println("Element at " + i + " : " +
    arr[i].roll_no +" "+ arr[i].name);
    }
    }

    Получаем:

    Element at 0: 1 aman Element at 1: 2 vaibhav Element at 2: 3 shikar Element at 3: 4 dharmesh Element at 4: 5 mohit

    Что произойдет, если мы попытаемся получить доступ к элементу за пределами массива?
    Компилятор создает исключение ArrayIndexOutOfBoundsException, указывающее, что к массиву был получен доступ с недопустимым индексом. Индекс либо отрицательный, либо больше или равен размеру массива.

    Многомерные

    Многомерные массивы — это массивы массивов, каждый элемент которых содержит ссылку на другой массив. Создается путем добавления одного набора квадратных скобок () для каждого измерения. Рассмотрим пример:

    Int intArray = new int; //a 2D array or matrix int intArray = new int; //a 3D array

    Class multiDimensional
    {
    public static void main(String args)
    {
    // declaring and initializing 2D array
    int arr = { {2,7,9},{3,6,1},{7,4,2} };

    // printing 2D array
    for (int i=0; i< 3 ; i++)
    {
    for (int j=0; j < 3 ; j++)
    System.out.print(arr[i][j] + " ");

    System.out.println();
    }
    }
    }

    Output: 2 7 9 3 6 1 7 4 2


    Передача массивов в метод

    Как и переменные, мы можем передавать массивы в методы.

    // Java program to demonstrate // passing of array to method class Test { // Driver method public static void main(String args) { int arr = {3, 1, 2, 5, 4}; // passing array to method m1 sum(arr); } public static void sum(int arr) { // getting sum of array values int sum = 0; for (int i = 0; i < arr.length; i++) sum+=arr[i]; System.out.println("sum of array values: " + sum); } }

    На выходе получим:

    sum of array values: 15

    Возврат массивов из методов

    Как обычно, метод также может возвращать массив. Например, ниже программа возвращает массив из метода m1.

    // Java program to demonstrate // return of array from method class Test { // Driver method public static void main(String args) { int arr = m1(); for (int i = 0; i < arr.length; i++) System.out.print(arr[i]+" "); } public static int m1() { // returning array return new int{1,2,3}; } }

    Объекты класса

    Каждый массив имеет связанный объект класса, совместно используемый со всеми другими массивами с тем же типом компонента.

    // Java program to demonstrate // Class Objects for Arrays class Test { public static void main(String args) { int intArray = new int; byte byteArray = new byte; short shortsArray = new short; // array of Strings String strArray = new String; System.out.println(intArray.getClass()); System.out.println(intArray.getClass().getSuperclass()); System.out.println(byteArray.getClass()); System.out.println(shortsArray.getClass()); System.out.println(strArray.getClass()); } }

    class +" "); } } }

    Клон многомерного массива (например, Object ) является копией и это означает, что он создает только один новый массив с каждым элементом и ссылкой на исходный массив элементов, но вложенные массивы являются общими.

    // Java program to demonstrate // cloning of multi-dimensional arrays class Test { public static void main(String args) { int intArray = {{1,2,3},{4,5}}; int cloneArray = intArray.clone(); // will print false System.out.println(intArray == cloneArray); // will print true as shallow copy is created // i.e. sub-arrays are shared System.out.println(intArray == cloneArray); System.out.println(intArray == cloneArray); } }

    false
    true
    true