Ограничение целостности данных. Целостность данных. Ограничения целостности. Ограничение NOT NULL

Проблема целостности состоит в обеспечении правильности данных в БД в любой момент времени. Целостность данных обеспечивается набором специальных условий или утверждений, называемых ограничениями целостности. Ограничения целостности - это утверждение о допустимости значений отдельных информационных единиц и связей между ними. Ограничения целостности (ОЦ) определяются в большинстве случаев особенностями ПО, хотя могут отражать и чисто информационные характеристики.

ОЦ могут относиться к разным информационным единицам: атрибутам (полям), кортежам (строкам, записям), отношениям (таблицам, файлам), связям между отношениями и т.п.

Для полей чаще всего используются следующие виды ограничений.

1. Тип и формат поля.

2. Задание диапазона значений. Значения диапазона и его тип зависят от особенностей ПО.

3. Признак непустого поля. Характеризует недопустимость пустого значения поля в БД. Например, в отношении, содержащем сведения о сотрудниках, поля “фамилия”, ”имя”, ”отчество”, ”оклад” должны обязательно иметь какое-то значение, а у поля “ученая степень” значение может отсутствовать.

4. Задание домена. Поле может принимать значение из заданного множества значений. Например, значением поля “пол” может быть только либо “мужской”, либо “женский”. Значением поля “должность” для профессорско-преподавательского состава может быть одно из следующих значений: “ассистент”, “старший преподаватель”, “доцент”, “профессор”. Домен необязательно должен определяться перечислением входящих в него значений.

Как всякая классификация, приведенная выше классификация видов ограничений является условной. Кроме того, домен может определяться и алгоритмически. Например, многие СУБД поддерживают тип поля “ДАТА” и при вводе значений обеспечивают автоматическую проверку на допустимость введенной даты. Поэтому для поддержания целостности данных важно знать о возможностях СУБД и правильно выбрать тип поля.

Специфическим ограничением на значение поля является признак его уникальности. Это ограничение проверяет допустимость значения данного поля, но при этом просматривается вся таблица (файл).

Признак уникальности значения тесно связан с понятием ключа, но уже первичного, так как ключ может быть представлен не только одним полем, а быть составным. Уникальное поле является возможным ключом данного отношения. При наличии нескольких возможных ключей один из них должен быть выбран в качестве первичного ключа. Это поле не должно иметь пустое значение. Не все СУБД поддерживают концепцию ключа и требуют определять его при описании БД.

Рассматриваемое ограничение чаще всего возникает при отображении в БД каких-то объектов, и уникальное поле является идентификатором объекта. Поэтому оно часто называется ограничением целостности объекта.

Рассмотренные выше ограничения определяли проверку значения поля вне зависимости от того, вводится ли это значение впервые или корректируются имеющиеся в БД значения. Ограничения, которые используются только при проверке допустимости корректировки, называются ограничениями перехода. Например, если в БД имеется поле “возраст сотрудника”, то при корректировке значение этого поля может только увеличиваться. Если в БД хранится поле “год рождения”, то при корректировать это поле следует запретить.

Когда речь идет об ограничениях целостности, относящихся к кортежу, то имеется в виду либо ограничение на значение всей строки, рассматриваемой как единое целое, либо ограничения на соотношения значений отдельных полей в пределах одной строки. Так, естественным ограничением является требование уникальности каждой строки таблицы. По определению в реляционном отношении не может быть одинаковых кортежей, но не все реляционные СУБД обеспечивают соблюдение этого ограничения. В качестве ограничения на соотношения значений полей внутри одного кортежа можно привести следующее: в БД подсистеме “Абитуриент” кортеж (строка) содержит атрибуты (поля) с оценками за экзамены и поле с максимальной оценкой, которое всегда должно отражать правильное значение.

В качестве примера ограничений, относящихся ко всей таблице, можно привести следующий. Предположим, что фонд заработной платы формируется исходя из величины средней зарплаты одного сотрудника и эта величина равна N руб. Тогда в качестве ограничения целостности таблицы может быть задано условие, указывающее, что среднее значение поля “оклад” должно быть не больше N. Примерами ограничения целостности, которыми проверяют соотношения между строками одной таблицы, являются следующие: 1) нельзя быть родителем и ребенком одного и того же человека; 2) год рождения родителя должен быть меньше, чем год рождения ребенка. Первый из приведенных примеров является частным случаем более общего ограничения на отсутствие циклов.

К аналогичным ограничениям относятся ограничения на отсутствие циклов при определении состава изделия (узел не может входить сам в себя), при описании организационной структуры и во многих других случаях. Если СУБД не позволяет контролировать подобные ограничения целостности, то следует напивать процедуру, позволяющую делать это.

Все ограничения, которые были рассмотрены ранее, затрагивали информационные единицы в пределах одной таблицы. Кроме такого рода ограничений часто используются ограничения, затрагивающие несколько взаимосвязанных таблиц. Наиболее часто встречающееся из этих ограничений - ограничение целостности связи. Оно выражается в том, что значение атрибута, отражающего связи между объектами и являющегося внешним (вторичным) ключом отношения, обязательно должно совпадать с одним из значений атрибута, являющегося первичным ключом отношения, описывающего соответствующий объект.

Разновидностью ограничения целостности связи является ограничение связи по существованию, заключающееся в том, что для существования объекта в отношении R1 необходимо, чтобы он был связан с объектом в отношении R2. Например, при приеме на работу каждый из работающих должен быть зачислен в какой-то отдел, и соответствующая запись в таблице “Кадры” в поле “отдел” должна иметь значение, совпадающее с одним из значений соответствующего поля в таблице “Отделы”.

Кроме того, ограничения, отражающие связь таблиц могут представлять собой условия, проверяющие отсутствие логических противоречий между данными во взаимосвязанных таблицах. Например, если для каждой должности установлена определенная “вилка” оклада, то значение поля “оклад” в таблице “Кадры” не должно выходить за пределы “вилки”, которая зафиксирована в таблице “Должности”.

Своеобразным видом ограничений целостности является запрет на обновление. Он может быть обусловлен технологией обработки данных или спецификой ПО. Так, если описывается объект “Личность”, то такие атрибуты, как дата рождения и место рождения, являются постоянными (статическими) и меняться не могут.

По моменту контроля за соблюдением ограничений целостности различают безотлагательные (одномоментные) и отложенные ограничения целостности. Отложенные ограничения целостности могут не соблюдаться в процессе выполнения какой-то группы операций, но обязаны быть соблюдены по завершению выполнения этой группы операций. С понятием отложенного ограничения целостности тесно связано понятие транзакции.

Очень важным видом ограничений целостности являются функциональные зависимости. Информация об имеющихся в данной ПО функциональных зависимостях фиксируется в ИЛМ и используется при проектировании БД и для контроля целостности при функционировании БД. Для соответствующих полей в БД желательно задать запрет на обновление.

Запрет на обновление может относиться не только к отдельному полю, но и ко всей строке (записи) и к таблице.

Рассмотрим пример ограничения на обновление строки (записи). Пусть в БД по кадровому составу для каждого из сотрудников хранятся сведения о поощрениях. Эта информация хранится в таблице “Поощрения”, имеющей такие атрибуты (поля): табельный номер сотрудника, вид поощрения, дата. В эту таблицу могут добавляться строки, но каждая отдельная запись изменяться не может.

В этом примере наблюдается также ограничение связи по существованию между таблицами “Поощрения” и “Сотрудники”: табельный номер в таблице “Поощрения” должен обязательно присутствовать в таблице “Сотрудники”; при удалении строки из таблицы “Сотрудники” все связанные с ней строки в таблице “Поощрения” должны быть также удалены.

Некоторые СУБД позволяют при описании данных задавать так называемое обязательное членство для включения и каскадное удаление. В этом случае целостность при корректировке будет обеспечиваться системой автоматически и гарантируется ограничение связи по существованию.

СУБД FoxPro обеспечивает целостность при корректировке, если предусмотрена соответствующая связь таблиц в БД с помощью SET Relation и SET SKIP.

Для автоматического контроля целостности эта информация должна быть зафиксирована в машинном словаре данных. Для контроля целостности при выполнении операций реляционной алгебры по меньшей мере должна быть зафиксирована информация о ключах и возможных ключах отношений.

По способу задания ограничения целостности могут быть явными и неявными. Неявные ограничения целостности определяются спецификой модели данных и проверяются СУБД автоматически.

Рассмотренные выше примеры ограничений целостности относились к данным пользователя. Понятие целостности может относиться и к служебной информации. Это прежде всего относится к поддержанию соответствия между индексными файлами и соответствующими им индексируемыми файлами БД.

Наряду с понятием целостности БД может быть введено понятие информационной целостности банка данных, заключающееся в обеспечении правильности взаимосвязи всех его информационных компонентов (файлов БД, программных файлов, описаний форм ввода-вывода, отчетов). Например, если для файла БД имеется связанная с ним форма отчета, то при удалении из файла поля, вывод которого предусмотрен в этой форме, возникает ошибка при выводе отчета. Нарушения целостности могут возникнуть, если изменяется тип данных, хранящихся в поле, и во многих других случаях.

Некоторые СУБД имеют специальный механизм, позволяющий отслеживать согласованность различных информационных компонентов банка данных. Например, в системе Paradox имеется понятие “семейство”, включающее в себя файлы БД и относящиеся к ним индексы, отчеты, формы и т.п. Для отслеживания взаимосвязи между всеми информационными компонентами БнД должны использоваться словари данных.

Задание ограничений целостности и их проверка являются важной частью проектирования и функционирования БнД.

Ограничения целостности, присущие той или иной ПО, должны быть выявлены при обследовании и зафиксированы в ИЛМ. Вопрос о необходимости проверки ОЦ при функционировании БнД должен решаться на основе анализа эффективности проекта, так как в некоторых случаях для реализации проверки ОЦ требуются значительные затраты времени.

ОЦ в БнД могут задаваться либо при описании структуры таблиц БД (т.е. в схеме БД), либо в программах обработки данных. Первый подход предпочтительнее и не только потому, что описательный (декларативный) способ задания ОЦ представляет собой более высокий уровень контроля, но и потому, что заданные ограничения будут контролироваться при выполнении всех операций над данными.

Разные СУБД обладают различным набором средств для обеспечения целостности данных. Так, некоторые РСУБД поддерживают концепцию ключа, домена и внешнего ключа. При этом соответствующие проверки ОЦ выполняются автоматически. В некоторых системах при описании структуры БД для поля можно задать запрет содержать пустое значение (понятие NOT NULL), можно определить диапазон допустимых значений и другие ОЦ.

При проектировании БнД необходимо изучит, какие возможности по контролю целостности предоставляет используемая СУБД. Если СУБД автоматически не поддерживает нужное ограничение, то обеспечение его соблюдения становится заботой проектировщика.

Ограничения целостности данных позволяют добавить для них требования, дополнительные к соблюдению типа. Заявляемые (схемные, формальные, "декларативные") ограничения целостности записываются ("провозглашаются") в виде условий, которые должны соблюдаться явно как таковые , на уровне схемы данных, и этим отличаются от правил целостности, сформулированных в виде запрограммированных проверок (см. ниже). Поэтому иначе такие ограничения можно называть "явными". Оригинальный термин имеет полное название " integrity data constraints" - "ограничения на значения данных, налагаемые для более точного учета обстоятельств предметной области ", но часто сокращается до " integrity constraints " или даже просто "constraints". Слово " integrity " вряд ли хорошо понятно массам разработчиков.

Само понятие заявляемых ограничений целостности в SQL было унаследовано от реляционной модели и усложнялось вместе с развитием стандарта. В Oracle номенклатура ограничений целостности в целом соответствует SQL -92 (при том, что объем реализации не выдержан), но не доведена до уровня SQL :1999. Так, Oracle не позволяет завести ограничение целостности на уровне БД (с помощью служебного слова ASSERTION ) и сильно ограничен в формулировании условия проверки значений конструкцией CHECK тем, что не допускает обращения к данным базы.

Слово ASSERTION из стандарта SQL подсказывает еще один перевод (и понимание) integrity constraints , как "утвердительные ограничения целостности".

Заявляемые ограничения целостности в Oracle можно задавать на уровнях:

  • отдельного поля строки в таблице;
  • отдельной строки;
  • пары таблиц.

Проверка на выполнение действующих заявляемых ограничений целостности выполняется СУБД автоматически и всегда, вне зависимости от источника поступления изменений, чем и гарантировано их соблюдение, в отличие, скажем, от проверок вводимых значений, осуществляемых клиентскими прикладными программами.

Oracle позволяет формулировать подобные ограничения при создании таблицы командой CREATE TABLE , а для уже существующих таблиц их можно добавлять и отменять следующими командами:

  • ALTER TABLE … MODIFY - добавление ограничений всех видов и снятие ограничения NOT NULL ;
  • ALTER TABLE … ADD/DROP - добавление и снятие ограничений всех видов, кроме NOT NULL .

Всем ограничениям целостности, сформулированными в схеме, Oracle сообщает имена. Если при создании ограничения употребить конструкцию CONSTRAINT имя , ограничение получит имя от программиста, в противном случае СУБД создаст имя по своему усмотрению. Сведения о каждом существующем ограничении можно найти в таблице словаря-справочника USER_CONSTRAINTS по его имени. Неудачное имя ограничения можно изменить; к примеру:

ALTER TABLE projx RENAME CONSTRAINT sys_c0011509 TO name_is_needed;

Разновидности заявляемых ограничений целостности

Ограничение NOT NULL

Ограничение NOT NULL обязывает столбец или группу столбцов всегда иметь значение (если группа - то хотя бы в одном поле). Требование непустоты столбца крайне желательно, так как избавляет программиста от многочисленных забот, связанных с особенностями обработки NULL . К сожалению, требования предметной области и некоторые действия в SQL (например, GROUP BY ROLLUP … ) не позволяют совсем отказаться от столбцов со свойством NULL .

Это единственное из ограничений целостности, информация о котором хранится не только в таблице USER_CONSTRAINTS , но и в таблице USER_TAB_COLUMNS в качестве свойства столбца. (Когда-то признак NULL/NOT NULL формально считался свойством столбца, а не ограничением целостности). По этой причине добавление и упразднение этого ограничения оформляется по правилам изменения свойства столбца, только через ключевое слово MODIFY :

ALTER TABLE proj MODIFY (budget NOT NULL); -- создание ограничения с системным именем; скобки необязательны ALTER TABLE proj MODIFY (budget NULL); -- упразднение ограничения; скобки необязательны ALTER TABLE proj MODIFY (budget CONSTRAINT is_mandatory NOT NULL); -- создание ограничения с именем, заданным программистом

В современных версиях Oracle самостоятельное ограничение NOT NULL будет оформлено технически как ограничение вида CHECK с условием для проверки: budget IS NOT NULL и одновременно будет зафиксировано в USER_CONSTRAINTS значением NULLABLE = "Y" . Свойство NOT NULL , вытекающее из правила первичного ключа, будет отражено только в USER_CONSTRAINTS .

Первичные ключи

От столбцов, назначенных первичным ключом, требуется, чтобы значения в их полях всех строк были уникальными и имелись всегда (для ключа из нескольких столбцов значение должно быть хотя бы в одном поле). Примеры создания и удаления:

ALTER TABLE proj ADD PRIMARY KEY (projno, pname); -- создание ограничения (первичный ключ на основе двух столбцов) с системным именем ALTER TABLE proj DROP PRIMARY KEY; -- упразднение ограничения ALTER TABLE proj ADD CONSTRAINT pk_proj PRIMARY KEY (projno); -- создание ограничения с именем, заданным программистом

Значения в полях первичного ключа должны существовать всегда.

Некоторые типы столбцов не допускаются до формирования первичного ключа (например, LOB или TIMESTAMP WITH TIME ZONE ).

Уникальность значений в столбцах

От столбцов, назначенных уникальными, требуется, чтобы значения в их полях всех строк были уникальными. Уникальность в SQL наиболее близка к понятию "альтернативного", "возможного" (candidate) или же просто "ключа" в реляционной модели.

Пример создания:

ALTER TABLE proj ADD UNIQUE (pname);

Обратите внимание, что в столбце PNAME не запрещаются пропуски значений. По стандарту SQL уникальность отслеживается для имеющихся значений столбца. Если на такой столбец дополнительно наложить ограничение

ALTER TABLE proj MODIFY (pname NOT NULL);

он сможет играть роль ключа в реляционной модели и быть объявлен первичным (путем замены двух ограничений: UNIQUE и NOT NULL на одно PRIMARY KEY ). Если же уникальной объявляется группа столбцов, сообщить ей свойства ключа средствами SQL сложнее (обязательность хотя бы одного значения в уникальной группе можно потребовать ограничением вида CHECK ).

Другое отличие ограничения уникальности от первичного ключа в том, что первых в таблице может быть сформулировано несколько, а второе присутствует разве что в единственном числе. Oracle не препятствует объявлению уникальности не только непересекающихся групп столбцов, но даже и повторяющихся. Следующая цепочка команд не вызовет ошибок:

ALTER TABLE t ADD CONSTRAINT xx UNIQUE (a, b); -- Ошибка!

Внешние ключи

Столбцы, объявленные внешним ключом, обязаны (а) ссылаться на однотипные столбцы из другой или той же таблицы при условии, что адресат - это первичный ключ или уникальная группа столбцов, и (б) принимать только существующие в данный момент в столбцах-адресатах значения. Пример создания:

ALTER TABLE proj ADD (ldept NUMBER (2)) ; ALTER TABLE proj ADD FOREIGN KEY (ldept) REFERENCES dept (deptno) ;

По правилам внешнего ключа в столбце LDEPT не запрещаются пропуски значений. Стандарт SQL требует от СУБД проверки соответствия значениям в столбцах-адресатах таблицы только имеющихся значений внешнего ключа; иными словами, значения в полях внешнего ключа могут отсутствовать.

Внешних ключей в таблице может быть определено несколько. Например, при более тщательном моделировании примера "сотрудники - отделы" в дополнение к имеющемуся внешнему ключу DEPTNO таблицы EMP можно было бы объявить внешним ключом столбец JOB , заставив его ссылаться на отдельную таблицу с описаниями штатных должностей.

Операции над данными

Модель данных определяет множество действий, которые допустимо производить над некоторой реализацией БД для её перевода из одного состояния в другое. Это множество соотносят с языком манипулирования данными (Data Manipulation Language, DML).

Любая операция над данными включает в себя селекцию данных (select), то есть выделение из всей совокупности именно тех данных, над которыми должна быть выполнена требуемая операция, и действие над выбранными данными, которое определяет характер операции. Условие селекции – это некоторый критерий отбора данных, в котором могут быть использованы логическая позиция элемента данных, его значение и связи между данными.

По типу производимых действий различают следующие операции:

  • идентификация данных и нахождение их позиции в БД;
  • выборка (чтение) данных из БД;
  • включение (запись) данных в БД;
  • удаление данных из БД;
  • модификация (изменение) данных БД.

Обработка данных в БД осуществляется с помощью процедур базы данных – транзакций. Транзакцией называют упорядоченное множество операций, переводящих БД из одного согласованного состояния в другое. Транзакция либо выполняется полностью, т.е. выполняются все входящие в неё операции, либо не выполняется совсем, если в процессе её выполнения возникает ошибка.

Ограничения целостности – это правила, которым должны удовлетворять значения элементов данных. Ограничения целостности делятся на явные и неявные .

Неявные ограничения определяются самой структурой данных. Например, тот факт, что запись типа СОТРУДНИК имеет поле Дата рождения , служит, по существу, ограничением целостности, означающим, что каждый сотрудник организации имеет дату рождения, причём только одну.

Явные ограничения включаются в структуру базы данных с помощью средств языка контроля данных (DCL, Data Control Language). В качестве явных ограничений чаще всего выступают условия, накладываемые на значения данных. Например, номер паспорта является уникальным, заработная плата не может быть отрицательной, а дата приёма сотрудника на работу обязательно будет меньше, чем дата его перевода на другую работу.

Также различают статические и динамические ограничения целостно-сти. Статические ограничения присущи всем состояниям ПО, а динамические определяют возможность перехода ПО из одного состояния в другое. Примерами статических ограничений целостности могут служить требование уникальности индивидуального номера налогоплательщика (ИНН) или задание ограниченного множества значений атрибута "Пол" ("м" и "ж"). В качестве примера динамического ограничения целостности можно привести правило, которое распространяется на поля-счётчики: значение счётчика не может уменьшаться.


За выполнением ограничений целостности следит СУБД в процессе своего функционирования. Она проверяет ограничения целостности каждый раз, когда они могут быть нарушены (например, при добавлении данных, при удалении данных и т.п.), и гарантирует их соблюдение. Если какая-либо команда нарушает ограничение целостности, она не будет выполнена и система выдаст соответствующее сообщение об ошибке. Например, если задать в качестве ограничения правило «Остаток денежных средств на счёте не может быть отрицательным», то при попытке снять со счёта денег больше, чем там есть, система выдаст сообщение об ошибке и не позволит выполнить эту операцию. Таким образом, ограничения целостности обеспечивают логическую непротиворечивость данных при переводе БД из одного состояния в другое.

В настоящее время разработано много различных моделей данных. Основные – это сетевая, иерархическая и реляционная модели.

7. Ограничения целостности

Ограничения целостности в базах данных, назначение, доменная целостность, сущностная целостность, ссылочная целостность, декларативная и процедурная целостность, перехват ошибок при нарушениях целостности

7.1 Что такое ограничения целостности

Ограничения целостности можно определить как специальные средства в базах данных, главное назначение которых - не дать попасть в базу недопустимым данным (например, предупредить ошибки пользователей при вводе данных).

Вначале - немного теории.

Все ограничения целостности можно разделить на три большие категории:

· первая категория - средства обеспечения доменной целостности. Они отвечают за то, чтобы в соответствующем поле базы данных были допустимые значения. Например, фамилия, как правило, должна состоять из букв, а почтовый индекс - из цифр. В базах данных такая целостность обычно обеспечивается условиями на значение, запретом пустых значений, триггерами и хранимыми процедурами, а также ключами;

· третья категория - ссылочная целостность, обеспечивается системой первичных и внешних ключей. Например, при помощи этих средств можно гарантировать, что у нас не будет заказов, оформленных на покупателей, которых нет в базе данных.

Еще две большие категории, на которые можно поделить средства обеспечения целостности - средства декларативного и процедурного характера. Средства декларативного характера создаются как составные части объектов при их определении в базе данных (например, условие на значение при определении таблицы в базе данных). Средства процедурного характера (триггеры и хранимые процедуры) реализуются как отдельные программные модули. В общем случае декларативные ограничения менее функциональны, но более экономны с точки зрения ресурсов и наоборот.

Надо сказать, что наличие развитой системы ограничений целостности во многом определяет зрелость базы данных. Обычно проще сразу позаботиться о том, чтобы в базу данных не попадали неверные значения, чем потом их убирать из базы данных.

Кроме того, при создании ограничений целостности разработчики должны позаботиться о том, чтобы ошибки, возникающие при нарушениях целостности, перехватывались клиентским приложением.

Целостность данных - это механизм поддержания соответствия базы данных предметной области. В реляционной модели данных определены два базовых требования обеспечения целостности:

    целостность ссылок

    целостность отношений.

Целостность отношений.

Объект реального мира представляется в реляционной базе данных как кортеж некоторого отношения. Требование целостности отношений заключается в следующем:

каждый кортеж любого отношения должен отличатся от любого другого кортежа этого отношения (т.е. любое отношение должно обладать первичным ключом).

Вполне очевидно, что если данное требование не соблюдается (т.е. кортежи в рамках одного отношения не уникальны), то в базе данных может храниться противоречивая информация об одном и том же объекте. Поддержание целостности сущностей обеспечивается средствами системы управления базой данных (СУБД). Это осуществляется с помощью двух ограничений:

    при добавлении записей в таблицу проверяется уникальность их первичных ключей

    не позволяется изменение значений атрибутов, входящих в первичный ключ.

Целостность ссылок

Сложные объекты реального мира представляются в реляционной базе данных в виде кортежей нескольких нормализованных отношений, связанных между собой. При этом:

    Связи между данными отношениями описываются в терминах функциональных зависимостей.

    Для отражения функциональных зависимостей между кортежами разных отношений используется дублирование первичного ключа одного отношения (родительского) в другое (дочернее). Атрибуты, представляющие собой копии ключей родительских отношений, называются внешними ключами.

для каждого значения внешнего ключа, появляющегося в дочернем отношении, в родительском отношении должен найтись кортеж с таким же значением первичного ключа.

Пусть, например, даны отношения ОТДЕЛ (N_ОТДЕЛА , ИМЯ_ОТДЕЛА) и СОТРУДНИК (N_СОТРУДНИКА , N_ОТДЕЛА, ИМЯ_СОТРУДНИКА), в которых хранятся сведения о работниках предприятия и подразделениях, где они работают. Отношение ОТДЕЛ в данной паре является родительским, поэтому его первичный ключ "N_отдела" присутствует в дочернем отношении СОТРУДНИК. Требование целостности по ссылкам означает здесь, что в таблице СОТРУДНИК не может присутствовать кортеж со значением атрибута "N_отдела" , которое не встречается в таблице ОТДЕЛ. Если такое значение в отношении ОТДЕЛ отсутствует, значение внешнего ключа в отношении СОТРУДНИК считается неопределенным.

Как правило, поддержание целостности ссылок также возлагается на систему управления базой данных.

Существуют две основные стратегии поддержания ссылочной целостности :

    RESTRICT (ОГРАНИЧИТЬ) - не разрешать выполнение операции, приводящей к нарушению ссылочной целостности. Это самая простая стратегия, требующая только проверки, имеются ли кортежи в дочернем отношении, связанные с некоторым кортежем в родительском отношении.

    CASCADE (КАСКАДИРОВАТЬ) - разрешить выполнение требуемой операции, но внести при этом необходимые поправки в других отношениях так, чтобы не допустить нарушения ссылочной целостности и сохранить все имеющиеся связи. Изменение начинается в родительском отношении и каскадно выполняется в дочернем отношении. В реализации этой стратегии имеется одна тонкость, заключающаяся в том, что дочернее отношение само может быть родительским для некоторого третьего отношения. При этом может дополнительно потребоваться выполнение какой-либо стратегии и для этой связи и т.д. Если при этом какая-либо из каскадных операций (любого уровня) не может быть выполнена, то необходимо отказаться от первоначальной операции и вернуть базу данных в исходное состояние. Это самая сложная стратегия, но она хороша тем, что при этом не нарушается связь между кортежами родительского и дочернего отношений.

Первичный и внешний ключи

Поскольку отношение – это множество, а множества по определению не содержат совпадающих элементов, то никакие два кортежа отношения не могут быть дубликатами друг друга в любой произвольно-заданный момент времени. Пусть R – отношение с атрибутами A1, A2, ..., An. Говорят, что множество атрибутов K=(Ai, Aj, ..., Ak) отношения R является возможным ключом R тогда и только тогда, когда удовлетворяются два независимых от времени условия:

    Уникальность: в произвольный заданный момент времени никакие два различных кортежа R не имеют одного и того же значения для Ai, Aj, ..., Ak.

    Минимальность: ни один из атрибутов Ai, Aj, ..., Ak не может быть исключен из K без нарушения уникальности.

Каждое отношение обладает хотя бы одним возможным ключом, поскольку, по меньшей мере, комбинация всех его атрибутов удовлетворяет условию уникальности. Один из возможных ключей (выбранный произвольным образом) принимается за его первичный ключ. Остальные возможные ключи, если они есть, называются альтернативными ключами.

Отношение может содержать несколько ключей. Всегда один из ключей объявляется первичным , его значения не могут обновляться. Все остальные ключи отношения называются возможными ключами .

Различные объекты предметной области, информация о которых хранится в базе данных, всегда взаимосвязаны друг с другом. Такие взаимосвязи отражаются в реляционных базах данных при помощи внешних ключей , связывающих несколько отношений.

Формальное определение.

Пусть дано отношение . Подмножество атрибутовотношениябудем называтьвнешним ключом , если:

Замечание . Внешний ключ, также как и возможный, может быть простым и составным.

Замечание . Внешний ключ должен быть определен на тех же доменах, что и соответствующий первичный ключ родительского отношения.

Замечание . Внешний ключ, как правило, не обладает свойством уникальности . Так и должно быть, т.к. в дочернем отношении может быть несколько кортежей, ссылающихся на один и тот же кортеж родительского отношения. Это, собственно, и дает тип отношения "один-ко-многим".

Замечание . Для внешнего ключа не требуется, чтобы он был компонентом некоторого возможного ключа.

Вышеупомянутые и некоторые другие математические понятия явились теоретической базой для создания реляционных СУБД, разработки соответствующих языковых средств и программных систем, обеспечивающих их высокую производительность, и создания основ теории проектирования баз данных. Однако для массового пользователя реляционных СУБД можно с успехом использовать неформальные эквиваленты этих понятий:

Отношение – Таблица (иногда Файл), Кортеж – Строка (иногда Запись), Атрибут – Столбец, Поле.