Во время передачи информации. Средства передачи информации: история, факты. Понятие и виды информации, передача и обработка, поиск и хранение информации

Развитие человечества никогда не происходило равномерно, были периоды застоя и технологических прорывов. Точно так же развивалась и история средств Интересные факты и открытия данной сферы в исторической последовательности представлены в этой статье. Невероятно, но то, без чего современное общество не представляет сегодня своего существования, человечество в начале ХХ века считало невозможным и фантастическим, а зачастую и абсурдным.

На заре развития

Начиная с самых древних времен и до нашей эры человечество активно использовало звук и свет как основные средства передачи информации, история их использования насчитывает тысячелетия. Помимо разнообразных звуков, с помощью которых наши древние предки предупреждали соплеменников об опасности или созывали их на охоту, свет также стал возможностью предавать важные сообщения на большие расстояния. Для этого использовали сигнальные костры, факелы, горящие копья, стрелы и другие приспособления. Вокруг селений сооружали сторожевые посты с сигнальным огнем, чтобы опасность не застала людей врасплох. Разнообразие информации, которую необходимо было передать, привело к использованию своего рода кодов и вспомогательных технических звуковых элементов, таких, как барабаны, свистки, гонги, рога животных и другие.

Использование кодов в море как прообраз телеграфа

Особое развитие кодировка получила при перемещении по воде. Когда человек впервые вышел в море, появились первые маяки. Древние греки при помощи определенных комбинаций из факелов передавали сообщения по буквам. Также в море применились различные по форме и цвету сигнальные флаги. Таким образом, появилось такое понятие, как семафор, когда с помощью особых положений флажков или фонарей можно было передавать разные сообщения. Это были первые попытки телеграфирования. Позднее появились ракеты. Несмотря на то что история развития средств передачи информации не стоит на месте, и от первобытных времен произошла невероятная эволюция, эти средства связи во многих странах и сферах жизни до сих пор не потеряли своего значения.

Первые способы хранения информации

Однако человечество волновали не только средства передачи информации. История ее хранения также восходит еще к началу времен. Примером этому служат наскальные рисунки в различных древних пещерах, ведь именно благодаря им можно судить о некоторых аспектах жизни людей в давние времена. Способы запоминания, записи и хранения информации развивались, и на смену рисункам в пещерах пришла клинопись, следом - иероглифы, и наконец письменность. Можно сказать, что с этого момента начинается история создания средств передачи информации в глобальном масштабе.

Изобретение письменности стало первой информационной революцией в истории человечества, ведь появилась возможность накапливать, распространять и передавать знания следующим поколениям. Письменность дала мощный толчок культурному и экономическому развитию тех цивилизаций, которые освоили ее раньше других. В XVI веке было изобретено книгопечатание, что стало новой волной информационной революции. Появилась возможность хранить информацию в больших объемах, и она стала доступнее, вследствие чего понятие «грамотность» стало более массовым. Это очень важный момент в истории общечеловеческой цивилизации, потому как книги становились достоянием не только одной страны, но и целого мира.

Почтовое сообщение

Почта как средство связи начала использоваться еще до изобретения письменности. Посланцы изначально передавали устные сообщения. Однако с появлением возможности написать сообщение этот вид связи стал еще более востребованным. Гонцы изначально были пешие, позднее - конные. В развитых древних цивилизациях была хорошо налаженная почтовая связь по принципу эстафеты. Первые почтовые службы возникли в Древнем Египте и Месопотамии. В основном они использовались в военных целях. Египетская почтовая система была одной из первых и высокоразвитых, именно египтяне впервые начали использовать почтовых голубей. В дальнейшем почта стала распространяться в другие цивилизации.

Передача информации

Передача информации - физический процесс, посредством которого осуществляется перемещение информации в пространстве. Записали информацию на диск и перенесли в другую комнату. Данный процесс характеризуется наличием следующих компонентов:

  • Источник информации.
  • Приёмник информации.
  • Носитель информации.
  • Среда передачи.

передача информации - заблаговременно организованное техническое мероприятие, результатом которого становится воспроизведение информации, имеющейся в одном месте, условно называемом "источником информации", в другом месте, условно называемом "приёмником информации". Данное мероприятие предполагает предсказуемый срок получения указанного результата.

"Информация" здесь понимается в техническом аспекте, как осмысленное множество символов, чисел, параметров абстрактных или физических объектов, без достаточного "объёма" которого не могут быть решены задачи управления, выживания, развлечения, совершения преступлений или денежных операций.

Для осуществления п.и. необходимо наличие, с одной стороны, так называемого "запоминающего устройства", или "носителя" , обладающего возможностью перемещения в пространстве и времени между "источником" и "приёмником". С другой стороны, необходимы заранее известные "источнику" и "приемнику" правила и способы нанесения и снятия информации с "носителя". С третьей стороны, "носитель" должен продолжать существовать как таковой к моменту прибытия в пункт назначения. (к моменту окончания снятия с него информации "приёмником")

В качестве "носителей" на современном этапе развития техники используются как вещественно-предметные, так и волново-полевые объекты физической природы. Носителями могут быть при определённых условиях и сами передаваемые "информационные" "объекты" (виртуальные носители).

П.и. в повседневной практике осуществляется по описанной схеме как "вручную", так и с помощью различных автоматов. Во множестве разновидностей технической реализации.

При построении систем п.и. "передаваться" может не только информация о физических объектах, но и информация о подготовленных к передаче носителях. Таким образом организуется иерархическая "среда передачи" с любой глубиной вложенности. (Не путать со средой распространения волновых носителей.)

См. также

Литература

  • Ричард Рид (Richard Read) Основы теории передачи информации = The Essence of Communication Theory (Essence of Engineering). - М .: «Вильямс», 2004. - С. 304. - ISBN 0-13-521022-4

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Передача информации" в других словарях:

    передача информации - Передача оцифрованной информации в соответствии с протоколом. [ГОСТ Р 41.13 2007] передача информации Процесс переноса информации (данных) от ее источника к потребителю. В общем виде его можно представить следующей схемой (рис. П.3). Эта схема… …

    Полезная функция спекуляции, состоящая в распространении информации в результате заключения публичных сделок на основе неизвестной информации. По английски: Transmission of information См. также: Биржевые спекулятивные операции Финансовый словарь … Финансовый словарь

    Передача информации - процесс переноса информации (данных) от ее источника к потребителю. В общем виде его можно представить следующей схемой (рис. П.3). Эта схема показывает, что для П.и. ее необходимо закодировать (см. Кодирование), т.е. превратить в …

    передача информации - 2.25 передача информации (data communication): Передача оцифрованной информации в соответствии с протоколом. Источник: ГОСТ Р 41.13 2007: Единообразные предписания, касающиеся транспортных средств категорий М, N и О в отношении торможения … Словарь-справочник терминов нормативно-технической документации

    передача информации - informacijos perdavimas statusas T sritis automatika atitikmenys: angl. information transfer; information transmission vok. Informationsübertragung, f rus. передача информации, f pranc. transmission d information, f … Automatikos terminų žodynas

    Передача информации, составляющей коммерческую тайну - (commercial secret information transfer) передача информации ее обладателем контрагенту на основании, в котором содержится условие о принятии контрагентом мер по охране ее конфиденциальности … Экономико-математический словарь

    передача информации, составляющей коммерческую тайну - Передача информации ее обладателем контрагенту на основании, в котором содержится условие о принятии контрагентом мер по охране ее конфиденциальности. Тематики экономика EN commercial secret information transfer … Справочник технического переводчика

    ПЕРЕДАЧА ИНФОРМАЦИИ СОСТАВЛЯЮЩЕЙ КОММЕРЧЕСКУЮ ТАЙНУ - ПЕРЕДАЧА ИНФОРМАЦИИ, СОСТАВЛЯЮЩЕЙ КОММЕРЧЕСКУЮ ТАЙНУ передача информации, составляющей коммерческую тайну и зафиксированной на материальном носителе, ее обладателем контрагенту на основании договора в объеме и на условиях, которые предусмотрены… … Юридическая энциклопедия

    Движение информации из одного подразделения в другое в пределах организации …

    Движение информации с верхних уровней организации на нижние … Словарь терминов антикризисного управления

Книги

  • Передача информации. Статистическая теория связи , Фано Р.М.. В книге известного американского ученого Р. Фано систематически излагаются основы теории информации; наряду с основополагающими результатами шенноновской теориикодирования приводится ряд…

Лк. 17.

Техника и технологии офисов услуг СКСиТ

Классификация средств оргтехники

Оргтехника - это технические средства, используемые для механизации и автоматизации управленческих и инженерно-технических работ. В широком смысле к оргтехнике можно отнести любое приспособление (прибор, устройство, инструмент), которое используется в офисе фирмы, начиная от ручек и карандашей и заканчивая компьютерами и сложной электронной оргтехникой.

Функционирование современного туристского предприятия непосредственно базируется на применении информационных технологий обработки информации и средствах оргтехники.

По назначению их можно разбить на следующие группы: средства коммуникации и связи; средства оргтехники; копировально-множительные средства; средства сбора, хранения и обработки документов, к которым прежде всего относятся компьютеры и вычислительные сети; сканеры; средства отображения информации; аппараты для уничтожения документов.

Способы передачи информации (средства коммуникации)

На современном этапе развития средства коммуникации и связи играют важную роль для обеспечения эффективного управления туристским бизнесом. Любая задержка информации может повлечь за собой очень серьезные негативные последствия как в финансовом отношении, так и в потере имиджа фирмы, что в конечном итоге может привести к краху любой организации. Это непосредственно относится и к предприятиям индустрии туризма и гостеприимства.

Передача информации может осуществляться вручную либо механически при помощи автоматизированных систем по различным каналам связи.

Первый способ передачи информации и до настоящего времени имеет широкое распространение. При этом информация передается либо при помощи курьера, либо по почте. К достоинствам этого способа можно отнести полную достоверность и конфиденциальность передаваемой информации, контроль за ее получением (при почтовой рассылке в пунктах регистрации прохождения), минимальные издержки, не требующие никаких капитальных затрат. Главными недостатками такого подхода являются невысокая скорость передачи информации и неоперативность в получении ответов.

Второй способ значительно увеличивает скорость передачи информации, повышает оперативность принятия решений, но при этом увеличиваются капитальные и текущие издержки. При грамотной организации производственного процесса на предприятии этот способ передачи информации в конечном итоге существенно повышает экономическую эффективность функционирования предприятия индустрии туризма и гостеприимства.

Для передачи информации необходимы: источник информации, потребитель информации, приемо-передающие устройства, между которыми могут существовать каналы связи.

Признак классификации Характеристики каналов связи
Физическая природа пере- даваемого сигнала Механические, акустические, оптические и электрические. В свою очередь, оптические и электрические каналы связи могут быть проводными (электрические провода, кабели, световоды) и беспроводными, использующие электромагнитные волны, распространяющиеся в эфире (радио- каналы, инфракрасные каналы и т. д.)
Способ передачи информации Симплексные передают информацию в одном направлении. Дуплексные передают информацию одновременно и в прямом, и обратном направлении. Полудуплексные осуществляют поперемен- ную передачу информации либо в прямом, либо в обратном направлении.
Форма представления передаваемой информации Аналоговые представляют информацию в непрерывной форме в виде непрерывного сигнала какой-либо физической природы. Цифровые представляют информацию в цифровой (прерывной - дискретной, импульсной) форме сигналов какой-либо физической природы.
Время существования Коммутируемые - временные, создаются только на время передачи информации. По окончании передачи информации и разъединении уничтожаются. Некоммутируемые - создаются на длительное время с определенными постоянными характеристиками. Их еще называют выде- ленными.
Скорость передачи информации Низкоскоростные (50-200 бит/с) 1 используются в телеграфных каналах связи. Среднескоростные (от 300-9600 бит/с) используются в телефонных (аналоговых) каналах связи. Новые стандарты могут использовать скорость от 14 - 56 кбит/с. Для передачи информации по низкоскоростным и среднескоростным каналам используются проводные линии связи (группы параллельных или скрученных проводов витая пара)2. Высокоскоростные (свыше 56 кбит/с) называют широкополосными. Для передачи информации используются специальные кабели: экранированные (Shielded Twisted Pair - STP)3 и неэкранированные (Unshi-elded Twisted Pair - UTP)4 с витыми парами из медных проводов; коаксиальные (Coaxial Cable - СС)5, оптоволоконные (Fiber Optic Cable - FOC)6, радиоканалы7

Для предприятий туриндустрии телефонная связь является самым распространенным и широко применяемым видом связи. Она используется не только для оперативного административного управления предприятиями, но и для ведения финансово-хозяйственной деятельности. Например, по телефону можно забронировать номер в гостинице, получить информацию об интересующем туриста маршруте или турпакете.

В зависимости от способа использования телефонную связь можно разделить на два вида:

общего пользования (городская, междугородная, международная);

офисную (внутренняя) связь, используемую в пределах одной организации.

Основными компонентами телефонной связи являются телефонная сеть и абонентские терминалы. Телефонная сеть состоит из автоматических телефонных станций (АТС), соединенных между собой каналами связи. Каждая АТС коммутирует, как правило, до 10 тыс. абонентов. Абонентские терминалы подключают к сети по абонентской линии. Как правило, это пара медных проводов. Каждая абонентская линия имеет свой персональный номер.

На рынке средств связи существует множество различных офисных АТС - от самых маленьких, которые устанавливаются в небольших офисах и даже в квартирах, до больших станций, которые используются на крупных предприятиях и в гостиницах. Основными достоинствами офисных АТС является то, что они, во-первых, осуществляют автоматическое подключение внутренних абонентов и, во-вторых, телефонная связь внутри фирмы осуществляется практически бесплатно. Кроме этого они выполняют множество полезных вспомогательных функций, к которым относятся:

организация телеконференций;

постановка абонента на ожидание при занятом канале и периодическое напоминание об этом;

автоматическая переадресация на другой телефон, а в «ночном режиме» на телефон дежурного;

составление списка абонентов для вызова в определенное время;

режим «не беспокоить»;

возможность временного запрета выхода на внешнюю линию для некоторых телефонов;

заказ времени для звонка-будильника;

включение громкоговорящей связи и т. п.

Компьютерной телефонией называется технология, в которой компьютер играет главную роль как в управлении телефонным соединением, так и в осуществлении приема и передачи телефонных звонков.

Использование компьютерной телефонии намного ускоряет процесс управления на предприятии, повышая его эффективность и качество при общем снижении совокупных затрат. Особенно это относится к предприятиям туриндустрии, для которых телефон является одним из необходимых инструментов функционирования. Современные компьютерные технологии позволяют значительно снизить затраты на междугородные, а тем более международные переговоры, без которых не обходится ни одно предприятие турбизнеса. Связь с партнерами осуществляется по компьютерным сетям, в частности по сети Интернет. Такая связь называется IP-телефония.

IP-телефония - это современная компьютерная технология передачи голосовых и факсимильных сообщений с использованием Интернета. Данная технология начинает бурно развиваться на российском рынке связи. Она позволяет осуществлять междугородную и международную голосовую связь, используя обычный телефонный аппарат или компьютер, подключенный к Интернету. Для туристских компаний, имеющих свою корпоративную сеть, IP-телефония позволяет значительно снизить издержки, связанные с телефонными переговорами.

Особыми видами телефонной связи являются: радиотелефонная связь и видеотелефонная связь.

Под радиотелефонной связью понимают беспроводные системы телефонной связи, которые не требуют проведения сложных инженерных работ по прокладке дорогостоящих телекоммуникаций и поддержке их в рабочем состоянии.

На современном этапе развития техники и технологии радиотелефонная связь становится альтернативой использования проводной телефонии и значительно повышает оперативность в принятии управленческих решений и общую эффективность функционирования предприятий туриндустрии.

Беспроводная система телефонной связи по сравнению с обычной проводной обладает следующими достоинствами:

меньшие капитальные затраты на ее создание;

возможность создания независимо от рельефа местности, природных условий и наличия соответствующей инфраструктуры;

меньший срок окупаемости системы;

меньшая трудоемкость работ по организации системы и на порядок более быстрыми темпами ввода в эксплуатацию;

обеспечивание надежной и оперативной связи с мобильными пользователями;

более широкие возможности по управлению системой и по защите информации.

Среди радиотелефонных систем можно выделить такие их разновидности, как: системы сотовой радиотелефонной связи; системы транкинговой радиотелефонной связи; телефоны с радиотрубкой; телефонные радиоудлинители; системы персональной спутниковой радиосвязи.

Появление сотовой связи было связано с необходимостью создания широкой сети подвижной радиотелефонной связи в условиях достаточно жесткого ограничения на доступные полосы частот. Впервые идея сотовой связи была предложена в декабре 1971 г. компанией Bell System в США. Однако ее появлению предшествовал большой временной период, в течение которого осваивались различные частотные диапазоны, совершенствовались различные технологии и техника связи.

В настоящий момент сотовая связь используется более чем в 140 странах мира на всех континентах земного шара. Россия тоже вошла в число стран, использующих сотовую связь. В России сотовая связь начала внедряться с 1990 г., ас 1991 г. началось ее коммерческое использование.

Транкинговая связь - наиболее оперативный вид двухсторонней мобильной связи. Она является наиболее эффективной для координации мобильных групп абонентов.

Транкинговые системы связи, как правило, используются корпоративными организациями или группой пользователей, объединившихся по организационному признаку или просто «по интересам». Передача информации (трафик) осуществляется, как правило, только внутри транкинговой системы, и выход абонентов во внешние телефонные сети хотя и предусмотрен, но используется в исключительных случаях.

Система транкинговой связи (от англ. trunk - ствол) состоит из базовой станции и абонентских радиостанций - транковые радиотелефоны с телескопическими антеннами. Иногда используют несколько станций с ретрансляторами. Базовая станция соединяется с телефонной линией и ретранслятором большого радиуса действия (50 -100 км). Абонентские радиостанции - транковые радиотелефоны могут быть трех видов:

носимые - масса таких станций бывает порядка 300 - 500 г при радиусе действия 20 - 35 км;

возимые - масса около килограмма и радиусом действия 35 - 70 км;

стационарные - масса более килограмма и радиус действия 50-120 км.

Транковые радиотелефоны могут осуществлять связь как через базовую станцию, находясь в зоне ее действия, так и непосредственно напрямую связываться друг с другом, находясь как в зоне действия базовой станции, так и вне зоны. Этим определяются основное достоинство и принципиальное отличие транкинговой системы от сотовой системы связи.

Телефоны с радиотрубкой отличаются от обычных телефонных аппаратов только тем, что связь между трубкой и базой осуществляется не по проводу, а по радиолинии. Для этого и в трубке, и в телефонном аппарате установлены маломощные приемо-передающие радиоустройства. Такое техническое решение значительно повышает комфортность использования телефона как на работе, так и в домашних условиях. Дальность действия зависит как от модели телефона, так и от окружения, в котором им пользуются. Она может быть от нескольких метров до нескольких километров. Некоторые технические решения позволяют осуществлять связь между радиотрубкой и базой, а при отсутствующей радиотрубке принимать входящие звонки через громкоговорящие обратимые динамики, встроенные в базу.

Персональная спутниковая радиосвязь основана на применении системы спутниковой телекоммуникации - комплексов космических ретрансляторов и абонентских радиотерминалов. Данная технология позволяет обеспечить персональную радиосвязь с абонентом, находящимся в любой точке планеты.

Пейджинговые системы связи являются одной из разновидностей персональной радиосвязи. Основным недостатком данной системы является то, что она позволяет осуществлять только одностороннюю связь, что значительно снижает надежность данной связи и отрицательно влияет на ее оперативность. Но поскольку стоимость данной связи является невысокой, то в настоящее время она очень распространена и широко используется для передачи информации.

Пейджинговая система состоит из терминала, на который поступает вся входящая информация и миниатюрного УКВ приемника (пейджера), который находится у абонента. Терминал состоит из приемо-передающего устройства, контроллера, ретранслятора, пульта управления и антенны. Каждый абонент имеет свой персональный телефонный номер.

Видеосвязь является одной из самых прогрессивных и перспективных связей, которая в настоящий момент начинает проникать и на российский рынок связи. Основным достоинством видеосвязи считается возможность видеть своего собеседника на экране. В процессе обсуждения различных вопросов по видеосвязи можно использовать изображение необходимых рисунков и схем, демонстрировать различные изделия. При этом можно видеть реакцию собеседника, его глаза, что при ведении деловых бесед весьма актуально.

Видеосвязь является синонимом термина видеоконференция или мультимедиасвязь. Видеоконференция не просто видеотелефон на персональном компьютере, а компьютерная технология, которая позволяет людям видеть и слышать друг друга, обмениваться данными и совместно их обрабатывать в интерактивном режиме.

Видеоконференции классифицируются по числу связей, поддерживаемых одновременно с каждым ПК. Например, настольные (точка-с-точкой) видеоконференции предназначены для организации связи между двумя, групповые (многоточечные) видеоконференции предполагают общение одной группы пользователей с другой группой, а студийные (точка-со-многими) предназначены для передачи видеоизображений из одной точки во многие (выступление перед аудиторией слушателей). Естественно, при организации различных видов видеосвязи предъявляются и различные требования к линиям связи.

Факс - это устройство факсимильной передачи изображения по телефонной сети. Название факс произошло от слова «факсимиле» (лат../ас simile - сделай подобное), означающее точное воспроизведение графического оригинала (подписи, документа и т.д.) средствами печати. Модем, который может передавать и получать данные, как факс, называется факс-модемом. Передача изображений по телефонным каналам называется факсимильной службой. Для обеспечения факсимильной передачи необходим факсовый аппарат или компьютер, снабженный факс-модемом.

В процессе факсимильной передачи в точке возникновения (источнике информации) осуществляются ее считывание, кодирование и отправка, а на принимающем устройстве - прием, декодирование (расшифровка) и вывод информации.

Считывание информации происходит полинейно. При этом обеспечивается достаточно качественная пересылка машинописного текста или черно-белого изображения невысокой четкости.


Похожая информация.


В современном мире системы связи играют важную роль в развитие нашего мира. Каналы передачи информации буквально опутывают нашу планету, связывая различные информационные сети в единую глобальную сеть Интернет. Дивный мир современных технологий включает в себя передовые открытия науки и техники, не редко связанные также с удивительными возможностями квантового мира. Можно с уверенностью сказать, что на сегодняшний день квантовые технологии прочно вошли в нашу жизнь. Любая мобильная техника в наших карманах оснащена микросхемой памяти, работающая с использованием квантового туннелирования заряда. Подобное техническое решение позволило инженерами компании Toshiba построить 1984 году транзистор с плавающим затвором, ставшим основой для построения современных микросхем памяти. Мы каждый день пользуемся подобными устройствами, не задумываясь, на чем основана их работа. И пока физики ломают голову пытаясь объяснить парадоксы квантовой механики, технологическое развитие берет на вооружение удивительные возможности квантового мира.

В данной статье мы рассмотрим интерференцию света, и разберем способы построения канала связи для мгновенной передачи информации с применением квантовых технологий. Хотя многие полагают, что невозможно передавать информацию быстрее скорости света, при правильном подходе даже такая задача становится решаемой. Думаю, вы сами сможете в этом убедиться.

Введение

Наверняка многие знают о явлении под названием интерференция. Пучок света направляется на непрозрачную ширму с двумя параллельными прорезями, позади которого устанавливается проекционный экран. Особенность прорезей в том, что их ширина приблизительно равна длине волны излучаемого света. На проекционном экране получается целый ряд чередующихся интерференционных полос. Этот опыт, впервые проведенный Томасом Юнгом, демонстрирует интерференцию света, ставший экспериментальным доказательством волновой теории света в начале XIX века.


Логично предположить, что фотоны должны проходить сквозь щели, создавая две параллельные полосы света на заднем экране. Но вместо этого на экране образуется множество полос, в которых чередуются участки света и темноты. Дело в том, что когда свет ведет себя как волна, каждая прорезь является источником вторичных волн. В местах, где вторичные волны достигают экран в одной фазе, их амплитуды складываются, что создает максимум яркости. А там, где волны оказываются в противофазе - их амплитуды компенсируются, что создает минимум яркости. Периодическое изменение яркости при наложении вторичных волн создает на экране интерференционные полосы.

Но почему же свет ведет себя как волна? В начале, ученые предположили, что возможно фотоны сталкиваются между собой и решили выпускать их поодиночке. В течение часа на экране вновь образовалась интерференционная картина. Попытки объяснить данное явление привели к предположению, что фотон разделяется, проходит через обе щели, и сталкиваясь сам собой образует интерференционную картину на экране.

Любопытство ученых не давало покоя. Они хотели знать, через какую щель фотон проходит по настоящему, и решили пронаблюдать. Для раскрытия этой тайны перед каждой щелью поставили детекторы, фиксирующей прохождение фотона. В ходе эксперимента выяснилось, что фотон проходит только через одну щель, либо через первую, либо через вторую. В результате на экране образовались две параллельные полосы света, без единого намека на интерференцию. Наблюдение за фотонами разрушило волновую функцию света, и фотоны начали вести себя как частицы! Пока фотоны находятся в квантовой неопределенности, они распространяются как волны. Но когда за ними наблюдают, фотоны теряют волновую функцию и начинают вести себя как частицы.

Далее опыт повторили еще раз, с включенными детекторами, но без записи данных о траектории движения фотонов. Несмотря на то, что опыт полностью повторяет предыдущий, за исключением возможности получения информации, через некоторое время на экране вновь образовалась интерференционная картина из светлых и темных полос.

Получается, что влияние оказывает не любое наблюдение, а только такое, при котором можно получить информацию о траектории движения фотонов. И это подтверждает следующий эксперимент, когда траектория движения фотонов отслеживается не с помощью детекторов установленных перед каждой щелью, а с помощью дополнительных ловушек, по которым можно восстановить траекторию движения не оказывая взаимодействия к исходным фотонам.

Квантовый ластик

Начнем с самой простой схемы (это именно схематичное изображение эксперимента, а не реальная схема установки).


Отправим лазерный луч на полупрозрачное зеркало (ПП) . Обычно такое зеркало отражает половину падающего на него света, а другая половина проходит насквозь. Но фотоны, будучи в состоянии квантовой неопределенности, попадая на полупрозрачное зеркало, выбирают оба направления одновременно. Затем, каждый луч отражаясь зеркалами (1) и (2) попадает на экран, где наблюдаем интерференционные полосы. Все просто и ясно: фотоны ведут себя как волны.


Теперь попытаемся понять, по какому же именно пути прошли фотоны – по верхнему или по нижнему. Для этого на каждом пути поставим даун–конверторы (ДК) . Даун–конвертор – это прибор, который при попадании в него одного фотона рождает 2 фотона на выходе (каждая с половиной энергии), один из которых попадает на экран (сигнальный фотон ), а второй попадает в детектор (3) или (4) (холостой фотон ). Получив данные с детекторов мы будем знать, по какому пути прошел каждый фотон. В этом случае интерференционная картина исчезает, ведь мы узнали, где именно прошли фотоны, а значит, разрушили квантовую неопределенность.


Далее мы немного усложним эксперимент. Поставим на пути каждого «холостого» фотона отражающие зеркала и направим их на второе полупрозрачное зеркало (слева от источника на схеме). Прохождение второго полупрозрачного зеркала стирает информацию о траектории холостых фотонов и восстанавливает интерференцию (согласно схеме интерферометра Маха Цендера). Не зависимо от того, какой из детекторов сработает, мы не сможем узнать по какому пути прошли фотоны. Этой замысловатой схемой мы стираем информацию о выборе пути и восстанавливаем квантовую неопределенность. В результате на экране будет отображаться интерференционная картина.

Если мы решим выдвинуть зеркала, то «холостые » фотоны вновь попадут на детекторы (3) и (4) , и как мы знаем, на экране интерференционная картина исчезнет. Это означает, что меняя положение зеркал, мы можем менять отображаемую картину на экране. Значит, можно воспользоваться этим для кодирования двоичной информации.


Можно немного упростить эксперимент и получить тот же результат, двигая полупрозрачное зеркало на пути «холостых» фотонов:


Как мы видим, «холостые» фотоны преодолевают больше расстояния, чем их партнеры, которые попадают на экран. Логично предположить, если изображение на экране формируется раньше, то полученная картина не должна соответствовать тому, определяем ли мы траекторию фотонов или стираем эту информацию. Но практические опыты показывают обратное – не зависимо от расстояния, изображение на экране всегда соответствует выполненным действиям с холостыми фотонами. Согласно информации из википедии :
Основной результат эксперимента заключается в том, что не имеет значения, был процесс стирания выполнен до или после того, как фотоны достигли экрана детектора.
Подобный опыт также описывается в книге Брайана Грина «Ткань космоса и пространство» . Это кажется невероятным, меняющим причинно-следственные связи. Попробуем разобраться что к чему.

Немного теории

Если посмотрим специальную теорию относительности Эйнштейна по мере увеличения скорости происходит замедление времени, согласно формуле:

где r – длительность времени, v – относительная скорость движения объекта.

Скорость света является предельной величиной, поэтому для самих частиц света (фотонов) время замедляется до нуля. Правильнее сказать для фотонов не существует времени, для них существует только текущий момент, в котором они пребывают в любой точке своей траектории. Это может казаться странным, ведь мы привыкли полагать, что свет от далеких звезд достигает нас спустя миллионы лет. Но с ИСО частиц света, фотоны достигают наблюдателя в тот же момент времени, как только они излучаются далекими звездами.

Дело в том, что настоящее время для неподвижных объектов и движущихся объектов может не совпадать. Чтобы представить время, необходимо рассмотреть пространство-время в виде непрерывного блока растянутого во времени. Срезы, формирующие блок, являются моментами настоящего времени для наблюдателя. Каждый срез представляет пространство в один момент времени с его точки зрения. Этот момент включает в себя все точки пространства и все события во вселенной, которые представляются для наблюдателя как происходящее одновременно.


В зависимости от скорости движения, срез настоящего времени будет делить пространство-время под разными углами. По направлению движению, срез настоящего времени смещается в будущее. В противоположном направлении, срез настоящего времени смещается в прошлое.


Чем больше скорость движения, тем больше угол среза. При скорости света срез настоящего времени имеет максимальный угол смещения 45°, при котором время останавливается и фотоны пребывают в одном моменте времени в любой точке своей траектории.

Возникает резонный вопрос, каким образом фотон может одновременно находится в разных точках пространства? Попробуем разобраться, что же происходит с пространством на скорости света. Как известно, по мере увеличения скорости наблюдается эффект релятивистского сокращения длины, согласно формуле:

Где l – это длина, а v – относительная скорость движения объекта.

Не трудно заметить, что на скорости света любая длина в пространстве будет сжато до нулевого размера. Значит, по направлению движения фотонов, пространство сжимается в маленькую точку планковских размеров, при котором исчезает само понятие о пространстве-времени. Можно сказать для фотонов не существует пространства, так как вся их траектория в пространстве с ИСО фотонов находится в одной точке.

Итак, теперь мы знаем, что не зависимо от пройденного расстояния сигнальные и холостые фотоны одновременно достигают экрана и детекторов, так как с точки зрения фотонов не существует ни времени ни пространства. Учитывая квантовую сцепленность сигнальных и холостых фотонов, любое воздействие на один фотон будет моментально отражается на состоянии его партнера. Соответственно, картина на экране всегда должна соответствовать тому, определяем ли мы траекторию фотонов, либо стираем эту информацию. Это дает потенциальную возможность моментальной передачи информации. Стоит только учесть, что наблюдатель не движется со скоростью света, и поэтому картину на экране необходимо анализировать после того, как холостые фотоны достигнут детекторов.

Практическая реализация

Оставим теорию теоретикам и вернемся к практической части нашего эксперимента. Чтобы получить картину на экране потребуется включить источник света и направить поток фотонов на экран. Кодирование информации будет происходить на удаленном объекте, движением полупрозрачного зеркала на пути холостых фотонов. Предполагается, что передающее устройство будет кодировать информацию с равными интервалами времени, например, передавать каждый бит данных за сотую долю секунды.


В качестве экрана можно использовать чувствительную цифровую матрицу, чтобы напрямую записывать чередующиеся изменения. Затем записанную информацию необходимо отложить до момента, пока холостые фотоны достигнут своего местоназначения. После этого можно начать поочередно анализировать записанную информацию, чтобы получить передаваемую информацию. Для примера, если кодирующее устройство находится на Марсе, то анализ информации необходимо начинать с опозданием на десять-двадцать минут (ровно на столько, сколько требуется свету, чтобы достичь красную планету). Несмотря на то, что анализ информации производится с отставанием в десятки минут, полученная информация будет соответствовать тому, что передается с Марса в текущий момент времени. Соответственно, вместе с приемным устройством придется устанавливать лазерный дальномер, чтобы точно определить интервал времени, с которого нужно начинать анализировать передаваемую информацию.

Необходимо также учесть, что окружающая среда оказывает негативное влияние на передаваемую информацию. При прохождении фотонов через воздушное пространство происходит процесс декогеренции, увеличивая помеху в передаваемом сигнале. Чтобы максимально исключить влияние окружающей среды можно передавать сигналы в безвоздушном космическом пространстве, используя для этого спутники связи.

Организовав двухстороннюю связь, в перспективе можно построить каналы связи для моментальной передачи информации на любую дальность, до которых смогут добраться наши космические аппараты. Такие каналы связи будут просто необходимы, если потребуется оперативный доступ к сети интернет за пределами нашей планеты.

P.S. Остался один вопрос, которую мы постарались обойти стороной: а что случится, если мы посмотрим на экран до того, как холостые фотоны достигнут детекторов? Теоретически (с точки зрения теории относительности Эйнштейна), мы должны увидеть события будущего. Более того, если отразить холостые фотоны от далеко расположенного зеркала и вернуть их назад, мы могли бы узнать собственное будущее. Но в реальности, наш мир куда более загадочнее, поэтому, трудно дать правильный ответ без проведения практических опытов. Возможно, мы увидим наиболее вероятный вариант будущего. Но как только мы получим эту информацию, будущее может измениться и возникнуть альтернативная ветка развития событий (согласно гипотезе многомировой интерпретации Эверетта). А возможно мы увидим смесь из интерференции и двух полос (если картина будет составлена из всех возможных вариантов будущего).

Каждый человек постоянно сталкивается с информацией, притом так часто, что смысл самого понятия объяснить может не каждый. Информация - это сведения, которые передаются от одного лица другому при помощи различных средств связи.

Существуют различные способы передачи данных, о которых речь пойдет далее.

Каким образом передается информация

В процессе развития человечества происходит постоянное совершенствование механизмов, при помощи которых передаются сведения. Способы хранения и передачи информации довольно разнообразны, поскольку существует несколько систем, в которых происходит обмен данных.

В системе передачи данных различают 3 направления: это передача от человека к человеку, от человека к компьютеру и от компьютера к компьютеру.

  • Первоначально сведения получают при помощи органов чувств - зрения, слуха, обоняния, вкуса и осязания. Для передачи информации на ближнем расстоянии существует язык, который позволяет сообщить полученные сведения другому человеку. Кроме того, передать что-либо другому человеку можно, написав письмо либо в процессе спектакля, а также при разговоре по телефону. Несмотря на то, что в последнем примере используется средство связи, то есть промежуточное устройство, оно позволяет передать сведения в непосредственном контакте.
  • Для передачи данных от человека к компьютеру необходимо введение ее в память устройства. Информация может иметь разный вид, о чем будет идти разговор далее.
  • Передача от компьютера к компьютеру происходит посредством промежуточных устройств (флеш-карты, интернета, диска и т. д.).

Обработка информации

После получения необходимых сведений возникает необходимость их хранения и передачи. Способы передачи и обработки информации наглядно представляют этапы развития человечества.

  • В начале своего развития обработка данных представляла собой перенесение их на бумагу при помощи чернил, пера, ручки т. д. Однако недостаток такого способа обработки заключался в ненадежности хранения. Если упоминать способы хранения и передачи информации, хранение на бумаге имеет определенный срок, который определяется сроком службы бумаги, а также условиями ее эксплуатации.
  • Следующим этапом является механическая информационная технология, при которой используется печатная машинка, телефон, диктофон.
  • Далее на смену механической системе обработки сведений пришла электрическая, ведь способы передачи информации постоянно совершенствуются. К таким средствам относят электрические пишущие машинки, портативные диктофоны, копировальные машинки.

Виды информации

Виды и способы передачи информации отличаются в зависимости от ее содержания. Это могут быть текстовые сведения, представляемые в устной и письменной форме, а также символьные, музыкальные и графические. К современным видам данных относят также видеоинформацию.

С каждой из этих форм хранения информации человек имеет дело каждый день.

Средства передачи информации

Средства передачи информации могут быть устными и письменными.

  • К устным средствам относят выступления, собрания, презентации, доклады. При использовании этого метода можно рассчитывать на быструю реакцию оппонента. Использование дополнительных невербальных средств в процессе разговора способно усилить эффект от речи. К таким средствам относят мимику, жесты. Однако в то же время информация, получаемая в устном виде, не имеет долгосрочного действия.
  • Письменные средства информации - это статьи, отчеты, письма, записки, распечатки и т. д. При этом не приходится рассчитывать на быструю реакцию публики. Однако преимуществом является то, что полученную информацию можно перечитать, усвоив тем самым информацию.

Способы представления информации

Как известно, информация может быть представлена в нескольких формах, что, однако, не меняет ее содержания. Например, дом можно представить как слово или графическое отображение.

Способы представления и передачи информации можно изобразить в виде следующего списка:

  • Текстовая информация. Позволяет наиболее полно предоставить информацию, однако может содержать большой объем данных, что способствует плохому ее усвоению.
  • Графическое изображение - это график, схема, диаграмма, гистограмма, кластер и т. д. Они позволяют кратко представить информацию, установить логические связи, причинно-следственные отношения. Кроме того, информация в графическом виде позволяет найти решения различных вопросов.
  • Презентация является красочным наглядным примером способа представления информации. В ней могут сочетаться как текстовые данные, так и графическое их отображение, то есть различные виды представления информации.

Понятие о коммуникации

Коммуникацией называют систему взаимодействия между несколькими объектами. В обобщенном смысле это и есть передача информации от одного объекта другому. Коммуникации являются залогом успешной деятельности организации.

Способы передачи информации (коммуникации) выполняют следующие функции: организационную, интерактивную, экспрессивную, побудительную, перцептивную.

Организационная функция обеспечивает между сотрудниками систему отношений; интерактивная позволяет формировать настроение окружающих; экспрессивная окрашивает настроение окружающих; побудительная призывает к действию; перцептивная позволяет различным собеседникам понимать друг друга.

Современные способы передачи информации

К наиболее современным способам передачи информации относят следующие.

В интернете содержится огромное количество информации. Это позволяет черпать для себя массу знаний, не утруждаясь изучением книг и других бумажных источников. Однако, помимо этого, он содержит способы и средства передачи информации, аналогичные исторически более давним моделям. Это аналог традиционной почты - электронная почта, или e-mail. Удобство использования этого вида почты заключается в скорости передачи письма, исключении этапности доставки. На сегодняшний день практически каждый имеет электронный адрес, и связь со многими организациями поддерживается именно посредством этого способа передачи информации.

GSM-стандарт цифровой сотовой связи, который широко применяется повсеместно. При этом происходит кодирование устной речи и передача ее через преобразователь другому абоненту. Вся необходимая информация размещается в sim-карте, которая вставляется в мобильное устройство. На сегодняшний день наличие данного средства связи является необходимостью в качестве средства коммуникации.

WAP позволяет просматривать на экране мобильного телефона web-страницы с информацией в любом ее виде: текстовом, числовом, символьном, графическом. Изображение на экране может быть адаптировано под экран мобильного телефона либо иметь вид, аналогичный компьютерному изображению.

Способы передачи информации современного типа включают также GPRS, который позволяет осуществлять пакетную передачу данных на мобильное устройство. Благодаря этому средству связи возможно беспрерывное использование пакетными данными одновременно большим количеством человек одновременно. Среди свойств GPRS можно назвать высокую скорость передачи данных, оплату только за переданную информацию, большие возможности использования, параметры совместимости с другими сетями.

Интернет посредством использования модема позволяет получить высокую скорость передачи информации при низкой стоимости такого доступа. Большое количество интернет-провайдеров создает высокий уровень конкуренции между ними.

Спутниковая связь позволяет получить доступ в интернет посредством спутника. Преимуществом такого способа является низкая стоимость, высокая скорость передачи данных, однако среди недостатков есть ощутимый - это зависимость сигнала от погодных условий.

Возможности использования средств передачи информации

По мере появления новых средств передачи информации возникают возможности нетрадиционного использования различных устройств. Например, возможность видеоконференции и видеозвонка вызвала идею использовать оптические устройства в медицине. Таким образом происходит получение информации о патологическом органе при непосредственном наблюдении во время операции. При использовании такого способа получения информации нет необходимости делать большой разрез, проведение операции возможно при минимальном повреждении кожи.