Как называется модель взаимодействия открытых систем. Базовая эталонная модель взаимодействия открытых систем. Архитектура взаимодействия открытых систем

Основной задачей, решаемой при создании компьютерных сетей, является обеспечение совместимости оборудования по электрическим и механическим характеристикам и обеспечение совместимости информационного обеспечения (программ и данных) по системе кодирования и формату данных. Решение этой задачи относится к области стандартизации. Одним из примеров решения данной задачи является так называемая модель взаимосвязи открытых систем OSI (Model of Open System Interconnections).

Согласно модели OSI архитектуру компьютерных сетей следует рассматривать на разных уровнях (общее число уровней - до семи). Самый верхний уровень - прикладной. На этом уровне пользователь взаимодействует с вычислительной системой. Caмый нижний уровень - физический. Он обеспечивает обмен сигналами между устройствами. Обмен данными в системах связи происходит путем их перемещения с верхнего уровня на нижний, затем транспортировки и, наконец, обратным воспроизведением на компьютере клиента в результате перемещения с нижнего уровня на верхний.

Уровни модели OSI (в направлении снизу вверх) и их общие функции можно рассмотреть следующим образом:

Рассмотрим, как в модели SI происходит обмен данными между пользователями, находящимися на разных континентах.

1. На прикладном уровне с помощью специальных приложений пользователь создает документ (сообщение, рисунок и т. п.).

2. На уровне представления операционная система его компьютера фиксирует, где находятся созданные данные (в оперативной памяти, в файле на жестком диске и т. п.), и обеспечивает взаимодействие со следующим уровнем.

3. На сеансовом уровне компьютер пользователя взаимодействует с локальной или глобальной сетью. Протоколы этого уровня проверяют права пользователя на «выход в эфир» и передают документ к протоколам транспортного уровня.

4. На транспортном уровне документ преобразуется в ту форму, в которой положено передавать данные в используемой сети. Например, он может нарезаться на небольшие пакеты стандартного размера.

5. Сетевой уровень определяет маршрут движения данных в сети. Так, например если на транспортном уровне данные были «нарезаны» на пакеты, то на сетевом уровне каждый пакет должен получить адрес, по которому он должен быть доставлен независимо от прочих пакетов.

6. Уровень соединения (Канальный уровень) необходим для того, чтобы промодулировать сигналы, циркулирующие на физическом уровне, в соответствии с данными, полученным с сетевого уровня. Например в компьютере эти функции выполняет сетевая карта или модем.

7. Реальная передача данных происходит на физическом уровне. Здесь нет ни документов, ни пакетов, ни даже байтов - только биты, то есть, элементарные единицы представления данных. Восстановление документа из них произойдет постепенно, при переходе с нижнего на верхний уровень на компьютер клиента.


Средства физического уровня лежат за пределами компьютера. В локальных сетях это оборудование самой сети. При удаленной связи с использованием телефонных модемов это линии телефонной связи, коммутационное оборудование телефонных станций и т. п.

На компьютере получателя информации происходит обратный процесс преобразования данных от битовых сигналов до документа.

Разные уровни протоколов сервера и клиента не взаимодействуют друг с другом напрямую, но они взаимодействуют через физический уровень. Постепенно переходя с верхнего уровня на нижний, данные непрерывно преобразуются, «обрастают» дополнительными данными, которые анализируются протоколами соответствующих уровней на сопредельной стороне. Это создает эффект виртуального взаимодействия уровней между собой.

Для иллюстрации сказанного рассмотрим простой пример взаимодействия двух корреспондентов с помощью обычной почты. Если они регулярно отправляют друг другу письма и, соответственно, получают их, то они могут полагать, что между ними существует соединение на пользовательском (прикладном уровне). Однако это не совсем так. Такое соединение можно назвать виртуальным. Оно было бы физическим, если бы каждый из корреспондентов лично относил другому письмо и вручал в собственные руки. В реальной жизни он бросает его в почтовый ящик и ждет ответа.

Сбором писем из общественных почтовых ящиков и доставкой корреспонденции в личные почтовые ящики занимаются местные почтовые службы. Это другой уровень модели связи, лежащий ниже. Для того чтобы наше письмо достигло адресата в другом городе, должна существовать связь между нашей местной почтовой службой и его местной почтовой службой. Однако никакой физической связью эти службы не обладают - поступившую почтовую корреспонденцию они только сортируют и передают на уровень федеральной почтовой службы.

Федеральная почтовая служба в своей работе опирается на службы очередного уровня, например на почтово-багажную службу железнодорожного ведомства. И только рассмотрев работу этой службы, мы найдем, наконец, признаки физического соединения, например железнодорожный путь, связывающий два города.

Важно обратить внимание на то, что в нашем примере образовалось несколько виртуальных соединений между аналогичными службами, находящимися в пунктах отправки и приема. Не вступая в прямой контакт, эти службы взаимодействуют между собой. На каком-то уровне письма укладываются в мешки, мешки пломбируют, к ним прикладывают сопроводительные документы, которые где-то в другом городе изучаются и проверяются на аналогичном уровне.

Ниже в таблице приводится аналогия между уровнями модели OSI и операциями служб пересылки обычной почты.

Модель взаимодействия открытых систем

Передача и обработка данных в разветвленной сети является СЛОЖ-НЫМ, ИСПОЛЬЗУЮЩИМ многочисленную и разнообразную аппаратуру процессом, требующим формализации и стандартизации следующих процедур:

управление и контроль ресурсом компьютеров и системы теле- коммуникаций;

установление и разъединение соединения;

контроль соединений;

маршрутизация, согласование, преобразование и передача данных;

КОНТРОЛЬ правильности передачи;

исправление ошибок и т. д.

Необходимо применение стандартизированных протоколов и для обеспечения понимания сетями друг друга при их взаимодействии. Указанные выше задачи решаются с помощью применения системы протоколов и стандартов, которые определяют процедуры взаимодей- ствия элементов сети при установлении связи и передаче данных.

Протокол представляет собой набор правил и методом взаимодей- ствия объектов вычислительной сети, регламентирующий основные процедуры, алгоритмы и форматы взаимодействия, обеспечивающие корректность согласования, преобразования и передачи данных в сети. Выполнением протокольных процедур управляют специальные про- граммы, реже аппаратные средства.

Международной организацией по стандартизации (ISO - Interna - tional Organisation for Standardization ) разработана система стандартн ых протоколов модель взаимодействия открытых систем (Open System Interconnection - OSI ), которую также называют эталонной семиуровневой моделью открытых систем.

Открытая система - система, доступная для взаимодействия с дру- гими системами в соответствии с разработанными стандартами.

Модель OSI содержит общие рекомендации для построения стан- дартов совместимых сетевых программных продуктом и служит осно- вой для разработчиков совместимого сетевого оборудования. Эти ре- комендации должны быть реализованы как в технических, так и в программных средствах вычислительных сетей. Для обеспечения упо- рядочения функций управления и протоколов вычислительной сети вводятся функциональные уровни. В общем случае сеть включает семь функциональных уровней.

Условно уровни приложения и представления данных можно от- нести к функциям взаимодействия с приложением, а более низкие уровни - к функциям связи.

Прикладной уровень регламентирует процесс управления термина- лами сети и прикладными процессами, которые являются источника- ми и потребителями информации, передаваемой в сети. Отвечает за запуск программ пользователя, их выполнение, ввод-вывод данных, управление терминалами, административное управление сетью. На данном уровне применяются технологии, являющиеся надстройкой над инфраструктурой передачи данных: электронной почты, теле- и видеоконференций, удаленного доступа к ресурсам, работы в Интер- нете.

Уровень представления интерпретирует и преобразовывает данные, передаваемые в сети, в вид, удобный для прикладных процессов.

Согласует форматы представления данных, синтаксис, трансляцию и интерпретацию программ с разных языков. Многие функции этого уровня задействованы на прикладном уровне, поэтому предоставля- емые им протоколы не получили развития и во многих сетях практи- чески не используются.

Сеансовый уровень обеспечение организации и проведения сеан- сов связи между прикладными процессами, такими как инициализа- ция и поддержание сеанса между абонентами сети, управление оче- редностью и режимами передачи данных. Многие функции этого уровня в части установления соединения и поддержания упорядочен-ного обмена данными реализуются на транспортном уровне, поэтому протоколы сеансового уровня имеют ограниченное применение.

Транспортный уровень - отвечает за управление сегментировани- ем данных (сегмент - блок данных транспортного уровня) и СКВОЗНОЙ передачей (транспортировкой) данных от источника к потребителю. На данном уровне оптимизируется использование услуг, предостав- ляемых на сетевом уровне, в части обеспечения максимальной пропуск- ной способности при минимальных затратах. Протоколы транспортно- го уровня (сегментирующие и дейтаграммные) развиты очень широко и интенсивно используются на практике. Сегментирующие протоко- лы разбивают исходное сообщение на блоки данных - сегменты. Ос- новной функцией таких протоколов транспортного уровня является обеспечение доставки этих сегментов до объекта назначения и восста-новление сообщения. Дейтаграммные протоколы не сегментируют со общение и отправляют его одним куском, который называется «дей-таграмма».

Сетевой уровень . Назначением данного уровня является управление логическим каналом передачи данных в сети (адресация и маршрути-зация данных, коммутация каналов, сообщений, пакетов и мульти-плексирование). На данном уровне реализуется главная телекомму-никационная функция сетей, заключающаяся в обеспечении связи ее пользователей. Каждый пользователь сети обязательно использует протоколы этого уровня и имеет свой уникальный сетевой адрес, ис-пользуемый протоколами сетевого уровня. На ЭТОМ уровне передава-емые данные разбиваются на пакеты. Для того чтобы пакет был доставлен до какого-либо хоста, этому хосту должен быть поставлен в соответ-ствие известный передатчику сетевой адрес.

Канальный уровень . Формирование и управление физическим ка-налом передачи данных между объектами сетевого уровня, обеспече-ние прозрачности физических соединений, контроля и исправления ошибок передачи.

Физический уровень отвечает за установление, поддержание и рас-торжение соединений с физическим каналом сети. На данном уровне определяются набор сигналов, которыми обмениваются системы, па-раметры этих сигналов временные, электрические - и последова-тельность формирования этих сигналов при выполнении процедуры передачи данных.

Несколько странным может показаться введение отдельного параграфа в конце второго тома для обсуждения неоднократно упоминавшейся ранее модели взаимодействия открытых систем OSI. Но, во-первых, автор давно обещал это сделать, во-вторых, этого требует специфика рассматриваемого в данной главе прото­кола Х.25, а в-третьих, книга подходит к концу, и другого случая может и не быть.

Многоуровневый комплект протоколов, известный как мо­дель взаимодействия открытых систем (OSI - Open Systems Inter­connection), разработан в 1984 году Международной организацией по стандартизации ISO совместно с Сектором стандартизации электросвязи 1TU-T, называвшимся в те времена Международным консультативным комитетом по телеграфии и телефонии (МККТТ), для обеспечения обмена данными между компьютер­ными сетями. Структура модели OSI представлена на рис. 9.1.

Применительно к системам электросвязи модель OSI служит для того, чтобы четко определить структуру множества функций, поддерживающих информационный обмен между пользователя­ми услугами системы электросвязи, которая, в общем случае, со­держит в себе сеть связи. Подход, использованный в модели OSI, предусматривает разделение этих функций на семь «слоев» (layers) или «уровней», расположенных один над другим. С точки зрения любого уровня все нижележащие уровни предоставляют ему «ус­лугу транспортировки информации», имеющую определенные ха­рактеристики. То, как реализуются нижележащие уровни, для вы­шележащих уровней не имеет значения. С другой стороны, для нижних уровней безразличны как смысл поступающей от верхних уровней информации, так и то, с какой целью она передается.

Такой подход предусматривает стандартизацию интерфейсов между смежными уровнями, благодаря чему реализация любого уровня становится независимой от того, каким образом реализу­ются остальные уровни.


Протокол Х.25 ___ _________ 257

Рис. 9.1. Структура модели OSI

Уровень 1 (или физический уровень) обеспечивает прозрачную передачу потока битов по каналу, организованному между смеж­ными узлами сети с использованием той или иной передающей среды, и формирует интерфейс с этой средой. Характеристики пе­редачи (в частности, коэффициент битовых ошибок BER) опреде­ляются свойствами этого канала и от функций уровня 1 не зависят.

Уровень 2 (или уровень звена данных) формирует двусторон­ний канал связи (то есть прямое звено связи между смежными уз­лами сети), используя для этого два предоставляемых уровнем 1 цифровых канала с противоположными направлениями передачи. Важнейшие функции уровня 2 - обнаружение и исправление оши­бок, которые могут возникнуть на уровне 1, что делает независи­мым качество услуг этого уровня от качества получаемых «снизу» услуг передачи битов.

Уровень 3 (или сетевой уровень) формирует так называемые сетевые услуги, маршрутизацию и коммутацию соединений, обес­печивающие перенос через сеть информации, которой обмениваются


258 Глава 9 ___________________________________

пользователи открытых систем, размещенных в разных (и, в общем случае, несмежных) узлах сети.

Уровень 4 (или транспортный уровень) осуществляет «сквоз­ную» (от одного конечного пользователя до другого) оптимизацию использования ресурсов (то есть сетевых услуг) с учетом типа и ха­рактера связи, избавляя своего пользователя от необходимости принимать во внимание какие бы то ни было детали, связанные с переносом информации. Этот уровень всегда оперирует со всей связью в целом, дополняя, если это требуется, функции уровня 3 в части обеспечения нужного конечным пользователям качества ус­луг.

Уровень 5 (или уровень сеанса) обеспечивает координацию («внутри» каждой связи) взаимодействия между прикладными про­цессами. Примеры возможных режимов взаимодействия, которые поддерживаются уровнем 5: дуплексный, полудуплексный или симплексный диалог.

Уровень 6 (или уровень представления) производит преобра­зование из одной формы в другую синтаксиса транспортируемых данных. Это может быть, например, преобразование ASCII в EBCDIC и обратно.

Уровень 7 (или прикладной уровень) содержит функции, свя­занные с природой прикладных процессов и необходимые для удовлетворения тех требований, которые существенны с точки зре­ния взаимодействия прикладных процессов в системах А и В (рис. 9.1), или, говоря иначе, с точки зрения доступа этих процессов к среде OSI. Так как это самый верхний уровень модели OSI, он не име­ет верхней границы.

Таким образом, функции уровней 1-3 обеспечивают транс­портировку информации из одного пункта территории в другой (возможно, более чем через одно звено, то есть с коммутацией) и потому связаны с отдельными элементами сети связи и с ее внут­ренней структурой. Функции уровней 4-7 относятся только к «сквоз­ной» связи между конечными пользователями и определены таким образом, что они не зависят от внутренней структуры сети.

Поскольку в силу тех или иных специфических особенностей разных уровней в них могут формироваться и обрабатываться ин­формационные блоки различных размеров, в большинстве уров­ней предусматриваются, в числе прочих, функции сегментации блоков данных и/или их объединения.


Протокол Х.25 259

Любой функциональный уровень, например, уровень N (или N-уровень), содержит некоторое множество функций, которые вы­полняет соответствующая аппаратно-программная, т.е. физическая, подсистема (ее удобно называть подсистемой ранга N или N-подсистемой). N-подсистема содержит в себе активные элемен­ты, которые реализуют определенные для нее функциональные воз­можности (либо все их множество, либо каждый элемент выполня­ет вполне определенную часть этого множества). В англоязычной литературе такого рода активный элемент принято называть entity, a в литературе на русском языке чаще всего используется термин логический объект.

Итак, логическим объектом уровня N (или логическим N-объ­ектом, или, если из контекста ясно, о чем идет речь, то просто N-объектом) называется множество функций, привлекаемых N-уровнем к обслуживанию конкретной связи между (N+1)-под­системами.

Процесс обмена информацией между двумя физическими сис­темами через сеть можно интерпретировать как процесс взаимодей­ствия двух открытых систем, размещенных в разных географических точках. Взаимодействие это связано с тем, что пользователям той и другой системы нужно обмениваться данными, необходимыми для выполнения тех или иных задач. Обе взаимодействующие системы имеют многоуровневую архитектуру, причем функции любого од­ного и того же уровня в той и другой системе идентичны (или, по меньшей мере, согласованы).

В подобных условиях уместно говорить о том, что на каждой фазе взаимодействия между двумя системами имеет место взаи­модействие между подсистемами одного ранга, размещенными в системе А и в системе В. При этом подсистема ранга (N+1) в сис­теме, которая инициирует данную фазу (например, в системе А), должна завязать диалог с подсистемой того же ранга (N+1) в сис­теме, привлекаемой к участию в данной фазе (например, в систе­ме В). (N+1)-подсистема, размещенная в системе В, должна, в свою очередь, поддержать продолжение диалога. Иными словами, долж­на быть организована информационная связь между подсистема­ми одного ранга, размещенными в разных системах (peer-to-peer communication).

При организации и в процессе такой связи подсистема ранга (N+1), находящаяся в системе А, обращается к услугам подсисте­мы ранга N в той же системе А. Логический (N+l)- объект системы


260 Глава 9 __________________________________

А передает к N-объекту своей системы запрос, конечная цель которого состоит в том, чтобы вызвать ответную реакцию логиче­ского (N+ 1)-объекта системы В. На пути к этой цели N-объект сис­темы А обращается к услугам (N-1)-объекта своей системы, тот, в свою очередь, - к услугам (N-2)-объекта и т.д., вплоть до логическо­го объекта уровня 1, который обеспечивает использование физиче­ской среды для передачи битов, несущих запрос от системы А к сис­теме В. Логический объект уровня 1 системы В, приняв эти биты, формирует соответствующую индикацию для логического объекта уровня 2 своей системы, тот сообщает об этом логическому объекту уровня 3 и т.д. «вверх» до тех пор, пока индикация приема запроса не достигнет логического (N+ 1)-объекта системы В.

Далее, в общем случае, происходит обратный процесс. От­клик логического (N+1)-объекта системы В передается к системе А с привлечением услуг N-объекта, затем - (N-1)-объекта и т.д. в системе В, а прием уровнем 1 системы А битов, которые доставили отклик, интерпретируется логическими объектами системы А как подтверждение системой В приема отправленного к ней запроса. Это подтверждение проходит в системе А уже понятным читателю путем «вверх», пока не достигнет отправившего запрос логическо­го (N+l)-o6beKTa.

Сказанное иллюстрирует рис. 9.2, на котором запрос, индика­ция, отклик и подтверждение фигурируют как имена сервисных примитивов.

Взаимодействие между логическими (N)-объектами двух взаимодействующих открытых систем происходит в соответствии с (М)-протоколом. Информация, обмен которой поддерживает (N)-протокол, оформляется в так называемые протокольные блоки дан­ных (N)-PDU (protocol data units).

Для передачи (N)-PDU логический (N) -объект обращается к услугам расположенного ниже (N-1)-уровня и передает к нему свои PDU в составе сервисных блоков данных (N- 1)-SDU (service data units), используя сервисные (N-1)-примитивы. Логический (N-1)-объект одной системы взаимодействует с логическим (N- 1)-объектом дру­гой системы в соответствии с (N-1) -протоколом, вводя содержимое (N-l)-SDU в протокольные блоки данных (N-l)-PDU, то есть до­полняя каждый (N-l)-SDU управляющей информацией протокола (N-l)-PCI (protocol control information). Далее, для передачи (N-1)-PDU происходит обращение к услугам (N-2)-уровня и т.д.

Сказанное иллюстрирует рис. 9.3.


Протокол Х.25 261

Рис. 9.3. Протокольные и сервисные блоки данных

Конец работы -

Эта тема принадлежит разделу:

Протоколы

Глава.. примеры сообщений освобождения сигнального пути.. сообщение le disconnect генерируется когда реше ние освободить сигнальный путь принимает станция в ре зультате..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Архитектура открытых систем

Термин «архитектура связи» подразумевает, что отдельные подзадачи сети выполняются различными архитектурными элементами, между которыми устанавливаются пути передачи информации (каналы связи и интерфейсы). Способ, с помощью которого сообщение обрабатывается структурными элементами и передаются по сети, называется сетевым протоколом . Проблемы совмещения и стыковки различных элементов ВС привели Международную организацию стандартизации (ISO - International Organization for Standards) к созданию модели архитектуры вычислительной сети, которая называется моделью взаимодействия открытых систем 1977 г. (ВОС/OSI).

Базовая эталонная модель взаимодействия открытых систем

Цель разработки этой модели заключалась в определении логических ограничений для сетевых стандартов, приемлемых для всех изготовителей, что позволило бы им создавать уникальные и конкурентоспособные изделия, которые тем не менее стыковались с изделиями других изготовителей. Модель OSI является обобщенной и применима как к глобальным, так и к локальным ВС.

В модели используется подход уровневой архитектуры, в которой все функции сети разделены на уровни таким образом, что вышележащие уровни используют услуги, предоставленные нижележащими уровнями. Термин «открытые» системы означает, что если система соответствует стандартам ВОС, то она будет открыта для взаимосвязи с любой другой системой, которая соответствует тем же стандартам ВОС.

Услуги каждого уровня ВОС определяют в абстрактном виде интерфейс между двумя смежными уровнями, не задавая при этом способа его реанимации. Услуги уровня определяют его функциональные возможности. Запрос услуг и оповещение о результатах их выполнения происходит путем обмена примитивами - элементарными абстрактными единицами взаимодействия между П. и исполнителем (И) услуг. Определено 4 типа примитивов:

Запрос - выдается П. для инициации услуги;

Индикация - выдается И. Для указания на то, что удаленный П. инициировал выполнение услуги;



Ответ - выдается П. как реакция на примитив индикация;

Подтверждение - выдается И. Для сообщения о результатах выполнения услуги.

Протоколы определяют логику взаимодействия удаленных логических объектов одного уровня. При этом задается формат и кодирование протокольных блоков данных (ПБД), с помощью которых осуществляется такое взаимодействие - интерпретация запросов на услуги от верхнего уровня и правила пользования услугами нижележащего уровня.

Модель OSI - это набор протоколов для определения и стандартизации всего процесса передачи данных, разработанного Международной организацией стандартизации (ISO).

Процесс передачи данных делится на 7 уровней, в пределах которых устанавливаются стандартные протоколы, разработанные ISO и некоторыми фирмами, причем количество этих протоколов велико.

Модель OSI не является единственным описанием процесса передачи данных, а говорит, что

1) есть способ разбиения процесса передачи данных на уровни и существуют определенные протоколы, которые можно применять на любые уровни.

2) любой последовательный уровень модели OSI взаимодействует с предыдущим.

3) любой уровень обладает свойством модульности: замена одного протокола другим в рамках уровня не влияет на работу протоколов верхнего или нижнего уровня.

Взаимосвязь между узлами сети:

уровни Оконечная система 1 Протоколы уровней Оконечная система 2 Основные функции уровней
Прикладной процесс Прикладной процесс
Прикладной (SMTP, FTP, TELM) Службы пользователей, сетевые службы и т.д.
Представительный Преобразование структурированных данных и манипулирование ими.
Сеансовый (BIOS) Установление соединений, координация и синхронизация диалога.
Транспортный (TCP/IP) Обеспечение независящего от передающей среды транспортного сервиса между оконечными системами.
Сетевой (X.25) Коммутация и маршрутизация в сети.
Канальный (HDLC, SDLC, X.25) Управление передачей данных по каналу. Контроль ошибок, возникающий из-за физической среды передачи.
Физический (IEEE 802.3, 802.4, 802.5) Предоставление средств для управления физическими соединениями в канале.
Физическая среда для соединения систем

Уровни OSI реализуют следующие сетевые функции:

  1. Физический уровень . Обеспечивает физический путь для электрических сигналов, представляющих биты переданной информации. Он также устанавливает характеристики этих сигналов (например, значения напряжения и тока). Он определяет механизм свойства кабелей и разъемов. Физический уровень представляет средства, позволяющие подсоединяться к физической предающей среде и управлять ее использованием. Это единственное реальное взаимосвязь между узлами сети.

Надо заметить, что физическая среда как таковая не входит в эталонную модель, хотя очень важна для ее реализации. Это каналы связи, модемы, канальное оборудование (мультиплексоры, ЭВМ, контроллеры, терминалы и т.д.), совокупность кабелей, повторителей сигналов.

  1. Канальный уровень . Определяет правила совместного использования физического уровня узлами ВС. Информация передается адресованными порциями (кадрами) - по одному кадру в единицу времени. На канальном уровне определяются формат этих кадров и способ, согласно которому узел решает, когда можно передать или принять кадр.

Используется 2 основных типа кадров: пакеты и управляющие кадры.

Пакеты - кадры данных, которые содержат сообщения верхних уровней.

Управляющие кадры - маркеры, подтверждения.

Методы обнаружения и коррекции ошибок обеспечивают безошибочное прохождение пакетов от узлов источников к узлам назначения.

С точки зрения верхних уровней канального и физического уровней обеспечивают безопасную передачу пакетов данных.

  1. Сетевой уровень. Отвечает за буферизацию и маршрутизацию в сети.

Реализует функции связи между 2-мя отдельными сетями. Преобразование логических адресов в физические.

4. Транспортный уровень . С передающей стороны делит длинные сообщения на пакеты данных. С принимающей стороны - должен правильно собрать сообщения из набора пакетов, полученных через канальный и сетевой уровень.

5. Сеансовый уровень . Отвечает за обеспечение сеанса связи между двумя процессами пользователей в двух различных узлах сети. Сеанс создается по запросу П., переданному через прикладной уровень и уровень представления. Сеансовый уровень отвечает за определение возможности начала сеанса, за его поддержание и окончание. Устанавливает соглашения относительно формы обмена.

6. Уровень представления . Является самым простым с точки зрения взаимосвязи. Его функция заключается в преобразовании сообщений П. из формы, используемой прикладным уровнем, в форму, используемую более низкими уровнями. Целью преобразования сообщения (кодирования) является сжатие данных и их защита. Гарантирует, что данные, которыми обмениваются устройства, поступают на прикладной уровень или к устройствам П. в понятном для них виде. Это позволяет использовать в различных комплектах оборудования различные форматы данных без ущерба для взаимопонимания.

7. Прикладной уровень. Является границей между процессами сети OSI и прикладными (пользовательскими) процессами. Непосредственно поддерживает обмен информацией между пользователями, прикладными программами или устройствами. На этом уровне требуется несколько типов протоколов:

1) для конкретных специфичных приложений (передачи файлов, электронная почта)

2) общие протоколы для поддержки пользователей и сети (например, для вычислений, управления доступом, проверки полномочий пользователей)

Прикладной уровень дает определить адресата, сформировать запрос и послать его через сеть, передать и получить запрошенные данные, сделать их доступными для запрашивающего процесса.

Отдельные уровни могут быть совмещены или отсутствовать.

Реальная связь: физический уровень физический уровень

Информация проходит от прикладного уровня к физическому в узле источника и от физического к прикладному в узле назначения.

Между процессами на одинаковых уровнях существуют виртуальные связи

Необходимо еще пояснить некоторые понятия, относящиеся к эталонной модели OSI:

· упаковка

· фрагментация

Структура сообщений

Многоуровневая организация управления процессами в сети пораждает необходимость модификации на любом уровне передаваемых сообщений.

Схема модификации сообщений

Упаковка

Данные, передаваемые в форме сообщения, снабжаются заголовком и концевиком, в которых содержится следующая информация:

1. указатели типа сообщений

2. адреса отправителя, получателя, канала, порта

3. код обнаружения ошибок

Каждый уровень оперирует с собственными З и К, а находящаяся между ними информация рассматривается как данные более высокого уровня. Засчет этого обеспечивается независимость данных, относящихся к разным уровням управления передачей сообщений.

Фрагментация

Дает возможность разделить сообщение на меньшие части, которые затем обрабатываются и предаются независимо. На принимающем конце эти части должны быть собраны для воссоздания в форме исходного сообщения.

(транспортый уровень - разбивка/сборка пакетов)

Использование небольших пакетов данных упрощает разработку протоколов нижних уровней.

В принципе не имеет значения, реализуется уровень аппаратным или программным способом (никаких требований OSI - модель не формирует) - лишь бы выполнялись функции, а формы соответствовали межуровневым интерфейсам.

Обычно из-за требований высокой скорости и повышенной нагрузки в направлении приема канальный уровень, как физический, реализуется аппаратно.

Более высокие уровни обычно реализуцется как процессы, принадлежащие ОС или активизируемые ОС.

(см. рис.)

Прикладной процесс в системе А (ур. 7) формирует сообщение прикладному процессу в системе В в соответствии с логикой взаимодействия этих двух прикладных процессов (но без учета организациии сети). Физически сообщения, формируемые процессом А, проходят последовательно через уровни 6,5,…,1, подвергаясь процедурам последовательного обрамления, предаются по каналу связи и затем через уровни 1,2,…,6, на которых с сообщений снимаются обрамления, поступают к процессу В. каждый уровень работает со своим заголовком и концевиком. Все, что между ними - рассматривается соответствующим уровнем как данные.

В заголовки помещаются команды для вызова функций в соответствующих уровнях другого узла связи:

Уровень N+1 вызывает функцию для формирования в передающем узле поле контроля последовательности.

Уровень N+1 принимающего узла производит проверку наличия ошибок при передаче на основе сравнения контрольного поля со значением счетчика приема.

Сервисная функция уровня N добавляет поле контроля последовательности в виде заголовка, который будет использоваться в принимающем N уровне для контроля ошибок.

На уровне N-1 производится сжатие данных. В принимающем узле эта функция (заголовок) используется как команда преобразования к исходнуму виду.

Заголовок - это управляющая информация протокола .

Концевик - управляющая информация интерфейса , кторый используется только между смежными уровнями одного и того же узла. Он содержит команды, которые должны быть выполнены нижележащим уровне. Например, это может быть команда обеспечить ускоренное прохождение через уровень, т.е. выполнить операции мультиплексирования на нижних уровнях.

При описании протокола принято выделять его логическую и процедурную характеристики.

Логическая характеристика протокола - это структура (формат) и содеоржание (семантика) сообщений. Логическая характеристика задается перечислением типов сообщений и их смысла. Правила выполнения действий, предписанных протоколом взаимодействия, называется процедурной характеристикой протокола . Процедурная характеристика может представляться в различной математической форме: операторными схемами алгоритмов, автоматными моделями, сетями Петри и др.

Таким образом, логика организации сети определяется протоколами, устанавливающими как тип и структуру сообщений, так и процедуры их обработки - реакцию на входящие сообщения и генерацию собственных сообщений.

Заключение

Протоколы, стандарты и интерфейсы нижних уровней относительно стабильны и отработаны. Они формируют устойчивую основу, на которой строятся верхние уровни.

Многие же протоколы высоких уровней находятся в различных стадиях разработки (хотя некоторые уже утверждены).

Завершить полностью разработку всех элементов верхних уровней вряд ли возможно из-за количества и разнообразия прикладных областей.

ВВЕДЕНИЕ

Раздел 1. Модель взаимодействия открытых систем ISO/OSI

Раздел 2. Уровень сетевого взаимодействия интерфейсов сети

Раздел 3. Стек протокола TCP/IP

ЗАКЛЮЧЕНИЕ

ВВЕДЕНИЕ

Организация взаимодействия между устройствами в сети является сложной проблемой, она включает много аспектов, начиная с согласования уровней электрических сигналов, формирования кадров, проверки контрольных сумм и кончая вопросами аутентификации приложений. Для ее решения используется универсальный прием - разбиение одной сложной задачи на несколько частных, более простых задач. Средства решения отдельных задач упорядочены в виде иерархии уровней. Для решения задачи некоторого уровня могут быть использованы средства непосредственно примыкающего нижележащего уровня. С другой стороны, результаты работы средств некоторого уровня могут быть переданы только средствам соседнего вышележащего уровня.

Многоуровневое представление средств сетевого взаимодействия имеет свою специфику, связанную с тем, что в процессе обмена сообщениями участвуют две машины, то есть в данном случае необходимо организовать согласованную работу двух «иерархий». При передаче сообщений оба участника сетевого обмена должны принять множество соглашений. Например, они должны согласовать способ кодирования электрических сигналов, правило определения длины сообщений, договориться о методах контроля достоверности и т.п. Другими словами, соглашения должны быть приняты для всех уровней, начиная от самого низкого уровня передачи битов до самого высокого уровня, предоставляющего услуги пользователям сети.

Формализованные правила, определяющие последовательность и формат сообщений, которыми обмениваются сетевые компоненты, лежащие на одном уровне, но в разных узлах, называются протоколом.

Модули, реализующие протоколы соседних уровней и находящиеся в одном узле, также взаимодействуют друг с другое в соответствии с четко определенными правилами и с помощью стандартизованных форматов сообщений. Эти правила принято называть интерфейсом. Интерфейс определяет услуги, предоставляемые данным уровнем соседнему уровню.

В сущности, протокол и интерфейс выражают одно и то же понятие, но традиционно в сетях за ними закрепили разные области действия: протоколы определяют правила взаимодействия модулей одного уровня в разных узлах, а интерфейсы - модулей соседних уровней в одном узле.

Средства каждого уровня должны отрабатывать, во-первых, свой собственный протокол, а во-вторых, интерфейсы с соседними уровнями. Иерархически организованный набор протоколов, достаточный для организации взаимодействия узлов в сети, называется стеком коммуникационных протоколов.

Коммуникационные протоколы могут быть реализованы как программно, так и аппаратно. Протоколы нижних уровней часто реализуются комбинацией программных и аппаратных средства протоколы верхних уровней, как правило, чисто программными средствами.

Раздел 1. Модель взаимодействия открытых систем ISO/OSI

В начале 80-х годов - ряд международных организаций по стандартизации - ISO, ITU-T и некоторые другие - разработали модель, которая сыграла значительную роль в развитии сетей. Эта модель называется моделью взаимодействия открытых систем (Open System interconnection, OSI), или моделью OSI. Модель OSI определяет различные уровни взаимодействия систем, дает им стандартные имена и указывает, какие функции должен выполнять каждый уровень.

В модели OSI (рис. 1) средства взаимодействия делятся на семь уровней: прикладной, представительный, сеансовый, транспортный, сетевой, канальный и физический. Каждый уровень имеет дело с одним определенным аспектом взаимодействия сетевых устройств .

Рис. 1. Модель взаимодействия открытых систем ISO/OSI

Физический уровень (Physical layer) имеет дело с передачей битов по физическим каналам связи, таким, например, как коаксиальный кабель, витая пара, оптоволоконный кабель или цифровой территориальный канал. К этому уровню имеют отношение характеристики физических сред передачи данных, такие как полоса пропускания, помехозащищенность, волновое сопротивление и другие. На этом же уровне определяются характеристики электрических сигналов, передающих дискретную информацию, например крутизна фронтов импульсов, уровни напряжения или тока передаваемого сигнала, тип кодирования, скорость передачи сигналов. Кроме этого, здесь стандартизуются типы разъемов и назначение каждого контакта.

Функции физического уровня реализуются во всех устройствах, подключенных к сети. Со стороны компьютера функции физического уровня выполняются сетевым адаптером или последовательным портом.

Примером протокола физического уровня может служить спецификация 10Base-T технологии Ethernet, которая определяет в качестве используемого кабеля неэкранированную витую пару категории 3 с волновым сопротивлением 100 Ом, разъем RJ-45, максимальную длину физического сегмента 100 метров, манчестерский код для представления данных в кабеле, а также некоторые другие характеристики среды и электрических сигналов.

) Канальный уровень

На физическом уровне просто пересылаются биты. При этом не учитывается, что в некоторых сетях, в которых линии связи используются (разделяются) попеременно несколькими парами взаимодействующих компьютеров, физическая среда передачи может быть занята. Поэтому одной из задач канального уровня (Data Link layer) является проверка доступности среды передачи. Другой задачей канального уровня является реализация механизмов обнаружения и коррекции ошибок. Для этого на канальном уровне биты группируются в наборы, называемые кадрами (frames). Канальный уровень обеспечивает корректность передачи кадров, помещая для выделения каждого кадра специальную последовательность бит в его начало и конец, а также вычисляет контрольную сумму, обрабатывая все байты кадра определенным способом и добавляя контрольную сумму к кадру.

В локальных сетях протоколы канального уровня используются компьютерами, мостами, коммутаторами и маршрутизаторами. В компьютерах функции канального уровня реализуются совместными усилиями сетевых адаптеров и их драйверов.

В глобальных сетях, которые в отличие от локальных сетей редко обладают регулярной топологией, канальный уровень обеспечивает обмен сообщениями только между двумя соседними компьютерами, соединенными индивидуальной линией связи. Примерами протоколов «точка-точка» (как часто называют такие протоколы) могут служить широко распространенные протоколы РРР и LAP-B.

) Сетевой уровень

Сетевой уровень (Network layer) служит для образования единой транспортной системы, объединяющей несколько сетей, причем эти сети могут использовать совершенно различные принципы передачи сообщений между конечными узлами и обладать произвольной; структурой связей.

Сети соединяются между Собой специальными устройствами, называемыми маршрутизаторами. Маршрутизатор- это устройство, которое собирает информацию о топологии межсетевых соединений и на ее основании пересылает пакеты сетевого уровня в сеть назначения. Для того чтобы передать сообщения сетевого уровня, или, как их принято называть, пакеты (packets), от отправителя, находящегося в одной сети, получателю, находящемуся в другой сети, нужно совершить некоторое количество транзитных передач между сетями. Таким образом, маршрут представляет собой последовательность маршрутизаторов, через которые проходит пакет. Проблема выбора наилучшего пути называется маршрутизацией, и ее решение является одной из главных задач сетевого уровня.

Сетевой уровень решает также задачи согласования разных технологий, упрощения адресации в крупных сетях и создания надежных и гибких барьеров на пути нежелательного трафика между сетями.

Примерами протоколов сетевого уровня являются протокол межсетевого взаимодействия IP стека TCP/IP и протокол межсетевого обмена пакетами IPX стека Novell.

) Транспортный уровень

На пути от отправителя к получателю пакеты могут быть искажены или утеряны. Хотя некоторые приложения имеют собственные средства обработки ошибок, существуют и такие, которые предпочитают сразу иметь дело с надежным соединением. Работа транспортного уровня (Transport layer) заключается в том, чтобы обеспечить приложениям или верхним уровням стека - прикладному и сеансовому - передачу данных с той степенью надежности, которая им требуется. Модель OSI определяет пять классов услуг, предоставляемых транспортным уровнем. Эти виды услуг отличаются качеством: срочностью, возможностью восстановления прерванной связи, наличием средств мультиплексирования нескольких соединений между различными прикладными протоколами через общий транспортный протокол, а главное - способностью к обнаружению и исправлению ошибок передачи, таких как искажение, потеря и дублирование пакетов.

Как правило, все протоколы, начиная с транспортного уровня и выше, реализуются программными средствами конечных узлов сети - компонентами их сетевых операционных систем. В качестве примера транспортных протоколов можно привести протоколы TCP и UDP стека TCP/IP и протокол SPX стека Novell.

) Сеансовый уровень

Сеансовый уровень (Session layer) обеспечивает управление диалогом для того, чтобы фиксировать, какая из сторон является активной в настоящий момент, а также предоставляет средства синхронизации. Последние позволяют вставлять контрольные точки в длинные передачи, чтобы в случае отказа можно было вернуться назад к последней контрольной точке вместо того, чтобы начинать все с начала. На практике немногие приложения используют сеансовый уровень, и он редко реализуется в виде отдельных протоколов, хотя функции этого уровня часто объединяют с функциями прикладного уровня и реализуют в одном протоколе.

) Уровень представления

Уровень представления (Presentation layer) имеет дело с формой представления передаваемой по сети информации, не меняя при этом ее содержания. За счет уровня представления информация, передаваемая прикладным уровнем одной системы, всегда будет понятна прикладному уровню в другой системе. С помощью средств данного уровня протоколы прикладных уровней могут преодолеть синтаксические различия в представлении данных или же различия кодов символов, например кодов ASCII и EBCDIC. На этом уровне может выполняться шифрование и дешифрирование данных, благодаря которому секретность обмена данными обеспечивается сразу для всех прикладных служб. Примером такого протокола является протокол Secure Socket Layer (SSL), который обеспечивает секретный обмен сообщениями для протоколов прикладного уровня стека TCP/IP.

) Прикладной уровень

Существует очень большое разнообразие служб прикладного уровня. Приведем в качестве примеров протоколов прикладного уровня хотя бы несколько наиболее распространенных реализаций файловых служб: NCP в операционной системе Novell NetWare, 8MB в Microsoft Windows NT, NFS, FTP и TFTP, входящие в стек TCP/IP.

кодирование коммуникационный протокол интерфейс

Раздел 2. Уровень сетевого взаимодействия интерфейсов сети

Стержнем всей архитектуры является уровень межсетевого взаимодействия, который реализует концепцию передачи пакетов в режиме без установления соединений, то есть дейтаграммным способом. Именно этот уровень обеспечивает возможность перемещения пакетов по сети, используя тот маршрут, который в данный момент является наиболее рациональным. Этот уровень также называют уровнем internet, указывая тем самым на основную его функцию - передачу данных через составную сеть.

Основным протоколом сетевого уровня (в терминах модели OSI) в стеке является протокол IP (Internet Protocol). Этот протокол изначально проектировался как протокол передачи пакетов в составных сетях, состоящих из большого количества локальных сетей, объединенных как локальными, так и глобальными связями. Поэтому протокол IP хорошо работает в сетях со сложной топологией, рационально используя наличие в них подсистем и экономно расходуя пропускную способность низкоскоростных линий связи. Так как протокол IP является дейтаграммным протоколом, он не гарантирует доставку пакетов до узла назначения, но старается это сделать.

К уровню межсетевого взаимодействия относятся и все протоколы, связанные с составлением и модификацией таблиц маршрутизации, такие как протоколы сбора маршрутной информации RIP (Routing Internet Protocol) и OSPF (Open Shortest Path First), а также протокол межсетевых управляющих сообщений ICMP (Internet Control Message Protocol). Последний протокол предназначен для обмена информацией об ошибках между маршрутизаторами сети и узлом-источником пакета. С помощью специальных пакетов ICMP сообщает о невозможности доставки пакета, о превышении времени жизни или продолжительности сборки пакета из фрагментов, об аномальных величинах параметров, об изменении маршрута пересылки и типа обслуживания, о состоянии системы и т.п.

Основной уровень

Поскольку на сетевом уровне не устанавливаются соединения, то нет никаких гарантий, что все пакеты будут доставлены в место назначения целыми и невредимыми или придут в том же порядке, в котором они были отправлены. Эту задачу - обеспечение надежной информационной связи между двумя конечными узлами - решает основной уровень стека TCP/IP, называемый также транспортным.

На этом уровне функционируют протокол управления передачей TCP (Transmission Control Protocol) и протокол дейтаграмм пользователя UDP (User Datagram Protocol). Протокол TCP обеспечивает надежную передачу сообщений между удаленными прикладными процессами за счет образования логических соединений. Этот протокол позволяет равноранговым объектам на компьютере-отправителе и компьютере-получателе поддерживать обмен данными в дуплексном режиме. TCP позволяет без ошибок доставить сформированный на одном из компьютеров поток байт в любой другой компьютер, входящий в составную сеть. TCP делит поток байт на части - сегменты, и передает их ниже лежащему уровню межсетевого взаимодействия. После того как эти сегменты будут доставлены средствами уровня межсетевого взаимодействия в пункт назначения, протокол TCP снова соберет их в непрерывный поток байт.

Протокол UDP обеспечивает передачу прикладных пакетов дейтаграммным способом, как и главный протокол уровня межсетевого взаимодействия IP, и выполняет только функции связующего звена (мультиплексора) между сетевым протоколом и многочисленными службами прикладного уровня или пользовательскими процессами.

Прикладной уровень

Прикладной уровень объединяет все службы, предоставляемые системой пользовательским приложениям. За долгие годы использования в сетях различных стран и организаций стек TCP/IP накопил большое количество протоколов и служб прикладного уровня. Прикладной уровень реализуется программными системами, построенными в архитектуре клиент-сервер, базирующимися на протоколах нижних уровней. В отличие от протоколов остальных трех уровней, протоколы прикладного уровня занимаются деталями конкретного приложения и «не интересуются» способами передачи данных по сети. Этот уровень постоянно расширяется за счет присоединения к старым, прошедшим многолетнюю эксплуатацию сетевым службам типа Telnet, FTP, TFTP, DNS, SNMP сравнительно новых служб таких, например, как протокол передачи гипертекстовой информации HTTP.

Уровень сетевых интерфейсов

Идеологическим отличием архитектуры стека TCP/IP от многоуровневой организации других стеков является интерпретация функций самого нижнего уровня - уровня сетевых интерфейсов. Протоколы этого уровня должны обеспечивать интеграцию в составную сеть других сетей, причем задача ставится так: сеть TCP/IP должна иметь средства включения в себя любой другой сети, какую бы внутреннюю технологию передачи данных эта сеть не использовала. Отсюда следует, что этот уровень нельзя определить раз и навсегда. Для каждой технологии, включаемой в составную сеть подсети, должны быть разработаны собственные интерфейсные средства. К таким интерфейсным средствам относятся протоколы инкапсуляции IP-пакетов уровня межсетевого взаимодействия в кадры локальных технологий. Например, документ RFC 1042 определяет способы инкапсуляции IP-пакетов в кадры технологий IEEE 802. Для этих целей должен использоваться заголовок LLC/SNAP, причем в поле Type заголовка SNAP должен быть указан код 0х0800. Только для протокола Ethernet в RFC 1042 сделано исключение - помимо заголовка LLC/SNAP разрешается использовать кадр Ethernet DIX, не имеющий заголовка LLC, зато имеющий поле Type. В сетях Ethernet предпочтительным является инкапсуляция IP-пакета в кадр Ethernet DIX.

Уровень сетевых интерфейсов в протоколах TCP/IP не регламентируется, но он поддерживает все популярные стандарты физического и канального уровней: для локальных сетей это Ethernet, Token Ring, FDDI, Fast Ethernet, Gigabit Ethernet, 100VG-AnyLAN, для глобальных сетей - протоколы соединений «точка-точка» SLIP и РРР, протоколы территориальных сетей с коммутацией пакетов Х.25, frame relay. Разработана также специальная спецификация, определяющая использование технологии АТМ в качестве транспорта канального уровня. Обычно при появлении новой технологии локальных или глобальных сетей она быстро включается в стек TCP/IP за счет разработки соответствующего RFC, определяющего метод инкапсуляции IP-пакетов в ее кадры (спецификация RFC 1577, определяющая работу IP через сети АТМ, появилась в 1994 году вскоре после принятия основных стандартов этой технологии) .

Раздел 3. Стек протокола TCP/IP

Transmission Control Protocol/Internet Protocol (TCP/IP) - это промышленный стандарт стека протоколов, разработанный для глобальных сетей.

Стандарты TCP/IP опубликованы в серии документов, названных Request for Comment (RFC). Документы RFC описывают внутреннюю работу сети Internet. Некоторые RFC описывают сетевые сервисы или протоколы и их реализацию, в то время как другие обобщают условия применения. Стандарты TCP/IP всегда публикуются в виде документов RFC, но не все RFC определяют стандарты.

Стек был разработан по инициативе Министерства обороны США (Department of Defence, DoD) более 20 лет назад для связи экспериментальной сети ARPAnet с другими сателлитными сетями как набор общих протоколов для разнородной вычислительной среды. Сеть ARPA поддерживала разработчиков и исследователей в военных областях. В сети ARPA связь между двумя компьютерами осуществлялась с использованием протокола Internet Protocol (IP), который и по сей день является одним из основных в стеке TCP/IP и фигурирует в названии стека.

Большой вклад в развитие стека TCP/IP внес университет Беркли, реализовав протоколы стека в своей версии ОС UNIX. Широкое распространение ОС UNIX привело и к широкому распространению протокола IP и других протоколов стека. На этом же стеке работает всемирная информационная сеть Internet, чье подразделение Internet Engineering Task Force (IETF) вносит основной вклад в совершенствование стандартов стека, публикуемых в форме спецификаций RFC .

Итак, лидирующая роль стека TCP/IP объясняется следующими его свойствами:

·Это наиболее завершенный стандартный и в то же время популярный стек сетевых протоколов, имеющий многолетнюю историю.

·Почти все большие сети передают основную часть своего трафика с помощью протокола TCP/IP.

·Это метод получения доступа к сети Internet.

·Этот стек служит основой для создания intranet- корпоративной сети, использующей транспортные услуги Internet и гипертекстовую технологию WWW, разработанную в Internet.

·Все современные операционные системы поддерживают стек TCP/IP.

·Это гибкая технология для соединения разнородных систем как на уровне транспортных подсистем, так и на уровне прикладных сервисов.

·Это устойчивая масштабируемая межплатформенная среда для приложений клиент-сервер.

Так как стек TCP/IP был разработан до появления модели взаимодействия открытых систем ISO/OSI, то, хотя он также имеет многоуровневую структуру, соответствие уровней стека TCP/IP уровням модели OSI достаточно условно.

Структура протоколов TCP/IP приведена на рисунке 2. Протоколы TCP/IP делятся на 4 уровня .

Рис. 2. Стек TCP/IP

Самый нижний (уровень IV) соответствует физическому и канальному уровням модели OSI. Этот уровень в протоколах TCP/IP не регламентируется, но поддерживает все популярные стандарты физического и канального уровня: для локальных сетей это Ethernet, Token Ring, FDDI, Fast Ethernet, 100VG-AnyLAN, для глобальных сетей - протоколы соединений "точка-точка" SLIP и PPP, протоколы территориальных сетей с коммутацией пакетов X.25, frame relay. Разработана также специальная спецификация, определяющая использование технологии ATM в качестве транспорта канального уровня. Обычно при появлении новой технологии локальных или глобальных сетей она быстро включается в стек TCP/IP за счет разработки соответствующего RFC, определяющего метод инкапсуляции пакетов IP в ее кадры.

Следующий уровень (уровень III) - это уровень межсетевого взаимодействия, который занимается передачей пакетов с использованием различных транспортных технологий локальных сетей, территориальных сетей, линий специальной связи и т. п.

В качестве основного протокола сетевого уровня (в терминах модели OSI) в стеке используется протокол IP, который изначально проектировался как протокол передачи пакетов в составных сетях, состоящих из большого количества локальных сетей, объединенных как локальными, так и глобальными связями. Поэтому протокол IP хорошо работает в сетях со сложной топологией, рационально используя наличие в них подсистем и экономно расходуя пропускную способность низкоскоростных линий связи. Протокол IP является дейтаграммным протоколом, то есть он не гарантирует доставку пакетов до узла назначения, но старается это сделать.

К уровню межсетевого взаимодействия относятся и все протоколы, связанные с составлением и модификацией таблиц маршрутизации, такие как протоколы сбора маршрутной информации RIP (Routing Internet Protocol) и OSPF (Open Shortest Path First), а также протокол межсетевых управляющих сообщений ICMP (Internet Control Message Protocol). Последний протокол предназначен для обмена информацией об ошибках между маршрутизаторами сети и узлом - источником пакета. С помощью специальных пакетов ICMP сообщается о невозможности доставки пакета, о превышении времени жизни или продолжительности сборки пакета из фрагментов, об аномальных величинах параметров, об изменении маршрута пересылки и типа обслуживания, о состоянии системы и т.п.

Следующий уровень (уровень II) называется основным. На этом уровне функционируют протокол управления передачей TCP (Transmission Control Protocol) и протокол дейтаграмм пользователя UDP (User Datagram Protocol). Протокол TCP обеспечивает надежную передачу сообщений между удаленными прикладными процессами за счет образования виртуальных соединений. Протокол UDP обеспечивает передачу прикладных пакетов дейтаграммным способом, как и IP, и выполняет только функции связующего звена между сетевым протоколом и многочисленными прикладными процессами.

Верхний уровень (уровень I) называется прикладным. За долгие годы использования в сетях различных стран и организаций стек TCP/IP накопил большое количество протоколов и сервисов прикладного уровня. К ним относятся такие широко используемые протоколы, как протокол копирования файлов FTP, протокол эмуляции терминала telnet, почтовый протокол SMTP, используемый в электронной почте сети Internet, гипертекстовые сервисы доступа к удаленной информации, такие как WWW и многие другие .

ЗАКЛЮЧЕНИЕ

Итак, формализованные правила, определяющие последовательность и формат сообщений, которыми обмениваются сетевые компоненты, лежащие на одном уровне, но в разных узлах, называются протоколом.

Программный модуль, реализующий некоторый протокол, часто для краткости также называют «протоколом». При этом соотношение между протоколом-формально определенной процедурой и протоколом-программным модулем, реализующим эту процедуру, аналогично соотношению между алгоритмом решения некоторой задачи и программой, решающей эту задачу.

Понятно, что один и тот же алгоритм может быть запрограммирован с разной степенью эффективности. Точно так же и протокол может иметь несколько программных реализации. Именно поэтому при сравнении протоколов следует учитывать не только логику их работы, но и качество программных решений. Более того, на эффективность взаимодействия устройств в сети влияет качество всей совокупности протоколов, составляющих стек, в частности, насколько рационально распределены функции между протоколами разных уровней и насколько хорошо определены интерфейсы между ними.

Протоколы реализуются не только компьютерами, но и другими сетевыми устройствами - концентраторами, мостами, коммутаторами, маршрутизаторами и т.д. Действительно, в общем случае связь компьютеров в сети осуществляется не напрямую, а через различные коммуникационные устройства. В зависимости от типа устройства в нем должны быть встроенные средства, реализующие тот или иной набор протоколов.

СПИСОК ИСТОЧНИКОВ ИНФОРМАЦИИ

1. Бройдо В.Л. «Вычислительные системы, сети и телекоммуникации»: Учебник для вузов. 2-е изд. - СПб.: Питер, 2006 г.

Олифер В.Г., Олифер Н.А. «Компьютерные сети. Принципы, технологии, протоколы»: изд. 4-ое, Учебник для ВУЗов - Питер, 2010 г.

Таненбаум Э. «Компьютерные сети»: 4-е изд. - СПб.: Питер, 2003 г.