Как сделать микросхему в домашних условиях. Как самостоятельно изготовить печатную плату в домашних условиях. Необходимые составляющие выпуска качественных микросхем

В этой статье я расскажу о начале своей работы над совершенно безбашенной задачей: конечная цель в том, чтобы получить рабочую микросхему по «толстым» нормам (5-10µm) дома. Это не первое апреля и я не сумасшедший, это просто моё хобби.

Возникла эта идея не сейчас и неспроста. С детства я хотел быть газосварщиком, и… делать микросхемы. И если по первому пункту мне достаточно быстро удалось сделать дома сварочный аппарат (бутан-водород/кислород), то с микросхемами все никак не складывалось. Долгое время все мысли останавливались на том, что я не знал где можно взять собственно полупроводники необходимой чистоты (и мысли останавливались на ковырянии мощных транзисторов), пока на форуме не подсказали что в принципе, можно и купить пластины. Затем я даже наткнулся на человека, который 20 лет работал над похожей задачей , и в итоге сдался. Пожалуй, тут можно было опустить руки и перестать тратить время на глупые мечты. Но, однажды я увидел ролик чудовищно гениальной женщины – Jeri Ellsworth – она смогла сделать отдельные полевые транзисторы на основе заводских пластин – и тогда я решил, что настало время поплотнее заняться этой проблемой.

В этой статьях я расскажу о своём текущем прогрессе, но не ждите быстрого продолжения – весь процесс может легко занять пару лет.

Шаг 0:
Были скуплены все книги по теме из местных Интернет-магазинов (как раз на 1 полку), повыкачаны из торрентов все доступные сборники оцифрованных книг. Теоретической информации там конечно много, но с практической стороны – многое покрыто мраком. Даже старые техпроцессы в деталях не описаны нигде, и потому придется много пробовать. Также перерыл интернет в поисках местных поставщиков всех потенциально необходимых материалов (собственно кремний, фоторезисты, химия, газы). Пока найти не удалось местную компанию которая может изготавливать асферическую оптику из оптического/кварцевого стекла – но это в ближайший год не станет препятствием.
Шаг 1: Кремний
Монокристаллический кремний – сердце домашней микросхемы. Вырастить дома – хоть и реально (по моим безумным меркам), но чертовски дорого. Потому я стал гуглить местных производителей кремния – кто-то говорил что они свернули производство и занимаются только сдачей помещений в аренду, кто-то не отвечал, пока наконец я не дошел до компании Терасил – там я наконец смог купить все что мне нужно. Самое главное – разрезанные и отполированные пластины монокристаллического кремния легированного в P и N тип (справа на фото).

Далее – куча разбитых пластин для тренировки. Потренировался раскалывать пластину на кусочки (оказалось, что они все с ориентацией кристаллической решетки 111 – раскалываются треугольниками, а не квадратами). Т.к они еще не отполированы – я попробовал и отполировать – провал полный: паста гои кремний не берет, нужна алмазная паста. Если со временем получится полировать, можно будет пробовать делать солнечные батареи (а из монокристаллического кремния они получаются довольно эффективные).

И наконец – кусочки монокристаллического кремния. Те что толстые слева – погрязнее (но достаточно чистые для микросхем), 2 тоненьких справа – сверхчистые, намного выше требований чистоты кремния для обычных микросхем. Само собой, разрезать их дома не выйдет (если конечно не завалялась алмазная дисковая пила) – только разбить. Нужны для того чтобы пробовать осаждать пленки аморфного кремния химическим (PE CVD SiH4) или физическим (испарение в вакууме) путем.


Какие дальше стоят задачи
  • В первую очередь – строительство печи на 1200 градусов для маленького образца. Промышленные печи под такую температуру в квартире не поставить, и стоят огого. Потому буду пробовать нагревать образец галогеновыми лампами с рефлекторами.
  • Переезд в отдельную квартиру: меня сразу выгонят увидев бородатого мужика в противогазе и резиновых перчатках с кучей подозрительных баночек.
  • Далее – необходимая химия и фоторезисты – и можно пробовать делать 1 транзистор по процессу Jeri.
Что я ищу и пока не нахожу
В первую очередь – это информация. Хотелось бы иметь контакты людей, которые работают на производстве – ведь я соберу все грабли, которые технологи собирали последние 50 лет Затем – информация о техпроцессах и главное – библиотеки под толстые техпроцессы – пока мне их не удалось достать, а из отдельных транзисторов особо не по-проектируешь. Ну и наконец, хочу найти разработчика ASIC, который показал бы мне основные шаги разработки (кое-что я думаю что знаю, но много пробелов и я могу ошибаться сильно). По всем этим вопросам приглашаю на

В этой статье я расскажу о начале своей работы над совершенно безбашенной задачей: конечная цель в том, чтобы получить рабочую микросхему по «толстым» нормам (5-10µm) дома. Это не первое апреля и я не сумасшедший, это просто моё хобби.

Возникла эта идея не сейчас и неспроста. С детства я хотел быть газосварщиком, и… делать микросхемы. И если по первому пункту мне достаточно быстро удалось сделать дома сварочный аппарат (бутан-водород/кислород), то с микросхемами все никак не складывалось. Долгое время все мысли останавливались на том, что я не знал где можно взять собственно полупроводники необходимой чистоты (и мысли останавливались на ковырянии мощных транзисторов), пока на форуме не подсказали что в принципе, можно и купить пластины. Затем я даже наткнулся на человека, который 20 лет работал над похожей задачей , и в итоге сдался. Пожалуй, тут можно было опустить руки и перестать тратить время на глупые мечты. Но, однажды я увидел ролик чудовищно гениальной женщины – Jeri Ellsworth – она смогла сделать отдельные полевые транзисторы на основе заводских пластин – и тогда я решил, что настало время поплотнее заняться этой проблемой.

В этой статьях я расскажу о своём текущем прогрессе, но не ждите быстрого продолжения – весь процесс может легко занять пару лет.

Шаг 0:
Были скуплены все книги по теме из местных Интернет-магазинов (как раз на 1 полку), повыкачаны из торрентов все доступные сборники оцифрованных книг. Теоретической информации там конечно много, но с практической стороны – многое покрыто мраком. Даже старые техпроцессы в деталях не описаны нигде, и потому придется много пробовать. Также перерыл интернет в поисках местных поставщиков всех потенциально необходимых материалов (собственно кремний, фоторезисты, химия, газы). Пока найти не удалось местную компанию которая может изготавливать асферическую оптику из оптического/кварцевого стекла – но это в ближайший год не станет препятствием.
Шаг 1: Кремний
Монокристаллический кремний – сердце домашней микросхемы. Вырастить дома – хоть и реально (по моим безумным меркам), но чертовски дорого. Потому я стал гуглить местных производителей кремния – кто-то говорил что они свернули производство и занимаются только сдачей помещений в аренду, кто-то не отвечал, пока наконец я не дошел до компании Терасил – там я наконец смог купить все что мне нужно. Самое главное – разрезанные и отполированные пластины монокристаллического кремния легированного в P и N тип (справа на фото).

Далее – куча разбитых пластин для тренировки. Потренировался раскалывать пластину на кусочки (оказалось, что они все с ориентацией кристаллической решетки 111 – раскалываются треугольниками, а не квадратами). Т.к они еще не отполированы – я попробовал и отполировать – провал полный: паста гои кремний не берет, нужна алмазная паста. Если со временем получится полировать, можно будет пробовать делать солнечные батареи (а из монокристаллического кремния они получаются довольно эффективные).

И наконец – кусочки монокристаллического кремния. Те что толстые слева – погрязнее (но достаточно чистые для микросхем), 2 тоненьких справа – сверхчистые, намного выше требований чистоты кремния для обычных микросхем. Само собой, разрезать их дома не выйдет (если конечно не завалялась алмазная дисковая пила) – только разбить. Нужны для того чтобы пробовать осаждать пленки аморфного кремния химическим (PE CVD SiH4) или физическим (испарение в вакууме) путем.


Какие дальше стоят задачи
  • В первую очередь – строительство печи на 1200 градусов для маленького образца. Промышленные печи под такую температуру в квартире не поставить, и стоят огого. Потому буду пробовать нагревать образец галогеновыми лампами с рефлекторами.
  • Переезд в отдельную квартиру: меня сразу выгонят увидев бородатого мужика в противогазе и резиновых перчатках с кучей подозрительных баночек.
  • Далее – необходимая химия и фоторезисты – и можно пробовать делать 1 транзистор по процессу Jeri.
Что я ищу и пока не нахожу
В первую очередь – это информация. Хотелось бы иметь контакты людей, которые работают на производстве – ведь я соберу все грабли, которые технологи собирали последние 50 лет Затем – информация о техпроцессах и главное – библиотеки под толстые техпроцессы – пока мне их не удалось достать, а из отдельных транзисторов особо не по-проектируешь. Ну и наконец, хочу найти разработчика ASIC, который показал бы мне основные шаги разработки (кое-что я думаю что знаю, но много пробелов и я могу ошибаться сильно). По всем этим вопросам приглашаю на

Микросхема это электронная схема, которая располагается на пластинке, сделанной из полупроводникового материала, обычно из кремния. Как правило, площадь типичной интегральной схемы составляет 1,5 мм2 , а толщина – 0,2 миллиметра. Все элементы схемы (резисторы, диоды, транзисторы, сопротивления и соединяющие их проводки) размещаются на пластинке.

Вам понадобится

  • - паяльник;
  • - пластик;
  • - провода.

Инструкция

Воспользуйтесь специальным приложением, чтобы продумать конструкцию микросхемы. Попрактиковаться в вопросе инженерии микросхем можно с помощью программы Logisim. Скачать приложение можно по ссылке http://sourceforge.net/projects/circuit/.

Чтобы выполнить конечное проектирование схемы из слоев проводников, диэлектриков и полупроводников, установите приложение Electric VLSI. Скачать его можно на официальном сайте производителя http://staticfreesoft.com/productsFree.html. После того, как вам удалось составить электронный проект микросхемы, приступите к ее созданию.

Возьмите кусочек пластика, размер его должен быть как сим-карта телефона. В радиомагазине приобретите токопроводящий карандаш, который предназначен для восстановления дорожек. Возьмите токопроводящий клей, например «Контактол» и шприц.

Для корпуса микросхемы найдите металлическую коробочку. Также найдите небольшое количество тонких проводков для дискретных компонентов.

Приступите к конструированию микросхемы. Нарисуйте на пластинке токопроводящие дорожки, резисторы и емкости, все, что можно нарисовать согласно построенной схемы на компьютере. Далее наклейте транзисторы или диоды. Приклейте на пластинку провода вывода микросхемы. Лучше всего проколоть пластик, чтобы все выводы переместились в низ платы. Сверху приклейте крышку, надпишите на ней название.

Припаяйте полученную микросхему к плате. Для этого приклейте ее выводами на кусочек самоклеющейся алюминиевой фольги, к каждой ноге припаяйте тонкий проводок. Для пайки микросхемы используйте флюс ЛТИ-120. Сделайте плату из стеклотекстолита, разместите на ней схему, сформируйте и припаяйте выходы на площадки платы. Затем возьмите спирт, отмойте плату от остатков флюса. Далее припаяйте навесные элементы.


Внимание, только СЕГОДНЯ!

Все интересное

Порой бывает нужно выпаять микросхему, сохранив при этом её работоспособность. Сделать это не трудно, если не пожалеть печатной платы, на которой она расположена. Но есть способ выпаять её без жертв, не повредив при этом ни демонтируемую микросхему,…

Современные микросхемы становятся все миниатюрнее, а монтаж их – все плотнее. Перепайка таких устройств доступна людям с умелыми руками, не боящихся кропотливой работы с монтажом плат. Вам понадобитсяПаяльная станция с термофеном, паяльная…

Компаунд представляет собой термоактивную, термопластическую полимерную смолу, которая затвердевает в естественных условиях, а также эластомерные материалы с наполнителями. Он используется как электроизоляционный материал. Вам понадобится-…

Тем, кому приходится самостоятельно чинить бытовую и другую электронную технику, нередко приходится сталкиваться ситуацией, когда необходимо выпаять из монтажной платы микросхему. Эта операция требует больше внимания, чем выпаивание обычных…

Понятие «мощный звук» неразрывно связано с использованием сабвуфера. Однако под воздействием слишком больших нагрузок он может выйти из строя. Вы сможете отремонтировать «полетевший» сабвуфер, если четко будете знать, какие…

Микронаушники нашли широкое практическое применение среди студентов во время сдачи экзаменов и зачетов. Однако бывает так, что приобрести данное устройство накладно. В этом случае его можно собрать самостоятельно. Вам понадобится- паяльник;-…

Если вы занимаетесь электроникой и/или ремонтом электронной техники, то время от времени приходиться сталкиваться с необходимостью выпаивания микросхем SMD. Данный процесс необходимо производить крайне аккуратно, чтобы не повредить устройство. Для…

В зависимости от необходимого уровня громкости звука, напряжения источника питания и выходной мощности пассивных акустических систем может потребоваться отсутствующий в продаже усилитель мощности. Такой усилитель довольно просто можно собрать на…

При ремонте аппаратуры, часто бывает необходимость замены микросхем. Микросхемы бывают в DIP корпусе – старые образцы и SMD – это современный планарный корпус, меньшего размера, чем DIP, для пайки непосредственно к дорожкам печатной платы. Бывает,…

От человека, который производит ремонт электроники, требуется определенная квалификация. Однако если соблюдать общепринятые каноны ремонта электроники и овладеть необходимыми знаниями по элементной базе и научиться надежно и аккуратно паять, то…

Трансивер является специальным устройством, которое предназначено для приема и передачи сигнала между двумя физически различными средствами систем связи. Он представляет собой приемник-передатчик, соединяющий интерфейс хоста с сетью, например…

Пайка представляет собой способ соединения металлов с помощью другого, более легкоплавкого металла. Как правило, для пайки плат в электронике используется припой, который содержится 60% олова, а также 40% свинца. Вам понадобится- паяльник;-…

Микросхема это электронная схема, которая располагается на пластинке, сделанной из полупроводникового материала, обычно из кремния. Как правило, площадь типичной интегральной схемы составляет 1,5 мм2 , а толщина – 0,2 миллиметра. Все элементы схемы (резисторы, диоды, транзисторы, сопротивления и соединяющие их проводки) размещаются на пластинке.

Вам понадобится

  • - паяльник;
  • - пластик;
  • - провода.

Инструкция

  • Воспользуйтесь специальным приложением, чтобы продумать конструкцию микросхемы. Попрактиковаться в вопросе инженерии микросхем можно с помощью программы Logisim. Скачать приложение можно по ссылке http://sourceforge.net/projects/circuit/.
  • Чтобы выполнить конечное проектирование схемы из слоев проводников, диэлектриков и полупроводников, установите приложение Electric VLSI. Скачать его можно на официальном сайте производителя http://www.staticfreesoft.com/productsFree.html. После того, как вам удалось составить электронный проект микросхемы, приступите к ее созданию.
  • Возьмите кусочек пластика, размер его должен быть как сим-карта телефона. В радиомагазине приобретите токопроводящий карандаш, который предназначен для восстановления дорожек. Возьмите токопроводящий клей, например «Контактол» и шприц.
  • Для корпуса микросхемы найдите металлическую коробочку. Также найдите небольшое количество тонких проводков для дискретных компонентов.
  • Приступите к конструированию микросхемы. Нарисуйте на пластинке токопроводящие дорожки, резисторы и емкости, все, что можно нарисовать согласно построенной схемы на компьютере. Далее наклейте транзисторы или диоды. Приклейте на пластинку провода вывода микросхемы. Лучше всего проколоть пластик, чтобы все выводы переместились в низ платы. Сверху приклейте крышку, надпишите на ней название.
  • Припаяйте полученную микросхему к плате. Для этого приклейте ее выводами на кусочек самоклеющейся алюминиевой фольги, к каждой ноге припаяйте тонкий проводок. Для пайки микросхемы используйте флюс ЛТИ-120. Сделайте плату из стеклотекстолита, разместите на ней схему, сформируйте и припаяйте выходы на площадки платы. Затем возьмите спирт, отмойте плату от остатков флюса. Далее припаяйте навесные элементы.
  • Как подготовить к производству плату, сделанную в Eagle

    Подготовка к производству состоит из 2 этапов: проверка технологических ограничений (DRC) и генерация файлов в формате Gerber

    DRC

    У каждого производителя печатных плат существуют технологические ограничения на минимальную ширину дорожек, зазоры между дорожками, диаметры отверстий, и т.п. Если плата не соответствует этим ограничениям, производитель отказывается принимать плату к производству.

    При создании файла печатной платы устанавливаются технологические ограничения по умолчанию из файла default.dru из каталога dru. Как правило, эти ограничения не соответствуют ограничениям реальных производителей, поэтому их нужно изменить. Можно настроить ограничения непосредственно перед генерацией файлов Gerber, но лучше сделать это сразу после создания файла платы. Для настройки ограничений нажимаем кнопку DRC

    Зазоры

    Переходим на вкладку Clearance, где задаются зазоры между проводниками. Видим 2 секции: Different signals и Same signals . Different signals - определяет зазоры между элементами, принадлежащим разным сигналам. Same signals - определяет зазоры между элементами, принадлежащим одному и тому же сигналу. При перемещении между полями ввода картинка меняется, показывая смысл вводимого значения. Размеры можно задавать в миллиметрах (mm) или в тысячных долях дюйма (mil, 0.0254 мм).

    Расстояния

    На вкладке Distance определяются минимальные расстояния между медью и краем платы (Copper/Dimension ) и между краями отверстий (Drill/Hole )

    Минимальные размеры

    На вкладке Sizes для двухсторонних плат имеют смысл 2 параметра: Minimum Width - минимальная ширина проводника и Minimum Drill - минимальный диаметр отверстия.

    Пояски

    На вкладке Restring задаются размеры поясков вокруг переходных отверстий и контактных полщадок выводных компонентов. Ширина пояска задается в процентах от диаметра отверстия, при этом можно задать ограничение на минимальную и максимальную ширину. Для двухсторонних плат имеют смысл параметры Pads/Top , Pads/Bottom (контактные площадки на верхнем и нижнем слое) и Vias/Outer (переходные отверстия).

    Маски

    На вкладке Masks задаются зазоры от края контактной площадки до паяльной маски (Stop ) и паяльной пасты (Cream ). Зазоры задаются в процентах меньшего размера площадки, при этом можно задать ограничение на минимальный и максимальный зазор. Если производитель плат не указывает специальных требований, можно оставить на этой вкладке значения по умолчанию.

    Параметр Limit определяет минимальный диаметр переходного отверстия, которое не будет закрыто маской. Например если узазать 0.6mm то переходные отверстия диаметром 0.6мм и менее будут закрыты маской.

    Запуск проверки

    После установки ограничений, переходим на вкладку File . Можно сохранить установки в файл, нажав кнопку Save As... . В дальнейшем для других плат можно быстро загрузить установки (Load... ).

    Нажатием кнопки Apply установленные технологические ограничения применяются к файлу печатной платы. Это влияет на слои tStop, bStop, tCream, bCream . Также для переходных отверстий и контактных площадок выводных компонентов будет изменен размер, чтобы удовлетворить ограничениям, заданным на вкладке Restring .

    Нажатие кнопки Check запускает процесс контроля ограничений. Если плата удовлетворяет всем ограничениям, в строке статуса программы появится сообщение No errors . Если плата не проходит контроль, появляется окно DRC Errors

    В окне содержится список ошибок DRC, с указанием типа ошибки и слоя. При двойном щелчке на строке область платы с ошибкой будет показана в центре главного окна. Типы ошибок:

    слишком маленький зазор

    слишком маленький диаметр отверстия

    пересечение дорожек с разными сигналами

    фольга слишком близко к краю платы

    После исправления ошибок нужно снова запустить контроль, и повторять эту процедуру до тех пор, пока не будут устранены все ошибки. Теперь плата готова к выводу в файлы Gerber.

    Генерация файлов в формате Gerber

    Из меню File выбрать CAM Processor . Появится окно CAM Processor .

    Совокупность параметров генерации файлов называется заданием. Задание состоит из нескольких секций. Секция определяет параметры вывода одного файла. По умолчанию в поставке Eagle имеется задание gerb274x.cam, но оно иммет 2 недостатка. Во-первых, нижние слои выводятся в зеркальном отображении, во-вторых не выводится файл сверловки (для генерации сверловки нужно будет выполнить еще одно задание). Поэтому рассмотрим создание задания "с нуля".

    Нам нужно создать 7 файлов: границы платы, медь сверху и снизу, шелкография сверху, паяльная маска сверху и снизу и сверловка.

    Начнем с границ платы. В поле Section вводим имя секции. Проверяем, что в группе Style установлены только pos. Coord , Optimize и Fill pads . Из списка Device выбираем GERBER_RS274X . В поле ввода File вводится имя выходного файла. Удобно поместить файлы в отдельный каталог, поэтому в этом поле введем %P/gerber/%N.Edge.grb . Это означает каталог, в котором расположен исходный файл платы, подкаталог gerber , исходное имя файла платы (без расширения .brd ) с добавленным в конце .Edge.grb . Обратите внимание, что подкаталоги не создаются автоматически, поэтому перед генерацией файлов нужно будет создать подкалог gerber в каталоге проекта. В полях Offset вводим 0. В списке слоев выбираем только слой Dimension . На этом создание секции закончено.

    Для создания новой секции нажимаем Add . В окне появляется новая вкладка. Устанавливаем параметры секции как описано выше, повторяем процесс для всех секций. Разумеется, для каждой секции должен быть выбран свой набор слоев:

      медь сверху - Top, Pads, Vias

      медь снизу - Bottom, Pads, Vias

      шелкография сверху - tPlace, tDocu, tNames

      маска сверху - tStop

      маска снизу - bStop

      сверловка - Drill, Holes

    и имя файла, например:

      медь сверху - %P/gerber/%N.TopCopper.grb

      медь снизу - %P/gerber/%N.BottomCopper.grb

      шелкография сверху - %P/gerber/%N.TopSilk.grb

      маска сверху - %P/gerber/%N.TopMask.grb

      маска снизу - %P/gerber/%N.BottomMask.grb

      сверловка - %P/gerber/%N.Drill.xln

    Для файла сверловки устройство вывода (Device ) должно быть EXCELLON , а не GERBER_RS274X

    Следует иметь в виду, что некоторые производители плат принимают только файлы с именами в формате 8.3, то есть не более 8 символов в имени файла, не более 3 символов в расширении. Это следует учитывать при задании имен файлов.

    Получаем следующее:

    Затем открываем файл платы (File => Open => Board ). Убедитесь, что файл платы был сохранен! Нажимаем Process Job - и получаем набор файлов, которые можно отправить производителю плат. Обратите внимание - кроме собственно Gerber файлов будут также сгенерированы информационные файлы (с раширениями .gpi или .dri ) - их отправлять не нужно.

    Можно также вывести файлы только из отдельных секций, выбирая нужную вкладку и нажимая Process Section .

    Перед отправкой файлов производителю плат полезно просмотреть то, что получилось, с помощью программы просмотра Gerber. Например, ViewMate для Windows или для Linux. Еще бывает полезно сохранить плату в PDF (в редакторе платы File->Print->кнопка PDF) и закинуть этот файл производителю вместе с герберами. А то они ведь тоже люди, это поможет им не ошибиться.

    Технологические операции, которые необходимо выполнять при работе с фоторезистом СПФ-ВЩ

    1. Подготовка поверхности.
    а) зачистка шлифованным порошком («Маршалит»), размер М-40, промывка водой
    б) декапирование 10% раствором серной кислоты (10-20 сек), промывка водой
    в) сушка при T=80-90 гр.Ц.
    г) проверка – если в течение 30 сек. на поверхности остается сплошная пленка – подложка готова к работе,
    если нет – повторить все сначала.

    2. Нанесение фоторезиста.
    Нанесение фоторезиста производится на ламинаторе с Tвалов =80 гр.Ц. (см. инструкцию работы на ламинаторе).
    С этой целью горячая подложка (после сушильного шкафа) одновременно с плёнкой из рулона СПФ направляется в зазор между валов, причем полиэтиленовая (матовая) плёнка должна быть направлена к медной стороне поверхности. После прижима пленки к подложке начинается движение валов, при этом полиэтиленовая пленка снимается, а слой фоторезиста накатывается на подложку. Лавсановая защитная пленка остается сверху. После этого пленка СПФ обрезается со всех сторон по размеру подложки и выдерживается при комнатной температуре в течение 30 минут. Допускается выдержка в течение от 30 минут до 2 суток в темноте при комнатной температуре.

    3. Экспонирование.

    Экспонирование через фотошаблон производят на установках СКЦИ или И-1 с УФ-лампами типа ДРКТ-3000 или ЛУФ-30 с вакуумным разрежением 0,7-0,9 кг/см2. Время экспонирования (для получения рисунка) регламентируется самой установкой и подбирается экспериментально. Шаблон должен быть хорошо прижат к подложке! После экспонирования заготовка выдерживается в течение 30 минут (допускается до 2 часов).

    4. Проявление.
    После экспонирования проводится процесс проявления рисунка. С этой целью с поверхности подложки снимается верхний защитный слой – лавсановая пленка. После этого заготовка опускается в раствор кальцинированной соды (2%) при T=35 гр.Ц. Через 10 секунд начинают процесс снятия незасвеченной части фоторезиста с помощью поролонового тампона. Время проявления подбирают опытным путем.
    Затем подложку вынимают из проявителя, промывают водой, декапируют (10 сек.) 10%-ным раствором H2SO4 (серная кислота), снова водой и сушат в шкафу при T=60 гр.Ц.
    Полученный рисунок не должен отслаиваться.

    5. Полученный рисунок.
    Полученный рисунок (слой фоторезиста) устойчив для травления в:
    - хлорном железе
    - соляной кислоте
    - сернокислой меди
    - царской водке (после дополнительного задубливания)
    и др. растворах

    6. Срок годности фоторезиста СПФ-ВЩ.
    Срок годности СПФ-ВЩ 12 месяцев. Хранение осуществляется в темном месте при температуре от 5 до 25 гр. Ц. в вертикальном положении, завернутым в черную бумагу.