Объединение трех офисов через vpn. Развертывание VPN-сети. Что такое VPN соединение

VPN (Virtual Private Network) – широко распространённая технология, позволяющая организовывать виртуальные сети поверх существующих реальных сетей. В данной статье речь пойдёт о терминологии и общих принципах, настройка таких сетей будет рассматриваться отдельно.

Не смотря на слово «Private» в названии технологии, существует возможность организации и общедоступных – нешифрованных сетей. Вообще, организация VPN может осуществляться огромным количеством способов с использованием разных технологий (SSL VPN, IPSec, GRE и др.).

Любое построение VPN-а означает создание туннелей, под туннелем подразумевается канал между двумя устройствами, по которому передаётся данные. Важное условие – данные изолированы от особенностей построения канала. Устройство, передающее полезные данные делает это так, как будто бы никакого туннеля нет, а настройка самого туннеля при этом выделяется в отдельную задачу. Существует два типа VPN туннелей:

  1. Remote access VPN – означает, что туннель организуется между приложением на компьютере клиента и каким-либо устройством, которое выступает в качестве сервера и организовывает подключения от различных клиентов (например, VPN-концентратор, маршрутизатор, Cisco ASA и т.п.)
  2. Site-to-site VPN – подразумевает наличие двух устройств (например, маршрутизаторов), между которыми имеется перманентный туннель, в этом случае, пользователи находятся за устройствами, в локальный сетях и на их компьютерах не требуется установки какого-либо специального программного обеспечения.

Первый тип используется для подключения, например, удалённых работников в корпоративную сеть предприятия по защищённому каналу. В этом случае работник может находиться в любом месте, где есть интернет, и программное обеспечение на его компьютере построит туннель до маршрутизатора компании, по которому будут передаваться полезные данные. Второй тип используется в случае необходимости стационарного соединения между двумя удалёнными филиалами, или филиалом и центральным офисом. В этом случае сотрудники без специального ПО работают в локальной сети офиса, а на границе этой сети стоит маршрутизатор, который незаметно для пользователя создаёт туннель с удалённым маршрутизатором и передаёт на него полезный трафик.

В туннеле обычно используется три прослойки протоколов:

  1. Транспортный протокол (например, IP). Это протокол, на котором построена существующая реальная сеть, то есть, он изначально не связан с VPN-ом, но используется для транспортировки инкапсулированных пакетов, содержащих внутри себя зашифрованную, или открытую информацию, относящуюся ко внутренней сети туннеля.
  2. Протокол инкапсуляции (например, GRE) – используется как прослойка между транспортным протоколом и внутренним транспортируемым протоколом.
  3. Инкапсулированный (транспортируемый) протокол (например, IP, IPX, IPSec) – это собственно пакеты внутритуннельной сети, пользователь, подключенный к VPN-у отправляет пакеты, которые на входе в туннель становятся инкапсулированными, например, в GRE, который, в свою очередь, инкапсулируется в транспортный протокол.

Таким образом, общий порядок инкапсуляции, в случае использования site-to-site VPN следующий: пользователь отправляет обычный пакет, пакет доходит до устройства, на котором поднят туннель, устройство заворачивает этот полезный пакет в поле «data» протокола инкапсуляции, который, в свою очередь заворачивается в поле «data» транспортного протокола. После чего из устройства выходит с виду обычный, например, ip пакет, в котором, на самом деле, в поле с полезными данными содержится GRE-пакет, в котором, в свою очередь, содержится другой внутренний IP пакет. Это позволяет использовать независимую адресацию внутри туннеля и снаружи туннеля. Когда целевое устройство получает такой пакет, оно разворачивает его, декапсулируя из него GRE и потом внутренний IP пакет. После чего внутренний пакет направляется получателю. В данной ситуации, как не сложно догадаться, отправитель и получатель ничего не знаю о наличии туннеля, и работают так, как будто бы его нет. При этом в транспортном протоколе используется одна адресация (например, публичные IP адреса), а в транспортируемом протоколе могут использоваться приватные адреса, что не мешает ему транспортироваться через интернет (так как маршрутизация осуществляется для внешнего, транспортного пакета).

VPN (Virtual Private Network) - это виртуальная частная сеть или логическая сеть, которая создается поверх незащищённых сетей (сетей оператора связи или сервис-провайдера Интернет). VPN – это технология, которая обеспечивает защиту данных при передаче их по незащищенным сетям. Виртуальная частная сеть позволяет организовать туннель в незащищённых сетях (между двумя точками сети), например в ATM, FR или IP-сетях.

С помощью VPN можно осуществить соединения: сеть-сеть, узел-сеть или узел-узел. Такие свойства технологии VPN предоставляют возможность объединить территориально удаленные друг от друга локальные сети офисов компании в единую корпоративную информационную сеть. Необходимо отметить, что корпоративные вычислительные сети (КВС) можно организовывать и на базе выделенных (частных или арендованных) каналов связи. Такие средства организации используются для небольших КВС (предприятий с компактно расположенными офисами) с неизменяющимся во времени трафиком.

Известны основные виды VPN и их комбинации:

  • Intranet VPN (внутрикорпоративные VPN);
  • Extranet VPN (межкорпоративные VPN);
  • Remote Access VPN (VPN с удаленным доступом);
  • Client/Server VPN (VPN между двумя узлами корпоративной сети).

В настоящее время для построения корпоративных территориально распределенных сетей в разделяемой инфраструктуре сервис-провайдеров и операторов связи применяются следующие технологий:

  • IP-туннели с использованием технологий GRE или IPSec VPN;
  • SSL, к которой относятся OpenVPN и SSL VPN (SSL/TLS VPN) для организации безопасных каналов связи;
  • MPLS в сети оператора (L3 VPN) или VPN в сети BGP/MPLS;
  • Metro Ethernet VPN в сети оператора (L2 VPN). Наиболее перспективная технология, используемая в Metro Ethernet VPN, - это VPN на базе MPLS (MPLS L2 VPN) или VPLS.

Что касается применения выделенных линий и технологий Frame Relay, ATM для организации корпоративных территориально распределенных сетей, то они уже для этих целей практически не применяются. Сегодня, как правило, КВС строятся на основе оверлейных сетей (клиент-серверных и одноранговых сетей), которые работают в разделяемой инфраструктуре операторов, и являются «надстройками» над классическими сетевыми протоколами.

Для организации территориально распределенных корпоративных сетей провайдеры предоставляют заказчикам следующие основные модели VPN в среде Интернет:

  • модель IP VPN (GRE, IPSec VPN, OpenVPN) через WAN сеть, в которой настройка VPN обеспечивается заказчиком;
  • модель L 3 VPN или MPLS L3 VPN через WAN сеть, в которой настройка VPN обеспечивается сервис-провайдером или оператором связи;
  • модель L2 VPN через MAN сеть, в которой настройка VPN обеспечивается провайдером или оператором связи:
    • point-to-point (AToM, 802.1Q, L2TPv3);
    • multipoint (VPLS и H-VPLS).

Технологии VPN можно классифицировать и по способам их реализации с помощью протоколов: аутентификации, туннелирования и шифрования IP-пакетов. Например, VPN (IPSec, OpenVPN, PPTP) основаны на шифровании данных заказчиков, VPN (L2TP и MPLS) базируются на разделении потоков данных между заказчиками VPN, а SSL VPN основана на криптографии и аутентификации трафика. Но, как правило, VPN используют смешанные варианты, когда совместно используются технологии: аутентификации, туннелирования и шифрования. В основном организация VPN-сетей осуществляется на основе протоколов канального и сетевого уровней модели OSI.

Необходимо отметить, что для мобильных удаленных пользователей была разработана технология SSL VPN (Secure Socket Layer - уровень защищенных сокетов), которая основана на ином принципе передачи частных данных (данных пользователей) через Интернет. Для организации SSL VPN используется протокол прикладного уровня HTTPS. Для HTTPS используется порт 443, по которому устанавливается соединение с использованием TLS (Transport Layer Security - безопасность транспортного уровня).

TLS и SSL (TLS и SSL- протоколы 6 уровня модели OSI) - это криптографические протоколы, которые обеспечивают надежную защиту данных прикладного уровня, так как используют асимметричную криптографию, симметричное шифрование и коды аутентичности сообщений. Но поскольку в стеке TCP/IP определены 4 уровня, т.е. отсутствуют сеансовый и представительский уровни, то эти протоколы работают над транспортным уровнем в стеке TCP/IP, обеспечивая безопасность передачи данных между узлами сети Интернет.

Модель IP VPN, в которой настройка VPN обеспечивается заказчиком

Модель IP VPN может быть реализована на базе стандарта IPSec или других протоколов VPN (PPTP, L2TP, OpenVPN). В этой модели взаимодействие между маршрутизаторами заказчика устанавливается через WAN сеть сервис-провайдера. В этом случае провайдер не участвует в настройке VPN, а только предоставляет свои незащищённые сети для передачи трафика заказчика. Сети провайдеров предназначены только для инкапсулированного или наложенного (прозрачного) соединения VPN между офисами заказчика.

Настройка VPN осуществляется телекоммуникационными средствами заказчика, т.е. заказчик сам управляет маршрутизацией трафика. VPN соединение – это соединение поверх незащищённой сети типа точка-точка: «VPN шлюз - VPN шлюз» для объединения удаленных локальных сетей офисов, «VPN пользователь - VPN шлюз» для подключения удаленных сотрудников к центральному офису.

Для организации VPN-сети в каждый офис компании устанавливается маршрутизатор, который обеспечивает взаимодействие сети офиса с VPN-сетью. На маршрутизаторы устанавливается программное обеспечение для построения защищённых VPN, например, бесплатный популярный пакет OpenVPN (в этом случае пакет OpenVPN надо сконфигурировать для работы в режиме маршрутизации). Технология OpenVPN основана на SSL стандарте для осуществления безопасных коммуникаций через Интернет.

OpenVPN обеспечивает безопасные соединения на основе 2-го и 3-го уровней OSI. Если OpenVPN сконфигурировать для работы в режиме моста - он обеспечивает безопасные соединения на основе 2 уровня OSI, если в режиме маршрутизации - на основе 3-го уровня. OpenVPN в отличие от SSL VPN не поддерживает доступ к VPN-сети через web-браузер. Для OpenVPN требуется дополнительное приложение (VPN-клиент).

Маршрутизатор головного офиса компании настраивается в качестве VPN-сервера, а маршрутизаторы удаленных офисов в качестве VPN-клиентов. Маршрутизаторы VPN-сервер и VPN-клиенты подключаются к Интернету через сети провайдера. Кроме того, к главному офису можно подключить ПК удаленного пользователя, настроив на ПК программу VPN-клиента. В итоге получаем модель IP VPN (скриншот представлен на рис. 1).

Рис. 1. Модель сети IP VPN (Intranet VPN + Remote Access VPN)

Модель MPLS L3 VPN или L3 VPN, в которой настройка VPN обеспечивается сервис-провайдером или оператором связи (поставщиком услуг)

Рассмотрим процесс организации VPN-сети для трех удаленных локальных сетей офисов заказчика услуг (например, корпорации SC-3), размещенных в различных городах, с помощью магистральной сети MPLS VPN поставщика услуг, построенной на базе технологии MPLS L3 VPN. Кроме того, к сети корпорации SC-3 подключен ПК удаленного рабочего места и ноутбук мобильного пользователя. В модели MPLS L3 VPN оборудование провайдера участвует в маршрутизации клиентского трафика через сеть WAN.

В этом случае доставка клиентского трафика от локальных сетей офисов заказчика услуг к магистральной сети MPLS VPN поставщика услуг осуществляется с помощью технологии IP. Для организации VPN-сети в каждый офис компании устанавливается периферийный или пограничный CE-маршрутизатор (Customer Edge router), который соединяется физическим каналом с одним из пограничных РЕ-маршрутизаторов (Provider Edge router) сети MPLS провайдера (оператора). При этом на физическом канале, соединяющем CE и PE маршрутизаторы, может работать один из протоколов канального уровня (PPP, Ethernet, FDDI, FR, ATM и т.д.).

Сеть поставщика услуг (сервис-провайдера или оператора связи) состоит из периферийных РЕ-маршрутизаторов и опорной сети (ядра сети) с коммутирующими по меткам магистральными маршрутизаторами P (Provider router). Таким образом, MPLS L3 VPN состоит из офисных локальных IP-сетей заказчика и магистральной сети MPLS провайдера (домена MPLS), которая объединяет распределенные локальные сети офисов заказчика в единую сеть.

Удаленные локальные сети офисов заказчика обмениваются IP-пакетами через сеть провайдера MPLS, в которой образуются туннели MPLS для передачи клиентского трафика по опорной сети поставщика. Скриншот модели сети MPLS L3 VPN (Intranet VPN + Remote Access VPN) представлен на рис. 2. С целью упрощения схемы сети приняты следующие начальные условия: все ЛВС офисов относятся к одной VPN, а опорная (магистральная) сеть является доменом MPLS (MPLS domain), находящаяся под единым управлением национального сервис-провайдера (оператора связи).

Необходимо отметить, что MPLS L3 VPN может быть организована с помощью нескольких доменов MPLS разных сервис-провайдеров. На рисунке 2 представлена полносвязная топология VPN.


Рис. 2. Модель сети MPLS L3 VPN (Intranet VPN + Remote Access VPN)

Функционирование PE-маршрутизаторов

Периферийные маршрутизаторы CE и PE (заказчика и провайдера) обмениваются друг с другом маршрутной информацией одним из внутренних протоколов маршрутизации IGP (RIP, OSPF или IS-IS). В результате обмена маршрутной информацией каждый РЕ-маршрутизатор создает свою отдельную (внешнюю) таблицу маршрутизации VRF (VPN Routing and Forwarding) для локальной сети офиса заказчика, подключенной к нему через CE-маршрутизатор. Таким образом, маршрутная информация, полученная от CE, фиксируется в VRF-таблице PE.

Таблица VRF называется виртуальной таблицей маршрутизации и продвижения. Только РЕ-маршрутизаторы знают о том, что в сети MPLS организована VPN для заказчика. Из модели сети MPLS L3 VPN следует, что между CE-маршрутизаторами заказчика не осуществляется обмен маршрутной информацией, поэтому заказчик не участвует в маршрутизации трафика через магистраль MPLS, настройку VPN (РЕ-маршрутизаторов и Р-маршрутизаторов) осуществляет провайдер (оператор).

К РЕ-маршрутизатору могут быть подключены несколько VPN-сетей разных заказчиков (рис.3). В этом случае на каждый интерфейс (int1, int2 и т.д.) PE-маршрутизатора, к которому подключена локальная сеть офиса заказчика, устанавливается отдельный протокол маршрутизации. Для каждого интерфейса РЕ-маршрутизатора один из протоколов IGP создает таблицу маршрутизации VRF, а каждая таблица маршрутизации VRF соответствует VPN-маршрутам для каждого заказчика.

Например, для заказчика SC-3 и его сети LAN0 (главного офиса), подключенной через CE0 к PE0, на PE0 будет сформирована таблица VRF1 SC-3, для LAN1 заказчика SC-3 на PE1 будет создана VRF2 SC-3, для LAN2 на PE2 - VRF3 SC-3 и т.д., а принадлежат они одной VPN SC3. Таблица VRF1 SC-3 является общей для маршрутной информации CE0 и CE4. Необходимо отметить, что таблицы VRF пополняются информацией об адресах локальных сетей всех других офисов данного заказчика с помощью протокола MP-BGP (multiprotocol BGP). Протокол MP-BGP используется для обмена маршрутами непосредственно между РЕ-маршрутизаторами и может переносить в маршрутной информации адреса VPN-IPv4.

Адреса VPN-IPv4 состоят из исходных адресов IPv4 и префикса RD (Route Distinguisher) или различителя маршрутов, который идентифицирует конкретную VPN. В итоге на маршрутизаторах РЕ будут созданы VRF-таблицы с идентичными маршрутами для одной сети VPN. Только те РЕ-маршрутизаторы, которые участвуют в организации одной и той же VPN-сети заказчика, обмениваются между собой маршрутной информацией по протоколу MP-BGP. Префикс RD конфигурируется для каждой VRF-таблицы.

Маршрутная информация, которой обмениваются РЕ-маршрутизаторы по протоколу MP-BGP через глобальный или внутренний интерфейс:

  • Адрес сети назначения (VPN-IPv4);
  • Адрес следующего маршрутизатора для протокола (next hop);
  • Метка Lvpn – определяется номером интерфейса (int) РЕ-маршрутизатора, к которому подключена одна из ЛВС офиса заказчика;
  • Атрибут сообщения RT (route-target) – это атрибут VPN, который идентифицирует все ЛВС офисов, принадлежащие одной корпоративной сети заказчика или одной VPN.

Рис. 3. РЕ-маршрутизатор

Кроме того, каждый РЕ-маршрутизатор обменивается маршрутной информацией с магистральными P-маршрутизаторами одним из внутренних протоколов маршрутизации (OSPF или IS-IS) и создает также отдельную (внутреннюю) глобальную таблицу маршрутизации (ГТМ) для магистральной сети MPLS. Внешняя (VRF) таблица и внутренняя (ГТМ) глобальная таблицы маршрутизации в РЕ-маршрутизаторах изолированы друг от друга. P-маршрутизаторы обмениваются маршрутной информацией между собой и PЕ-маршрутизаторами с помощью традиционных протоколов внутренней IP-маршрутизации (IGP), например OSPF или IS-IS, и создают свои таблицы маршрутизации.

На основе таблиц маршрутизации с помощью протоколов распределения меток LDP или протоколов RSVP на основе технологии Traffic Engineering строятся таблицы коммутации меток на всех маршрутизаторах P (на PE создаются FTN), образующих определенный маршрут LSP (Label Switched Paths). В результате формируются маршруты с коммутацией по меткам LSP, по которым IP-пакеты продвигаются на основе значений меток заголовка MPLS и локальных таблиц коммутации, а не IP-адресов и таблиц маршрутизации.

Заголовок MPLS добавляется к каждому IP-пакету, поступающему на входной PE-маршрутизатор, и удаляется выходным PE-маршрутизатором, когда пакеты покидают сеть MPLS. В заголовке MPLS используется не метка, а стек из двух меток, т.е. входной PE назначает пакету две метки. Одна из них внешняя L, другая внутренняя Lvpn. Внешняя метка или метка верхнего уровня стека используется непосредственно для коммутации пакета по LSP от входного до выходного PE.

Необходимо отметить, что PE направляет входной трафик в определенный виртуальный путь LSP на основании FEC (Forwarding Equivalence Class – класса эквивалентности продвижения). FEC – это группа пакетов к условиям, транспортировки которых предъявляются одни и те же требования. Пакеты, принадлежащие одному FEC, перемещаются по одному LSP. Классификация FEC может осуществляться различными способами, например: по IP-адресу сети (префиксу сети) назначения, типу трафика, требованиям инжиниринга и т.д.

Если использовать классификацию по IP-адресу сети назначения, то для каждого префикса сети назначения создается отдельный класс. В этом случае протокол LDP полностью автоматизирует процесс создание классов и назначение им значений меток (табл. 1). Каждому входящему пакету, который направляется маршрутизатором PE на определенный IP-адрес сети офиса, назначается определенная метка на основании таблицы FTN.

Таблица 1. FTN (FEC To Next hop) на маршрутизаторе PE1

Из таблицы 1 следует, что значение внешней метки назначает входной маршрутизатор PE1 на основании IP-адреса локальной сети офиса. Внутренняя метка или метка нижнего уровня стека в процессе коммутации пакета по LSP от входного до выходного PE не участвует, а она определяет VRF или интерфейс на выходном PE, к которому присоединена ЛВС офиса заказчика.

Обмен информацией о маршрутах VPN по протоколу MP-BGP

Маршрутная информация (информация о маршрутах VPN), которую передает маршрутизатор PE1 маршрутизатору PE2 по протоколу BGP (красные линии):

  • Адрес VPN-IPv4: 46.115.25.1:106:192.168.1.0;
  • Next Hop = 46.115.25.1;
  • Lvpn=3;
  • RT= SC-3.

Различитель маршрутов RD=46.115.25.1:106 добавляется к IPv4-адресу сети LAN1 регионального офиса 1. Где 46.115.25.1 – это IP-адрес глобального интерфейса маршрутизатора PE1, через который PE1 взаимодействует с P-маршрутизаторами. Для данного маршрута VPN SC-3 администратор сети провайдера в маршрутизаторе PE1 или PE1 назначает метку (номер), например 106.

Когда маршрутизатор PE2 получает от PE1 адрес сети назначения VPN-IPv4, он отбрасывает разграничитель маршрутов RD, помещает адрес 192.168.1.0 в таблицу VRF3 SC-3 и отмечает, что запись была сделана протоколом BGP. Кроме того, он объявляет этот маршрут, подключенному к нему маршрутизатору заказчика CE2 для данной VPN SC-3.

Таблица VRF3 SC-3 также пополняется протоколом MP-BGP – об адресах сетей других ЛВС офисов данной VPN SC-3. Маршрутизатор PE1 направляет по протоколу MP-BGP маршрутную информация также другим маршрутизаторам: PE0 и PE3. В итоге, все маршруты в таблицах VRF маршрутизаторов (PE0, PE1, PE2 и PE3) содержат адреса всех сетей ЛВС офисов данного заказчика в формате IPv4.

Рис. 4. Таблицы VRF маршрутизаторов (PE0, PE1, PE2 и PE3)

Маршрутная информация, которую передает маршрутизатор PE2 маршрутизатору PE1 по протоколу MP-BGP (красные линии):

  • Адрес VPN-IPv4: 46.115.25.2:116:192.168.2.0;
  • Next Hop = 46.115.25.2;
  • Lvpn=5;
  • RT=SC-3.
Передача данных между ПК в корпоративной сети организованной на базе технологии MPLS L3 VPN

Рассмотрим, как происходит обмен данными между ПК 2 (IP: 192.168.1.2) сети LAN1 и ПК 1 (IP: 192.168.3.1) сети LAN. Для доступа к файлам, размещенным в директориях или логических дисках ПК 1 (LAN) с общим доступом, необходимо на ПК 2 (LAN1) в строке "Найти программы и файлы" (для ОС Win 7) ввести \\192.168.3.1 и нажать клавишу Enter. В результате на экране ПК 2 будут отображены директории с общим доступом ("расшаренные" директории или папки), которые размещены на ПК 1. Как это происходит?

При нажатии клавишу Enter в ПК 2 (LAN1) на сетевом уровне сформировался пакет с IP-адресом назначения 192.168.3.1. В первую очередь пакет поступает на маршрутизатор CE1 (рис. 5), который направляет его в соответствии с таблицей маршрутизацией на интерфейс int3 маршрутизатора PE1, так как он является следующим маршрутизатором для доступа к сети 192.168.3.0/24, в которой находятся ПК 1 (LAN ГО) с IP-адресом 192.168.3.1. С интерфейсом int3 связана таблица маршрутизации VRF2 SC-3, поэтому дальнейшее продвижение пакета осуществляется на основе ее параметров.

Как следует из таблицы VRF2 SC-3, следующим маршрутизатором для продвижения пакета к сети 192.168.3/24 является PE0 и эта запись была выполнена протоколом BGP. Кроме того, в таблице указано значение метки Lvpn=2, которая определяет интерфейс выходного маршрутизатора PE0. Отсюда следует, что дальнейшее продвижение пакета к сети 192.168.3/24 определяется параметрами глобальной таблицы маршрутизации ГТМ PE1.

Рис. 5. Передача данных между ПК2 (192.168.1.2) и ПК1 (192.168.3.1) сетей LAN1 и LAN главного офиса КС SC-3

В глобальной таблице (ГТМ PE1) адресу следующего маршрутизатора (NH - Next Hop) PE0 соответствует начальное значение внешней метки L=105, которая определяет путь LSP до PE0. Продвижение пакета по LSP происходит на основании L-метки верхнего уровня стека (L=105). Когда пакет проходит через маршрутизатор P3, а затем через маршрутизатор P1, метка L анализируется и заменяется новыми значениями. После достижения пакетом конечной точки LSP, маршрутизатор PE0 удаляет внешнюю метку L из стека MPLS.

Затем маршрутизатор PE0 извлекает из стека метку нижнего уровня стека Lvpn=2, которая определяет интерфейс int2, к которому присоединен маршрутизатор CE0 локальной сети главного офиса заказчика (LAN ГО). Далее из таблицы (VRF1 SC-3), содержащей все маршруты VPN SC3, маршрутизатор PE0 извлекает запись о значении метки Lvpn=2 и о связанном с ней маршруте к сети 192.168.3/24, который указывает на CE0 в качестве следующего маршрутизатора. Из таблицы следует, что запись о маршруте была помещена в таблицу VRF1 SC-3 протоколом IGP, поэтому путь движения пакета от PE0 до CE0 осуществляется по IP-протоколу.

Дальнейшее движение пакета от CE0 к ПК 1 с IP-адресом 192.168.3.1 осуществляется по MAC-адресу, так как CE0 и ПК 1 (192.168.3.1) находятся в одной ЛВС. После получения пакета-запроса от ПК 2 операционная система компьютера ПК 1 отправит копии своих директорий с общим доступом для ПК 2. Операционная система ПК 2, получив копии директорий с общим доступом от ПК 1, отображает их на экране монитора. Таким образом, через общественные сети MPLS провайдера по виртуальным каналам LSP осуществляется обмен данными между двумя ПК, принадлежащим разным ЛВС офисов одного заказчика.

Что касается подключения удаленного мобильного пользователя к ресурсам территориально распределенной корпоративной сети, то его можно реализовать с помощью одной из технологий Remote Access VPN (Remote Access IPSec VPN и SSL VPN). Необходимо отметить, что технология SSL VPN поддерживает два типа доступа: полный сетевой доступ и clientless. Технология clientless SSL VPN обеспечивает удаленный доступ к сети через стандартный веб-браузер, но в этом случае доступны только сетевые приложения с web-интерфейсом. Технология SSL VPN с полным сетевым доступом, после установки на ПК дополнительного приложения (VPN-клиента) обеспечивает доступ ко всем ресурсам территориально распределенной корпоративной сети.

Как правило, подключение удалённого пользователя к MPLS L3 VPN производится посредством сервера удаленного доступа (RAS), который подключается к одному из PE-маршрутизаторов MPLS сети. В нашем случае мобильный пользователь через сеть доступа (Интернет) подключен с помощью Remote Access IPSec VPN к RAS, который соединен с маршрутизатором PE0. Таким образом, мобильный пользователь через IPSec VPN подключается к своей корпоративной сети (корпорации SC-3), организованной на основе MPLS L3 VPN.

Модель MPLS L2 VPN, в которой настройка VPN обеспечивается провайдером или оператором связи (поставщиком услуг)

Организовать единое информационное пространство в трех офисах (например, корпорации SC-3), расположенных в пределах одного города можно на базе широкополосной Metro Ethernet сети оператора связи (L2 VPN). Одной из услуг сетей Metro Ethernet является организация корпоративных сетей через магистральные сети MAN (сети оператора связи в масштабах города). Для организации Metro Ethernet VPN (L2 VPN) используются различные технологии, например AToM (в основном EoMPLS), 802.1Q, L2TPv3 и так далее, но наиболее перспективной является технология MPLS L2 VPN или VPLS. В этом случае доставка клиентского трафика от локальных сетей офисов заказчика услуг к опорной сети MPLS VPN поставщика услуг осуществляется с помощью технологии второго уровня (Ethernet, Frame Relay или ATM).

Операторы связи предоставляют два типа услуг Ethernet сетей для организации виртуальных частных сетей на втором уровне модели OSI, которые формируются на базе технологии MPLS - это VPWS (Virtual Private Wire Services) и VPLS (Virtual Private LAN Services). Эти VPN строятся на базе псевдоканалов (pseudowire), которые связывают пограничные PE-маршрутизаторы сети провайдера (MPLS domain). Туннели LSP или логические каналы создаются при помощи меток, внутри которых прокладываются псевдоканалы (эмулированные VC) и по этим псевдоканалам передаются пакеты MPLS. VPWS основана на Ethernet over MPLS (EoMPLS). Но в VPLS в отличие от сетей point-to-point (P2P) VPWS организация псевдоканалов осуществляется с помощью многоточечных соединений (P2M).

В VPLS существует два способа установления псевдоканалов между любыми двумя PE, которые входят в состав данной VPLS (с помощью протокола BGP и протокола рассылки меток LDP). Расширенный протокол BGP (MP-BGP) обеспечивает автоматическое определения PE, которые взаимодействуют при построении территориально распределенной ЛВС на основе сервиса VPLS, и сигнализацию меток (vc-labels) виртуальных каналов. Для сигнализации vc-labels можно использовать и расширенный протокол LDP. В этом случае выявление всех PE-маршрутизаторов, которые входят в состав данной VPLS, осуществляется в режиме ручной настройки.

Можно также использовать системы управления, которые автоматизируют поиск и настройку PE устройств для организации VPLS сервисов. Для передачи кадров использует стек меток, верхняя метка предназначена для туннелей LSP, которая используется для достижения выходного PE. Нижняя метка - это метка VC Label, которая используется для демультиплексирования виртуальных каналов (pseudowires), передаваемых внутри одного туннеля. В одном туннеле может быть проложено множество псевдоканалов для разных экземпляров VPLS.

Для каждого экземпляра VPLS на PE создаются отдельные виртуальные коммутаторы VSI. Коммутаторы VSI изучают MAC-адреса и строят таблицы продвижения MPLS-пакетов. На основании данных таблицы продвижения коммутаторы VSI, получив кадры, инкапсулированные в пакеты MPLS, направляют их в псевдоканалы ведущие к пограничным PE, к которым подключены пограничные коммутаторы CE сегментов ЛВС офисов заказчика.

На базе VPWS (point-to-point) можно объединить две подсети офисов корпорации в одиную сеть, с единой сквозной IP-адресацией. VPLS – это технология, которая обеспечивает многоточечные соединения поверх пакетной сетевой инфраструктуры IP/MPLS. VPLS позволяет объединить несколько территориально распределенных локальных сетей офисов корпорации в единую локальную сеть. В этом случае магистральная сеть MPLS сервис-провайдера представляет собой виртуальный Ethernet-коммутатор (L2-коммутатор), который пересылает Ethernet-фреймы между сегментами ЛВС отдельных офисов заказчика. Схема территориально распределенной (в пределах города) локальной сети корпорации представлена на рис. 6.

Рис. 6. Схема территориально распределенной (в пределах города) локальной сети корпорации

Суть концепции VPLS заключается в прозрачной передаче Ethernet-фреймов ПК локальных сетей офисов (сегментов сетей офисов заказчика) заказчика по магистральной сети MPLS провайдера. Пограничными устройствами на стороне заказчика VPLS 1 служат коммутаторы CE0, CE1, CE2, которые соединены с устройствами PE0, PE1, PE2. PE-маршрутизаторы взаимодействуют друг с другом, с целью выявления всех PE, подключенных к VPLS 1. Устройства PE и P строят таблицы маршрутизации, на основе которых создаются каналы LSP и псевдоканалы.

В качестве протоколов сигнализации могут использоваться как BGP, так и LDP. Виртуальные коммутаторы VSI 1 устройств PE0, PE1, PE2 строят таблицы продвижения MPLS-пакетов. Например, VSI 1 устройства PE0 формирует таблицу коммутации, представленную на рис. 6. При поступлении Ethernet-фрейма c одного из ПК сети LAN главного офиса на вход устройства PE0 он инкапсулирует Ethernet-фрейм в MPLS пакет и, используя таблицу коммутации, направляет его в туннель, по которому пакет поступает на выходное устройство PE1.

Для продвижения пакета через MPLS сеть (через псевдоканалы в туннелях LSP) используется стек меток, который состоит из метки туннеля LSP и метки псевдоканала VC Label, например, 15. На выходном устройстве PE1 пакеты MPLS преобразуются в Ethernet-фреймы и направляются на коммутатор С1, к которому подключен ПК назначения с MAC-адресом 90:5C:E7:C8:56:93. В документах RFC 4761 и RFC 4762 подробно изложены методы сигнализации на базе протоколов BGP и LDP для локальных сетей организованных с помощью услуг VPLS.

Список источников информации:

1. Компьютерные сети. Принципы, технологии, протоколы: Учебник для вузов. 4-е изд. / В.Г. Олифер, Н.А. Олифер –СПб. Питер, 2010. – 944 с.

2. Олвейн, Вивек. Структура и реализация современной технологии MPLS.: Пер. с англ. – М. : Издательский дом «Вильямс», 2004. – 480 с.

В последнее время в мире телекоммуникаций наблюдается повышенный интерес к виртуальным частным сетям (Virtual Private Network – VPN) . Это обусловлено необходимостью снижения расходов на содержание корпоративных сетей за счет более дешевого подключения удаленных офисов и удаленных пользователей через сеть Internet. Действительно, при сравнении стоимости услуг по соединению нескольких сетей через Internet, например, с сетями Frame Relay можно заметить существенную разницу в стоимости. Однако необходимо отметить, что при объединении сетей через Internet, сразу же возникает вопрос о безопасности передачи данных, поэтому возникла необходимость создания механизмов позволяющих обеспечить конфиденциальность и целостность передаваемой информации. Сети, построенные на базе таких механизмов, и получили название VPN.

Кроме того, очень часто современному человеку, развивая свой бизнес, приходится много путешествовать. Это могут быть поездки в отдаленные уголки нашей страны или в страны зарубежья. Нередко людям нужен доступ к своей информации, хранящейся на их домашнем компьютере, или на компьютере фирмы. Эту проблему можно решить, организовав удалённый доступ к нему с помощью модема и телефонной линии. Использование телефонной линии имеет свои особенности. Недостатки этого решения в том, что звонок с другой страны стоит немалых денег. Есть и другое решение под названием VPN. Преимущества технологии VPN в том, что организация удалённого доступа делается не через телефонную линию, а через Internet, что намного дешевле и лучше. По моему мнению, технология

VPN имеет перспективу на широкое распространение по всему миру.

1. Понятие и классификация VPN сетей, их построение

1.1 Что такое VPN

VPN (англ. Virtual Private Network – виртуальная частная сеть) – логическая сеть, создаваемая поверх другой сети, например Internet. Несмотря на то, что коммуникации осуществляются по публичным сетям с использованием небезопасных протоколов, за счёт шифрования создаются закрытые от посторонних каналы обмена информацией. VPN позволяет объединить, например, несколько офисов организации в единую сеть с использованием для связи между ними неподконтрольных каналов.

По своей сути VPN обладает многими свойствами выделенной линии, однако развертывается она в пределах общедоступной сети, например Интернета. С помощью методики туннелирования пакеты данных транслируются через общедоступную сеть как по обычному двухточечному соединению. Между каждой парой «отправитель–получатель данных» устанавливается своеобразный туннель – безопасное логическое соединение, позволяющее инкапсулировать данные одного протокола в пакеты другого. Основными компонентами туннеля являются:

· инициатор

· маршрутизируемая сеть;

· туннельный коммутатор;

· один или несколько туннельных терминаторов.

Сам по себе принцип работы VPN не противоречит основным сетевым технологиям и протоколам. Например, при установлении соединения удаленного доступа клиент посылает серверу поток пакетов стандартного протокола PPP. В случае организации виртуальных выделенных линий между локальными сетями их маршрутизаторы также обмениваются пакетами PPP. Тем не менее, принципиально новым моментом является пересылка пакетов через безопасный туннель, организованный в пределах общедоступной сети.

Туннелирование позволяет организовать передачу пакетов одного

протокола в логической среде, использующей другой протокол. В результате появляется возможность решить проблемы взаимодействия нескольких разнотипных сетей, начиная с необходимости обеспечения целостности и конфиденциальности передаваемых данных и заканчивая преодолением несоответствий внешних протоколов или схем адресации.

Существующая сетевая инфраструктура корпорации может быть подготовлена к использованию VPN как с помощью программного, так и с помощью аппаратного обеспечения. Организацию виртуальной частной сети можно сравнить с прокладкой кабеля через глобальную сеть. Как правило, непосредственное соединение между удаленным пользователем и оконечным устройством туннеля устанавливается по протоколу PPP.

Наиболее распространенный метод создания туннелей VPN – инкапсуляция сетевых протоколов (IP, IPX, AppleTalk и т.д.) в PPP и последующая инкапсуляция образованных пакетов в протокол туннелирования. Обычно в качестве последнего выступает IP или (гораздо реже) ATM и Frame Relay. Такой подход называется туннелированием второго уровня, поскольку «пассажиром» здесь является протокол именно второго уровня.

Альтернативный подход – инкапсуляция пакетов сетевого протокола непосредственно в протокол туннелирования (например, VTP) называется туннелированием третьего уровня.

Независимо от того, какие протоколы используются или какие цели

преследуются при организации туннеля, основная методика остается

практически неизменной. Обычно один протокол используется для установления соединения с удаленным узлом, а другой – для инкапсуляции данных и служебной информации с целью передачи через туннель.

1.2 Классификация VPN сетей

Классифицировать VPN решения можно по нескольким основным параметрам:

1. По типу используемой среды:

· Защищённые VPN сети. Наиболее распространённый вариант приватных частных сетей. C его помощью возможно создать надежную и защищенную подсеть на основе ненадёжной сети, как правило, Интернета. Примером защищённых VPN являются: IPSec, OpenVPN и PPTP.

· Доверительные VPN сети. Используются в случаях, когда передающую среду можно считать надёжной и необходимо решить лишь задачу создания виртуальной подсети в рамках большей сети. Вопросы обеспечения безопасности становятся неактуальными. Примерами подобных VPN решении являются: MPLS и L2TP. Корректнее сказать, что эти протоколы перекладывают задачу обеспечения безопасности на другие, например L2TP, как правило, используется в паре с IPSec.

2. По способу реализации :

· VPN сети в виде специального программно-аппаратного обеспечения. Реализация VPN сети осуществляется при помощи специального комплекса программно-аппаратных средств. Такая реализация обеспечивает высокую производительность и, как правило, высокую степень защищённости.

· VPN сети в виде программного решения. Используют персональный компьютер со специальным программным обеспечением, обеспечивающим функциональность VPN.

· VPN сети с интегрированным решением. Функциональность VPN обеспечивает комплекс, решающий также задачи фильтрации сетевого трафика, организации сетевого экрана и обеспечения качества обслуживания.

3. По назначению:

· Intranet VPN . Используют для объединения в единую защищённую сеть нескольких распределённых филиалов одной организации, обменивающихся данными по открытым каналам связи.

· Remote Access VPN. Используют для создания защищённого канала между сегментом корпоративной сети (центральным офисом или филиалом) и одиночным пользователем, который, работая дома, подключается к корпоративным ресурсам с домашнего компьютера или, находясь в командировке, подключается к корпоративным ресурсам при помощи ноутбука.

· Extranet VPN . Используют для сетей, к которым подключаются «внешние» пользователи (например, заказчики или клиенты). Уровень доверия к ним намного ниже, чем к сотрудникам компании, поэтому требуется обеспечение специальных «рубежей» защиты, предотвращающих или ограничивающих доступ последних к особо ценной, конфиденциальной информации.

4. По типу протокола:

Существуют реализации виртуальных частных сетей под TCP/IP, IPX и AppleTalk . Но на сегодняшний день наблюдается тенденция к всеобщему переходу на протокол TCP/IP , и абсолютное большинство VPN решений поддерживает именно его.

5. По уровню сетевого протокола:

По уровню сетевого протокола на основе сопоставления с уровнями эталонной сетевой модели ISO/OSI.

1.3. Построение VPN

Существуют различные варианты построения VPN. При выборе решения требуется учитывать факторы производительности средств построения VPN. Например, если маршрутизатор и так работает на пределе мощности своего процессора, то добавление туннелей VPN и применение шифрования / дешифрования информации могут остановить работу всей сети из-за того, что этот маршрутизатор не будет справляться с простым трафиком, не говоря уже о VPN. Опыт показывает, что для построения VPN лучше всего использовать специализированное оборудование, однако если имеется ограничение в средствах, то можно обратить внимание на чисто программное решение. Рассмотрим некоторые варианты построения VPN.

· VPN на базе брандмауэров

Брандмауэры большинства производителей поддерживают туннелирование и шифрование данных. Все подобные продукты основаны на том, что трафик, проходящий через брандмауэр шифруется. К программному обеспечению собственно брандмауэра добавляется модуль шифрования. Недостатком этого метода можно назвать зависимость производительности от аппаратного обеспечения, на котором работает брандмауэр. При использовании брандмауэров на базе ПК надо помнить, что подобное решение можно применять только для небольших сетей с небольшим объемом передаваемой информации.

В качестве примера VPN на базе брандмауэров можно назвать FireWall-1 компании Check Point Software Technologies. FairWall-1 использует для построения VPN стандартный подход на базе IPSec. Трафик, приходящий в брандмауэр, дешифруется, после чего к нему применяются стандартные правила управления доступом. FireWall-1 работает под управлением операционных систем Solaris и Windows NT 4.0.

· VPN на базе маршрутизаторов

Другим способом построения VPN является применение для создания защищенных каналов маршрутизаторов. Так как вся информация, исходящая из локальной сети, проходит через маршрутизатор, то целесообразно возложить на этот маршрутизатор и задачи шифрования.

Организация VPN каналов между филиалами компании имеет большое значение в работе любого IT-специалиста. В данной статье рассматривается один из способов реализации этой задачи на основе программного продукта OpenVPN.

Ниже мы рассмотрим топологию сети, в которой будем организовывать VPN-туннель, разберем особенности конфигурирования программы OpenVPN и пошагово настроим маршрутизацию для наших офисов. Статья написана из расчета, что OpenVPN будет устанавливаться на платформы Windows 7 и Windows Server 2008.

Топология сети.

Использованная нами сетевая топология стандартна. Имеется Сеть Центрального Офиса (назовем её СЦО) и Сеть Филиала (назовем её СФ). Стоит задача соединить офисы таким образом, чтобы конечный пользовательский компьютер (далее ПК1) офиса СЦО имел доступ к общим ресурсам пользовательского компьютера (далее ПК2) СФ.

CЦО имеет в своем составе:

  • Интернет-шлюз (назовем его ИШ1) с двумя сетевыми интерфейсами:
    • 111.111.111.111 - выдаётся провайдером, смотрит в интернет.
    • 192.168.0.1 - назначается нами, смотрит в СЦО.
  • OpenVPN Сервер (далее ОС) на котором будем поднимать OpenVPN с одним виртуальным и одним физическим интерфейсом:
    • 10.8.0.1 - адрес виртуального интерфейса (интерфейс устанавливается в процессе установки программы OpenVPN). Адрес для этого интерфейса назначается программой. Мы с вами не должны менять адрес самостоятельно из управления сетевыми адаптерами.
    • 192.168.0.2 - физический интерфейс, параметры задаются нами, смотрит в СЦО.
  • ПК1 - пользовательский компьютер 1, с сетевым интерфейсом 192.168.0.3, смотрит аналогично в СЦО.

СФ имеет в своем составе:

  • Интернет-шлюз (далее ИШ2) с двумя сетевыми интерфейсами:
    • 222.222.222.222 - выдаётся провайдером, смотрит в интернет.
    • 192.168.1.2 - назначается нами, смотрит в СФ.
  • OpenVPN Клиент (далее ОК) на котором будем поднимать OpenVPN с одним виртуальным и одним физическим интерфейсом:
    • 10.8.0.2 - адрес виртуального сетевого интерфейса (интерфейс устанавливается в процессе установки программы OpenVPN). Адрес для этого интерфейса так же назначается программой OpenVPN.
    • 192.168.1.2 - физический интерфейс, параметры задаются нами, смотрит в СФ.
  • ПК2 - пользовательский компьютер 2, с сетевым интерфейсом 192.168.1.3, смотрит в СФ.

Настраиваем OpenVPN сервер.

Теперь перейдем к самой программе, основам и особенностям её конфигурирования. OpenVPN доступен в вариантах для Linux и Windows. Вы можете скачать установочный пакет на .

Сам процесс инсталлирования не вызовет никаких проблем. Единственное, стоит отключить антивирус на время установки, дабы избежать дополнительных проблем. На момент написания статьи, к примеру, продукты Лаборатории Касперского не блокировали установку, а лишь выводили подозрение на некоторые устанавливаемые компоненты.

В процессе установки в систему инсталлируется виртуальный сетевой адаптер TAP-Win32 Adapter V9 и, соответственно, драйвер к нему. Этому интерфейсу программа OpenVPN как раз и будет назначать ip адрес и маску виртуальной сети OpenVPN. В нашем случае ему назначен адрес 10.8.0.1 с маской 255.255.255.0 на сервере ОС и 10.8.0.2 с аналогичной маской на клиенте ОК.

По стандарту программа устанавливается в C:\ProgramFiles\OpenVPN . В этой директории следует сразу же создать дополнительно папку keys (здесь мы будем хранить ключи аутентификации) папку ccd (здесь будут находится конфиги настроек сервера для клиента).

В директории C:\ProgramFiles\OpenVPN\sample-config представлены стандартные конфиги. Конфиги, которые мы будем создавать, должны размещаться в директории C:\Program Files\OpenVPN\config .

Настройка OpenVPN начинается с генерации ключей. Генерируемые ключи делятся на:

  • главный CertificateAuthority (CA) сертификат и ключ, используемый для подписывания каждого сертификата сервера и клиента.
  • публичный и приватный ключи для сервера и каждого (это важно) клиента отдельно.

Последовательность создания ключей следующая (названия файлов сертификатов и ключей указаны в скобках):

  • Генерируем основной CA (ca.crt) сертификат и CA (ca.key) ключ.
  • Генерация ключа tls-auth (ta.key) для аутентификации пакетов.

Разберем каждый пункт более подробно.

Генерируем основной сертификат СА и СА ключ:

Заходим в Пуск - Выполнить набираем cmd , жмем OK, заходим в командную строку. Пишем:

Cd C:/Program Files/OpenVPN/easy-rsa

Таким образом мы находимся в директории easy-rsa :

Во время выполнения всех пунктов генерации ключей вы должны находиться именно в ней. Выполняем команду:

Init-config

Не закрывая командную строку, зайдем в C:\ProgramFiles\OpenVpn\easy-rsa и отредактируем файл vars.bat , заполнив следующие параметры (указав, естественно, свои данные):

KEY_COUNTRY=RF
KEY_PROVINCE=MO
KEY_CITY=Malinino
KEY_ORG =Organization
[email protected]

Теперь создадим СА сертификат и СА ключ. Раскрываем командную строку, которая все это время висела где то на рабочем столе, и продолжаем вписывать команды:

Vars
clean-all
build-ca

Последняя команда как раз и выполняет генерацию СА сертификата и СА ключа. В процессе создания ключа вам будут задавать вопросы, на которые вы можете отвечать просто нажатием Enter"a (тогда значения будут браться из файла vars.bat который мы редактировали выше) или же вводить свои. Стоит обратить внимание на вопрос:

Common Name (eg, your name or your server"s hostname) : OpenVPNS

Здесь вы должны задать название для сервера - в примере мы ввели OpenVPNS.

Генерируем сертификат (server.crt) и ключ (server.key) сервера.

Не выходя из директории, в нашей командной строке продолжим вводить команды. Сгенерируем сертификат сервера и ключа командой:

Build-key-server server

На вопросы отвечаем так же как в первом пункте. На вопрос:

Common Name *: server

Введем: server . На вопросы:

Sign the certificate?

1 out of 1 certificate requests certified, commit?

надо дать положительный ответ: Y .

Генерируем сертификат (office1.crt) и ключ (office1.key) для клиента.

Очевидно, что клиентов может быть много, в нашем примере он один - office1 . В зависимости от количества клиентов следующая команда в командной строке выполняется несколько раз, причем названия генерируемых ключей так же меняйте:

Build-key office1

если требуется еще сертификаты и ключи, скажем для второго клиента, то вводим:

Build-key office2

В процессе ответа на вопросы не забывайте, что каждый клиент на вопрос CommonName должен получить уникальное имя, например: office1, office2 и т.д.

Генерация параметров DiffieHellman (dh1024.pem).

Вводим в командной строке, находят во все той же директории easy-rsa:

Build-dh

Генерация ключа tls-auth (ta.key) для аутентификации пакетов

В конце создаем ключ для tls-аутификации командой:

Openvpn --genkey --secret ta.key

Теперь разберемся с тем, какие файлы оставлять на сервере, а какие перенести клиенту. На сервере (OC) должны находиться в созданной нами папке keys только следующие файлы:

  • ca.crt
  • ca.key
  • dh1024.pem
  • server.crt
  • server.key
  • ta.key

На клиенте OK аналогично серверу ОС создадим так же папочку keys, там должны быть:

  • ca.crt
  • office1.crt
  • office1.key
  • ta.key

Все файлы с расширением.key являются секретными. Передавать их стоит только по защищенным каналам, лучше на физическим носителе.

Далее приступим к созданию конфига для нашего сервера ОС и клиента ОК. В директории config создаем файл со следующим названием и расширением: server.ovpn Открываем его блокнотом и начинаем писать конфиг:

Выбираем протокол для передачи данных - в данном случае upd:

Proto udp

Стандартный порт для OpenVPN:

Port 1194

Режим работы программы L3-туннель. В данном режиме OpenVPN - роутер:

Режим клиент-сервер:

Tls-server

Данного топология доступна с версии 2.1 и заключается в том что каждому клиенту выдается по 1 адресу, без виртуальных портов маршрутизатора:

Topology subnet

Маршруты добавляются через.exe - это важно:

Route-method exe

Задержка при добавлении маршрута, можно уменьшить до 5:

Route-delay 10

Данная опция задает организацию сети. У нас появляется виртуальная сеть 10.8.0.0 /24. Первый адрес из этой сети, то есть 10.8.0.1 выдается серверу, последующие (10.8.0.2, 10.8.0.3 и т.д.) клиентам. DHPC сервер получает адрес 10.8.0.254:

Server 10.8.0.0 255.255.255.0

Задаем шлюз в openvpn сеть:

Route-gateway 10.8.0.1

Директория, в которой мы должны расположить файл с названием нашего клиента, то есть office1 без расширения, и в нем записать команды, которые будут выполнятся на клиенте:

Client-config-dir "C:\\Program Files\\OpenVPN\\ccd"


cert "C:\\Program Files\\OpenVPN\\keys\\server.crt"
key "C:\\Program Files\\OpenVPN\\keys\\server.key"
dh "C:\\Program Files\\OpenVPN\\keys\\dh1024.pem"
tls-auth "C:\\Program Files\\OpenVPN\\keys\\ta.key" 0

Задаем серверу ОС маршрут на всю сеть:

Route 10.8.0.0 255.255.255.0

Выбираем метод сжатия:

Cipher BF-CBC

Задаем сжатие трафика:

Comp-lzo

OpenVPN передает системе регистраций событий программы не критические ошибки сети. На практике это уменьшит содержимое статус-окна, появляющегося при запуске сервера OpenVPN:

Cервер пингует противоположную сторону с интервалом в 10 секунд и если сторона не отвечает за 60 секунд, то сервер запустит пересоединение:

Keepalive 5 60

Далее переходим в директорию ccd и создаем файл, в котором будут лежать команды, посылаемые клиенту от сервера. Назвать его надо так же как мы называли самого клиента, например office1 . Файл не будет иметь расширения.

Редактируем его через блокнот. Все параметры, заданные ниже, будут автоматически переданы клиенту:

Задаем ip и маску для нашего клиента office1:

Ifconfig-push 10.8.0.2 255.255.255.0

Передаем ему маршрут на всю сеть:

Push "route 10.8.0.0 255.255.255.0"

Задаем для него шлюз:

Push "route-gateway 10.8.0.1"

Эта команда говорит серверу ОС о том, что за данным клиентом, а именно ОК (office1) находится сеть 192.168.1.0:

Iroute 192.168.1.0 255.255.255.0

Таким образом, мы закончили конфигурирование сервера на стороне ОС.

Настройка клиента.

Далее приступим к изменению параметров клиента. Зайдем на машине ОК в папку config . Создадим в ней файл office1.ovpn Приступим к его редактированию, ряд опций повторяет аналогичные на сервере, поэтому мы их пояснять не будем:

Dev tun
proto udp
port 1194

Указываем внешний адрес ИШ1:

Remote 111.111.111.111

Клиент будет в работать в режиме тлс-клиента:

Tls-client

Эта опция защищает от подмены сервера третьим лицом:

Remote-cert-tls server

Эти опции аналогичны серверу:

Route-method exe
route-delay 10

Задаем маршрут к сети 192.168.0.0:

Этой командой разрешаем прием конфигурации клиента с сервера:

Пути к ключам:

Ca "C:\\Program Files\\OpenVPN\\keys\\ca.crt"
cert "C:\\Program Files\\OpenVPN\\keys\\office1.crt"
key "C:\\Program Files\\OpenVPN\\keys\\office1.key"
tls-auth "C:\\Program Files\\OpenVPN\\keys\\ta.key" 1

Остальные опции также аналогичны серверу:

Cipher BF-CBC
comp-lzo
verb 1
keepalive 5 60

На этом настройка программы на стороне клиента ОК закончена.

Настройка брандмауэра и маршрутизация.

И так, мы имеем настроенные конфиги на ОК и на ОС. Теперь разберем очень важные моменты. Заранее оговоримся, если вы использует KIS 2011 или подобные антивирусные программы, то в настройках сетевого экрана следует разрешить прохождение ICMP пакетов. Это позволит беспрепятственно пинговать хосты в наших сетях.

Так же стоит добавить наш виртуальный интерфейс программы OpenVPN в список доверенных сетей.

На ИШ1 должны быть проделаны следующие действия:

  • Настроено перенаправление порта 1194 протокола UDP с интерфейса 111.111.111.111 на интерфейс сервер ОС 192.168.0.2
  • В файерволе должна быть разрешена передача по порту 1194 протокола UDP, иначе пинг не будет проходить даже между ОС и ОК.

На ИШ2 надо предпринять аналогичные действия:

  • Настроить перенаправление порта 1194 протокола UDP с интерфейса 222.222.222.222 на интерфейс клиента ОК 192.168.1.2
  • Проверить, открыт ли порт 1194 протокола UDP в файерволе.

В Usergate 5.2, к примеру, настройка форвардинга пакетов по порту 1194 протокола UDP выглядит так:

На этом этапе мы уже пингуем ОК и ОС по их OpenVPN адресам, то есть 10.8.0.1 и 10.8.0.2. Далее нам необходимо обеспечить правильный маршрут пакетов с клиента ОК до удаленной сети 192.168.0.0. Делаем это одним из нескольких способов:

Либо задаем постоянный маршрут до этой сети на самом клиенте ОК:

Route -p add 192.168.0.0 mask 255.255.255.0 10.8.0.1

Либо задаем этот маршрут в ccd конфиге клиента на сервер, а именно в файле office1 допишем:

Push "route 192.168.0.0 255.255.255.0"

Так же это можно сделать, добавив строку напрямую в конфиг клиента ОК:

Route 192.168.0.0 255.255.255.0

Затем необходимо обеспечить маршрут пакетов с сервера ОС до удаленной сети 192.168.1.0. делается это аналогично варианту выше за несколькими исключениями.

Добавляем команду в конфиг сервера ОС:

Route 192.168.1.0 255.255.255.0 10.8.0.2

или же добавляем команду непосредственно в командной строке:

Route -p add 192.168.1.0 mask 255.255.255.0 10.8.0.2

Так же необходимо на сервере ОС и клиенте ОК включить в службах службу Маршрутизации и удаленного доступа , таким образом обеспечив маршрутизацию на внутреннюю сеть (форвардинг). Без этого внутренние адреса в сетях СЦО И СФ клиента ОК и сервера ОС не будут пинговаться.

На этом этапе мы уже свободно можем пинговать внутренние адреса наших ОС и ОК, т.е. набирая на сервере ОС ping 192.168.1.2 и на клиенте ОК ping 192.168.0.2 мы получаем положительный результат в виде:

Таким образом ОК и ОС взаимно пингуются по своим OpenVPN и внутренним СЦО и СФ адресам. Дальше нам надо прописать маршрут в командной строке в сеть 10.8.0.0 на наших ПК1 и ПК2. Делается это следующими командами:

Route -p add 192.168.1.0 mask 255.255.255.0 192.168.0.2

Route -p add 192.168.0.0 mask 255.255.255.0 192.168.1.2

В результате расшаренные ресурсы в ПК1 и ПК2 будут доступны по их внутрисетевому адресу:

  • Теги:

Please enable JavaScript to view the

В этой статье подробно рассмотрим процесс настройки VPN сервера в операционной системе Windows Server, а также ответим на вопросы: Что такое VPN и как настроить VPN соединение?

Что такое VPN соединение?

VPN (Virtual Private Network) – это виртуальная частная сеть, которая используются для обеспечения защищенного подключения к сети. Технология, позволяющая объединить любое количество устройств в частную сеть. Как правило, через интернет.

Хотя это технология не новая, но за последнее время она приобрела актуальность из-за желания пользователей сохранить целостность данных или приватность в режиме реального времени.

Такой способ соединения называется VPN туннель. Подключится к VPN можно с любого компьютера, с любой операционной системой, которая поддерживает VPN соединение. Либо установлен VPN-Client, который способен делать проброс портов с использованием TCP/IP в виртуальную сеть.

Что делает VPN

VPN обеспечивает удалённое подключение к частным сетям

Так же вы можете безопасно объединить несколько сетей и серверов

Компьютеры с ip адресами с 192.168.0.10 по 192.168.0.125 подключается через сетевой шлюз, который выполняет роль VPN сервера. Предварительно на сервере и маршрутизаторе должны быть прописаны правила для соединений по каналу VPN.

VPN позволяет спокойно использовать интернет при подключении даже к открытым wi-fi сетям в общедоступных зонах (в торговых центрах, отелях или аэропортах)

А так же обойти ограничения на показ контента в определенных странах

VPN предотвращает киберугорозы по перехвату злоумышленником информации на лету, незаметным для получателя.

Принцип работы VPN

Давайте рассмотрим, как в принципе работает VPN соединение.

Представим, что передача это движение пакета по автомобильной дороге из точки А в точку Б, на пути движения пакета встречаются контрольные пункты пропуска пакета данных. При использовании VPN, этот маршрут дополнительно защищён системой шифрования и аутентификацией пользователя, что бы обезопасить трафик, в котором содержится пакет данных. Такой метод называется «Туннелированнем» (tunneling – использование туннеля»

В этом канале все коммуникации надежно защищены, а все промежуточные узлы передачи данных имеют дело зашифрованным пакетом и только при передаче данных информации адресату, данные в пакете дешифруются и становятся доступны для авторизованного получателя.

VPN обеспечит приватность вашей информации вместе с комплексным антивирусом.

VPN поддерживает такие сертификаты как OpenVPN, L2TP, IPSec, PPTP, PPOE и получается вполне защищенный и безопасный способ передачи данных.

VPN туннелирование применяется:

  1. Внутри корпоративной сети.
  2. Объединение удалённых офисов, а так же мелких филиалов.
  3. Доступ к внешним it-ресурсам.
  4. Для построения видеоконференций.

Создание VPN выбор и настройка оборудования.

Для корпоративной связи в крупных организациях или объединения удаленных друг от друга офисов используется аппаратное оборудования способное поддерживать бесперебойную работу и защищенность в сети.

Для использования vpn-сервиса, в роли сетевого шлюза могут выступать: сервера linux/Windows, маршрутизатор и сетевой шлюз на котором поднят VPN.

Маршрутизатор должен обеспечивать надёжную работу сети без «зависаний». Встроенная функция VPN позволяет изменять конфигурация для работы дома, в организации или филиале офиса.

Настройка VPN сервера.

Если вы хотите установить и использовать VPN сервер на базе семейства Windows , то необходимо понимать, что клиенские машины Windows XP/7/8/10 данную функцию не поддерживают, вам необходима система виртуализации, либо физический сервер на платформе Windows 2000/2003/2008/2012/2016, но мы рассмотрим данную функцию на Windows Server 2008 R2.

1. Для начала необходимо установить роль сервера "Службы политики сети и доступа" Для этого открываем диспетчер сервера и нажимаем на ссылку "Добавить роль":

Выбираем роль "Службы политики сети и доступа" и нажимаем далее:

Выбираем "Службы маршрутизации и удаленного доступа" и нажимаем Далее и Установить.

2. После установки роли необходимо настроить ее. Переходим в диспетчер сервера, раскрываем ветку "Роли", выбираем роль "Службы политики сети и доступа", разворачиваем, кликаем правой кнопкой по "Маршрутизация и удаленный доступ" и выбираем "Настроить и включить маршрутизацию и удаленный доступ"

После запуска службы считаем настройку роли законченной. Теперь необходимо разрешить пользователям доступ до сервера и настроить выдачу ip-адресов клиентам.

Порты которые поддерживает VPN. После поднятие службы они открываются в брендмауэре.

Для PPTP: 1723 (TCP);

Для L2TP: 1701 (TCP)

Для SSTP: 443 (TCP).

Протокол L2TP/IpSec является более предпочтительным для построения VPN-сетей, в основном это касается безопасности и более высокой доступности, благодаря тому, что для каналов данных и управления используется одна UDP-сессия. Сегодня мы рассмотрим настройку L2TP/IpSec VPN-сервера на платформе Windows Server 2008 r2.

Вы же можете попробовать развернуть на протоколах: PPTP, PPOE, SSTP, L2TP/L2TP/IpSec

Переходим в Диспетчер сервера: Роли - Маршрутизация и удалённый доступ , щелкаем по этой роли правой кнопкой мыши и выбираем «Свойства» , на вкладке «Общие» ставим галочку в полях IPv4-маршрутизатор, выбираем «локальной сети и вызова по требованию», и IPv4-сервер удаленного доступа:

Теперь нам необходимо ввести предварительный ключ. Переходим на вкладку Безопасность и в поле Разрешить особые IPSec-политики для L2TP-подключения поставьте галочку и введите Ваш ключ. (По поводу ключа. Вы можете ввести туда произвольную комбинацию букв и цифр главный принцип, чем сложнее комбинация - тем безопаснее, и еще запомните или запишите эту комбинацию она нам еще понадобиться). Во вкладке «Поставщик службы проверки подлинности» выберите «Windows - проверка подлинности».

Теперь нам необходимо настроить Безопасность подключений . Для этого перейдем на вкладку Безопасность и выберем Методы проверки подлинности , поставьте галочки на Протокол EAP и Шифрованная проверка (Microsoft, версия 2, MS-CHAP v2):

Далее перейдем на вкладку IPv4 , там укажем какой интерфейс будет принимать подключения VPN, а так же настроим пул выдаваемых адресов клиентам L2TP VPN на вкладке IPv4 (Интерфейсом выставьте «Разрешить RAS выбирать адаптер»):

Теперь перейдем на появившуюся вкладку Порты , нажмем правой кнопкой мыши и Свойства , выберем подключение L2TP и нажмем Настроить , в новом окне выставим Подключение удаленного доступа (только входящие) и Подключение по требованию (входящие и исходящие) и выставим максимальное количество портов, число портов должно соответствовать или превышать предполагаемое количество клиентов. Неиспользуемые протоколы лучше отключить, убрав в их свойствах обе галочки.

Список портов, которые у нас остались в указанном количестве.

На этом настройка сервера закончена. Осталось только разрешить пользователям подключатся к серверу. Перейдите в Диспетчере сервера Active Directory пользователи – находим пользователя которому хотим разрешить доступ нажимаем свойства , заходим в закладку входящие звонки