Полное подключение lcd к ардуино. Символьный LCD и Arduino. Разные модели LCD экранов

LCD дисплеи размерности 1602, на базе контроллера HD44780, являются одними из самых простых, доступных и востребованных дисплеев для разработки различных электронных устройств. Его можно встретить как и в устройствах собранных на коленке, так и в промышленных устройствах, таких, как например, автоматы для приготовления кофе. На базе данного дисплея собраны самые популярные модули и шилды в тематике Arduino такие как и .

В данной статье мы расскажем как его подключить к Arduino и вывести информацию.

Используемые компоненты (купить в Китае):

. Управляющая плата

. Соединительные провода

Данные дисплеи имеют два исполнения: желтая подсветка с черными буквами либо, что встречается чаще, синюю подсветку с белыми буквами.

Размерность дисплеев на контроллере HD44780 может быть различной, управляться они будут одинаково. Самые распространенные размерности 16x02 (т.е. по 16 символов в двух строках) либо 20x04. Разрешение же самих символов - 5x8 точек.

Большинство дисплеев не имеют поддержку кириллицы, имеют её лишь дисплеи с маркировкой CTK. Но данную проблему можно попытаться частично решить (продолжение в статье).

Выводы дисплея:

На дисплее имеется 16pin разъем для подключения. Выводы промаркированы на тыльной стороне платы.

1 (VSS) - Питание контроллера (-)
2 (VDD) - Питание контроллера (+)
3 (VO) - Вывод управления контрастом
4 (RS) - Выбор регистра
5 (R/W) - Чтение/запись (режим записи при соединении с землей)
6 (E) - Еnable (строб по спаду)
7-10 (DB0-DB3) - Младшие биты 8-битного интерфейса
11-14 (DB4-DB7) - Старшие биты интерфейса
15 (A) - Анод (+) питания подсветки
16 (K) - Катод (-) питания подсветки

Режим самотестирования:

Перед попытками подключения и вывода информации, было бы неплохо узнать рабочий дисплей или нет. Для этого необходимо подать напряжение на сам контроллер (VSS и VDD ), запитать подсветку (A и K ), а также настроить контрастность.

Для настройки контрастности следует использовать потенциометр на 10 кОм. Каким он будет по форме - не важно. На крайние ноги подается +5V и GND, центральная ножка соединяется с выводом VO

После подачи питания на схему необходимо добиться правильного контраста, если он будет настроен не верно, то на экране ничего не будет отображаться. Для настройки контраста следует поиграться с потенциометром.

При правильной сборке схемы и правильной настройке контраста, на экране должна заполниться прямоугольниками верхняя строка.

Вывод информации:

Для работы дисплея используется встроенная с среду Arduino IDE библиотека LiquidCrystal.h

Функционал библиотеки

//Работа с курсором lcd.setCursor (0, 0); // Устанавливаем курсор (номер ячейки, строка) lcd.home (); // Установка курсора в ноль (0, 0) lcd.cursor (); // Включить видимость курсора (подчеркивание) lcd.noCursor (); // Убрать видимость курсора (подчеркивание) lcd.blink (); // Включить мигание курсора (курсор 5х8) lcd.noBlink (); // Выключить мигание курсора (курсор 5х8) //Вывод информации lcd.print ("сайт" ); // Вывод информации lcd.clear (); // Очистка дисплея, (удаление всех данных) установка курсора в ноль lcd.rightToLeft (); // Запись производится справа на лево lcd.leftToRight (); // Запись производится слева на право lcd.scrollDisplayRight (); // Смещение всего изображенного на дисплее на один символ вправо lcd.scrollDisplayLeft (); // Смещение всего изображенного на дисплее на один символ влево //Информация полезная для шпионов:) lcd.noDisplay (); // Информация на дисплее становится невидимой, данные не стираются // если, в момент когда данная функция активна, ничего не выводить на дисплей, то lcd.display (); // При вызове функции display() на дисплее восстанавливается вся информация которая была

Сам же дисплей может работать в двух режимах:

8-битный режим - для этого используются и младшие и старшие биты (BB0- DB7)

4-битный режим - для этого используются и только младшие биты (BB4- DB7)

Использование 8-битного режима на данном дисплее не целесообразно. Для его работы требуется на 4 ноги больше, а выигрыша в скорости практически нет т.к. частота обновления данного дисплея упирается в предел < 10раз в секунду.

Для вывода текста необходимо подключить выводы RS, E, DB4, DB5, DB6, DB7 к выводам контроллера. Их можно подключать к либым пинам Arduino, главное в коде задать правильную последовательность.

Пример программного кода:

//Тестировалось на Arduino IDE 1.0.5 #include // Лобавляем необходимую библиотеку LiquidCrystal lcd(7, 6, 5, 4, 3, 2); // (RS, E, DB4, DB5, DB6, DB7) void setup (){ lcd.begin (16, 2); // Задаем размерность экрана lcd.setCursor (0, 0); // Устанавливаем курсор в начало 1 строки lcd.print ("Hello, world!" ); // Выводим текст lcd.setCursor (0, 1); // Устанавливаем курсор в начало 2 строки lcd.print ("сайт" ); // Выводим текст } void loop (){ }

Создание собственных символов

С выводом текста разобрались, буквы английского алфавита зашиты в память контроллера внутри дисплея и с ними проблем нет. А вот что делать если нужного символа в памяти контроллера нет?

Приехал Arduino Nano, приехал кит, в котором макетка (бредборд), и LCD-дисплей. На дисплее на плате написано - 1602А, ниже - QAPASS. Начал ваять первое устройство, и конечно же, захотелось выводить информацию на дисплей, а не мигать светодиодами.

Гугл помог, рассказал, что это символьный дисплей; если не извращаться, то доступны скорее всего символы ASCII - цифры, латиница, что-то из базовых символов.

Запустить дисплей помогли следующие материалы: Driving a character type LCD from a PC printer port ; How to connect Arduino with a character LCD ; Pwm Servo Driver Motor Control PDF .

Дисплей достаточно распространенный, и для него уже понапридумывали шилдов - есть варианты с SPI вроде, и/или с I2C, и интернет полон рецептами для этих случаев. Но у меня был в наличии только оригинальный дисплей 16x2, и ардуинка, к которой хотелось его прицепить.

У дисплея есть режим работы и передачи данных полубайтами, по 4 бита, при этом младшие разряды шины не используются. Подключение только половины шины данных много где описано, и я не стал разбираться, как подключить дисплей и работать с ним по 8ми линиям. Меня вполне устроило, что и так работает.

Хорошее описание дисплеев данного типа я нашел тут - http://greathard.ucoz.com/44780_rus.pdf . А тут (http://arduino.ru/forum/programmirovanie/lcd-i2c-partizanit#comment-40748) - пример задания знакогенератора.

Подключение

У меня дисплей поставлялся с нераспаянными контактами. С начала хотел припаять шлейф, обрезал 16 проводов с дюпонами, зачистил. А потом покопался в ките, и нашел гребенку дюпонов для пайки на плату. Оттуда и отломал 16 контактов и припаял их.
Выглядел (до пайки контактов) мой дисплей примерно так:

Сперва я подключил контакт 15 (A) на +5В, 16 (K) на землю, и убедился, что подсветка работает. Вообще, правильно подключать катод на землю через резистор 220Ом, что я потом и сделал.

Затем подключил землю (1) и питание (2). Arduino может питаться от USB, от стабилизированного напряжения 5В и от нестабилизированного 6-12В, автоматически выбирается наибольшее напряжение. Сейчас ардуинка запитана от USB, и я думал, где там вытащить 5 Вольт. Оказалось, что 5В есть на контакте ардуины, куда подключаются внешние стабилизированные 5В. Вернее, там оказалось 4.7В, но мне хватило.

После подключения питания, если всё хорошо, то верхний ряд загорается сплошными прямоугольниками знакомест.

Затем подключаем потенциометр контраста (пин 3 V0). Один из крайних выводов потенциометра бросаем на землю, второй - на +5В, средний - на пин 3 дисплея. Рекомендуется потенциометр 10К. У меня был 50К из кита, сначала я использовал его. Регулировка была только на одном краю, весьма тонко приходилось ловить нужный контраст. Затем в другом ките нашел аналогичный на 5К, и поставил его. Настройка растянулась от одного края до половины оборота. Видимо, можно и еще меньше взять потенциометр. 10К наверно рекомендуют, чтобы схема поменьше потребляла. Да, пришлось немного попаять, припаял к выводам потенциометров проводки с дюпонами.

Тестовый скетч

Тестовый скетч берем в примерах от Ардуино студии - "C:\Program Files (x86)\Arduino\libraries\LiquidCrystal\ex amples\HelloWorld\HelloWorld.ino", только нужно поменять контакты на наши - LiquidCrystal lcd(7, 6, 5, 4, 3, 2);

В принципе, в этом скетче есть и описание, что куда подключать. Можно подключить, как там указано, тогда менять вообще ничего не нужно.

// include the library code: #include // initialize the library with the numbers of the interface pins LiquidCrystal lcd(7, 6, 5, 4, 3, 2); void setup() { // set up the LCD"s number of columns and rows: lcd.begin(16, 2); // Print a message to the LCD. lcd.print("hello, world!"); } void loop() { // set the cursor to column 0, line 1 // (note: line 1 is the second row, since counting begins with 0): lcd.setCursor(0, 1); // print the number of seconds since reset: lcd.print(millis() / 1000); }

Получается что-то вроде этого:

Кстати, дисплей, который попал ко мне в руки, без подсветки не работает. В смысле, работает, но практически ничего не видно.

Контакты дисплея 1602A

# контакта Наименование Как подключать
1 VSS GND
2 VDD +5V
3 V0 Контраст - на средний вывод потенциометра
4 RS (Register select) D7 Arduino
5 R/W (Read or write) GND
6 E (Enable signal) D6 Arduino
7-14 D0-D7 D0-D3 - не подключены; D4-D7 - подключены к контактам D5-D2 Ардуино
15 A Анод подсветки, подключается к +5В
16 K Катод подсветки, подключается к земле через резистор 220Ом

Жидкокристаллический дисплей (LCD) мод. 1602 (даташит) - отличный выбор для ваших проектов.

Первое, что радует - низкая цена. Второе - наличие готовых библиотек под Arduino. Третье - наличие нескольких модификаций, которые в том числе идут с различными подсветками (голубая, зеленая). В этой статье рассмотрим основы подключения данного дисплея к Arduino и приведем пример небольшого проекта для отображения уровня освещенности на дисплее с использованием фоторезистора.

Контакты и схема подключения LCD 1602 к Arduino

Контакты на этом дисплее пронумерованы от 1 до 16. Нанесены они на задней части платы. Как именно они подключаются к Arduino, показано в таблице ниже.

Табл. 1. Подключение контактов LCD 1620 к Arduino

Подключение 1602 к ArduinoЕсли дисплей 1602 питается от Arduino через 5-ти вольтовой USB-кабель и соответствующий пин, для контакта контраста дисплея (3-й коннектор – Contrast) можно использовать номинал 2 кОм. Для Back LED+ контакта можно использовать резистор на 100 Ом. Можно использовать и переменный резистор – потенциометр для настройки контраста вручную.

На основании таблицы 1 и схемы, приведенной ниже, подключите ваш жидкокристаллический дисплей к Arduino. Для подключения вам понадобится набор проводников. Желательно использовать разноцветные проводники, чтобы не запутаться.

Табл. 2. Предпочтительные цвета проводников

Схема подключения LCD дисплея 1602 к Arduino:


Базовый пример программы для работы LCD 1602 с Arduino

В примере используются 0, 1, 2, 3, 4, и 5 пины Arduino для подключения соответствующих пинов 4, 6, 11, 12, 13 и 14 с дисплея 1602 (смотри табл. 1). После этого в коде для Arduino мы инициализируем lcd() следующим образом:

LiquidCrystal lcd(0, 1, 2, 3, 4, 5);

Этот кусок кода объясняет Arduino, как именно подключен LCD дисплей.

Весь соурс файл проекта метеостанции, в которой используется дисплей LCD 1602 можно скачать по этой ссылке .

LCD 1602A, Arduino и датчик освещенности (фоторезистор)

В примере мы рассмотрим подключение модификации дисплея - 1602A и фоторезистора. В результате данного проекты мы сможем отображать на дисплее числовые значения, пропорциональные интенсивности освещения.


Данный пример будет хорошим стартом для начинающих разбираться с Arduino. Стоит обратить внимание, что у дисплея 1602 существуют различные модификации. Соответственно, расположение контактов на них могут несколько отличаться.

Необходимые материалы

  • 1 Arduino UNO;
  • 1 макетная плата (63 рельсы);
  • 1 датчик освещенности (фоторезистор);
  • 1 потенциометр на 50 кОм;
  • 1 LCD дисплей 1602A;
  • 1 резистор на 10кОм;
  • 1 рельса коннекторов (на 16 пинов);
  • 1 USB кабель.

LCD Дисплей 1602A

Дисплеи, как правило, продаются без распаянных коннекторов. То есть, паяльник в руках придется подержать. Вам понадобится 16 пинов. Запаивайте со стороны коротких ног, длинные оставляйте для дальнейшего подключения к плате или другим периферийным устройствам.

После распайки можете устанавливать дисплей на макетной плате. Желательно, на самой нижней дорожке, чтобы у вас осталась возможность соединять дисплей через дополнительные коннекторы с платой.

Подключение дисплея 1602A к Arduino

Первое что необходим о – запитать дисплей. Подключите два кабеля от +5 вольт и земли к соответствующим рядам плюс-минус на макетной плате.

Подключите: пин на 5 вольт (5V) с Arduino к одной из дорожек макетной платы.

Подключите: пин Земля (GND) Arduino к другой дорожек (макетной платы).

После этого подключаем питание экрана и его подсветку к дорожкам, на макетной плате, на которых у нас получается 5 вольт и минус.

Подключите: дорожку GND (минус) на макетной плате к 1 пину на LCD экране (он обозначен как VSS).

Подключите: дорожку 5 вольт (плюс) на макетной плате ко 2 пину на LCD экране (он обозначен как VDD).

Подключите: дорожку 5 вольт (плюс) на макетной плате к 15 пину на LCD экране (он обозначен как A).

Подключите: дорожку GND (минус) на макетной плате к 16 пину на LCD экране (он обозначен как K).

Подключаем нашу Arduino к персональному компьютеру через USB-кабель и вуаля! Экран должен включиться.

Следующий шаг – подключение потенциометра для регулировки контрастности дисплея. В большинстве гайдов, используется потенциометр на 10 кОм, но 50 кОм тоже подойдет. Из-за большего диапазона значений сопротивлений на выходе потенциометра, более точная настройка становится сложнее, но для нас в данном случае это не критично. Установите потенциометр на макетной плате и подключите три его пина.

Подключите: первый пин на потенциометре к минусу на макетке.

Подключите: средний пин потенциометра к 3 пину на дисплее (он обозначен как V0).

Подключите: третий пин на потенциометре к плюсу на макетке.

После подачи питания на плату через USB-кабель, на дисплее первый ряд должен заполниться прямоугольниками. Если вы их не увидели, немного проверните ручку потенциометра слева направо, чтобы отрегулировать контраст. В дальнейшем, когда мы будем отображать числовые значения на экране, вы сможете более точно отрегулировать контрастность. Если ваш дисплей выглядит примерно так, вы все делаете верно:

Продолжим. Теперь нам надо обеспечить обмен данными между Arduino и LCD дисплеем 1602A для отображения символов.

Для этого подключите 4 пин дисплея (RS) к 7 пину Arduino (желтый коннектор). 5 пин дисплея (RW) – к ряду пинов земля на макетке (черный кабель).

6 пин дисплея (E) – к 8 пину Arduino (ШИМ).

11 пин дисплея (D4) – к 9 пину Arduino (ШИМ).

12 пин дисплея (D5) – к 10 пину Arduino (ШИМ).

13 пин дисплея (D6) – к 11 пину Arduino (ШИМ).

14 пин дисплея (D7) – к 12 пину Arduino (ШИМ).

Программа для Arduino IDE – отображение надписи на дисплее 1602A

Представленный ниже кусок кода достаточно скопипастить в Arduino IDE и загрузить на плату:

#include <LiquidCrystal.h>

LiquidCrystal lcd(7, 8, 9, 10, 11 , 12);

lcd.begin(16, 2);

lcd.setCursor(0,1);

lcd.write("LIGHT: ");

После загрузки программы на плату, на дисплее во второй строке отобразится следующая надпись:

Своеобразный "hello world!" на LCD 1602A запущен. Я вас поздравляю.

Подключаем фоторезистор и заливаем всю программу в Arduino

Теперь подключим фоторезистор. Подключите три провода к свободным рельсам на макетной плате (условно пронумеруем их 1, 2, 3). Оставьте в рельсах немного места для самого датчика освещенности и резистора.

Рельсу GND с макетной платы подключаем к рельсе 1. A0 (аналоговый вход) с Arduino - к рельсе 2. 5 вольт с макетной платы - к рельсе 3.

Дальше подключаем наш датчик и резистор к подготовленным рельсам. Какие именно ноги идут к земле, а какие - к питанию для нашего датчика освещенности и резистора неважно (в отличие от, например, светодиода, в котором есть катод и анод). Так что тут не перепутаете.

Датчик освещенности подключаем к рельсе 1 и рельсе 2. Резистор – к рельсе 2 и к рельсе 3.

Теперь вернемся к нашей программе и добавим несколько строк в пустующее пока что тело функции loop():

int sensorValue = analogRead(A0);

lcd.setCursor(7,1);

lcd.print(sensorValue);

После заливки на Arduino окончательной версии нашей программы, на дисплее будут отображаться текущие значения уровня освещенности.

Все давно привыкли, что у каждого электронного устройства есть экран, с помощью которого оно дает человеку всякую полезную информацию. MP3-плеер показывает название играемого трека, пульт квадрокоптера отображает полетную телеметрию, даже стиральная машина выводит на дисплей время до конца стирки, а на смартфоне вообще размещается целый рабочий стол персонального компьютера!

Скорее всего, вашему очередному устройству тоже не помешает какой-нибудь небольшой дисплейчик 🙂 Попробуем сделать простые электронные часы! А в качестве табло используем распространенный и дешевый символьный жидкокристаллический дисплей 1602. Вот прямо такой, как на картинке:

Кроме 16х2, достаточно популярным считается символьный дисплей 20х4 (четыре строки по 20 символов), а также графический дисплей с разрешением 128х64 точек. Вот они на картинках:

1. Подключение символьного ЖК дисплея 1602

У дисплея 1602 есть 16 выводов. Обычно они нумеруются слева-направо, если смотреть на него так как на картинке. Иногда выводы подписываются, типа: DB0, DB1, EN и т.п. А иногда просто указывают номер вывода. В любом случае, список выводов всегда одинаковый:

1 — «GND», земля (минус питания);
2 — «Vcc»,­ питание +5В;
3 — «VEE», контраст;
4 — «RS», выбор регистра;
5 — «R/W», направление передачи данных (запись/чтение);
6 — «EN», синхронизация;
7-14 — «DB0­», «DB1», .., «DB7″­- шина данных;
15 — анод подсветки (+5В);
16 — катод подсветки (земля).

Линии VEE, RS и четыре линии данных DB4, DB5, DB6, DB7 подключаем к цифровым выводам контроллера. Линию «R/W» подключим к «земле» контроллера (так как нам потребуется только функция записи в память дисплея). Подсветку пока подключать не будем, с этим, я полагаю, вы сами легко разберетесь 🙂

Принципиальная схема подключения дисплея к Ардуино Уно

Внешний вид макета

На всякий случай еще и в виде таблички:

ЖК дисплей 1602 1 2 4 6 11 12 13 14 15 16
Ардуино Уно GND +5V 4 5 6 7 8 9 +5V GND

2. Программируем «Hello, world!»

Для работы с ЖК дисплеями различных размеров и типов, в редакторе Arduino IDE имеется специальная библиотека LiquidCrystal . Чтобы подключить библиотеку, запишем первой строчкой нашей программы следующее выражение:

LiquidCrystal lcd(4, 5, 6, 7, 8, 9);

Здесь первые два аргумента — это выводы RS и EN, а оставшиеся четыре — линии шины данных DB4-DB7.

Lcd.begin(16, 2);

Напоминаю, в нашем дисплее имеется две строки, по 16 символов в каждой.

Наконец, для вывода текста нам понадобится простая функция «print». Вывод с помощью этой функции всем известной фразы будет выглядеть следующим образом:

Lcd.print("Hello, world!");

Полностью программа будет выглядеть так:

#include LiquidCrystal lcd(4, 5, 6, 7, 8, 9); void setup(){ lcd.begin(16, 2); lcd.print("Hello, world!"); } void loop(){ }

Загружаем её на Ардуино Уно, и смотрим что творится на дисплее. Может быть три основных ситуации 🙂

1) На дисплее отобразится надпись «Hello, world!». Значит вы все правильно подключили, и контраст каким-то чудесным образом оказался изначально правильно настроен. Радуемся, и переходим к следующей главе.

2) На дисплее отобразится целый ряд черных прямоугольников — требуется настройка контраста! Именно для этого мы добавили в цепь потенциометр с ручкой. Крутим его от одного края, до другого, до момента пока на дисплее не появится четкая надпись.

3) Два ряда черных прямоугольников. Скорее всего, вы что-то напутали при подключении. Проверьте трижды все провода. Если не найдете ошибку — попросите кота проверить!

3. Программируем часы

Теперь когда дисплей точно работает, попробуем превратить наше нехитрое устройство в настоящие электронные часы.

Внимание! Для вывода времени нам потребуется библиотека «Time». Если она еще не установлена, то можно скачать архив по ссылке . Подключим ее:

#include

Затем установим текущие дату и время с помощью функции «setTime»:

SetTime(23, 59, 59, 12, 31, 2015);

Здесь все понятно: часы, минуты, секунды, месяц, число, год.

Для вывода даты используем кучу функции:

  • year() — вернет нам год;
  • month()­ — месяц;
  • day() ­- день;
  • hour() ­- час;
  • minute() — вернет минуту;
  • second() -­ секунду.

Теперь обратим внимание вот на какой факт. Если посчитать количество символов в типовой записи даты: «31.12.2015 23:59:59», получим 19. А у нас всего 16! Не влазит, однако, в одну строчку.

Решить проблему можно еще одной полезной функцией — «setCursor». Эта функция устанавливает курсор в нужную позицию. Например:

Lcd.setCursor(0,1);

Установит курсор в начало второй строчки. Курсор — это место символа, с которого начнется вывод текста следующей командой «print». Воспользуемся этой функцией для вывода даты в первой строчке, а времени во второй.

С выводом даты и времени теперь все ясно. Остались рутинные вещи. Например, после каждого заполнения дисплея, мы будем его чистить функцией «clear()»:

Lcd.clear();

А еще нам нет смысла выводить данные на дисплей чаще чем раз в секунду, поэтому между двумя итерациями сделаем паузу в 1000 миллисекунд.

Итак, сложив все вместе, получим такую программу:

#include #include LiquidCrystal lcd(4, 5, 6, 7, 8, 9); void setup(){ lcd.begin(16, 2); setTime(7,0,0,1,10,2015); // 7 утра, десятого января 2015 года } void loop(){ lcd.clear(); lcd.print(day()); lcd.print("."); lcd.print(month()); lcd.print("."); lcd.print(year()); lcd.setCursor(0, 1); lcd.print(hour()); lcd.print(":"); lcd.print(minute()); lcd.print(":"); lcd.print(second()); delay(1000); }

Загружаем скетч на Ардуино Уно, и наблюдаем за ходом часиков! 🙂 Для того чтобы закрепить полученные знания, рекомендую прокачать наши часы до полноценного будильника. Всего-то на всего потребуется добавить пару кнопок и зуммер 🙂

Сегодня попробуем остановиться на выводе на текстовый дисплей. Наиболее популярным является чип HD44780 (или совместимый с ним KS0066). Перечислим их плюсы и минусы:

Плюсы:

  1. Невысокая цена.
  2. Простота программирования, код будет одинаков для любой модели.
  3. Многообразие моделей - наиболее распространённые: 8x1, 16x2, 20x4. Также можно встретить довольно экзотические модели 40x4, т.е. четыре строки по 40 символов в каждой.
  4. Возможность подключить несколько дисплеев к одной Arduino.
  5. Возможность задавать собственные символы.

Минусы:

  1. Далеко не все дисплеи поддерживают русские символы. Подробнее надо смотреть в описании к конкретному дисплею.
  2. Подключение без использования I2C-шины требует использования 10-16 проводов, что очень плохо. с I2C - 4 провода.

Исходя из вышеизложенного буду рассматривать только подключение дисплея через I2C.

Давайте попробуем.

Что нам понадобится.

  1. Arduino (Я взял модель Nano)
  2. Дисплей на чипе HD44780 с модулем I2C или без него (тогда понадобится отдельно плата LC1602 IIC) - в нашем случае 16x2 без I2C модуля
  3. Резистор на 10Ком (Если нужно ручное управление подсветкой).
  4. Потенциометр (Если нужно ручное управление подсветкой).
  5. Макетная плата Breadboard.
  6. Библиотека LiquidCrystal_I2C. http://www.ansealk.ru/files/LiquidCrystal_V1.2.1.zip

Небольшое отступление №1: Как отличить дисплей с I2C-модулем?

На самом деле все довольно просто. Если, перевернув дисплей мы видим длинную колодку разъемов (как правило 16 штук) то модуля I2C на дисплее нет:

А вот так выглядит дисплей с уже установленным I2C-модулем:

Контакты SCL, SDA, VCC, GND используются для подключения Arduino. Два контакта слева - на картинке они замкнуты перемычкой - нужны для работы подсветки.

Если модуль не подключен - придется сделать это самостоятельно. Главное, на что стоит обратить внимание - соединить контакты в правильном порядке. Как правило первый и 16 пины помечены. Иногда бывает, что 15-16 контакты, через которые осуществляется управление подсветкой, могут располагаться перед первым (в этом случае они будут пронумерованы). На самом же модуле первый пин также может быть обозначен не цифрой, а квадратом вокруг самого пина.

Схемы:

Соберем следующую схему:

Обращу внимание на следующие моменты:

  1. Если вам попался дисплей с уже припаянным I2C-модулем, то провода, помеченные серым, не понадобятся. В остальном - ничего не меняется.
  2. Если мы не хотим менять яркость дисплея - то схема упростится:

как заметили, два пина на I2C-модуле с маркировкой LED отвечают за подсветку дисплея. Если не хотим использовать управление яркостью - их просто можно замкнуть.

Теперь давайте разберем код.

Тут почти все нам должно быть знакомо. В строке 5 указываем адрес устройства. В строках 16 и 17 - количество символов в строке и количество строк. В строках 20-22 - Создаем объект для работы с дисплеем и описываем параметр работы с ним.

Небольшое отступление №2: Как узнать адрес I2C-устройства?

В большинстве своем адрес можно посмотреть в даташите к микросхеме, на которой построено I2C-устройство. Если же такой возможности нет вот ссылка на архив со скетчем и схемами - http://www.ansealk.ru/files/Arduino_lcd_i2c.zip который определяет адреса всех устройств, подключенных по I2C-шине. Достаточно только подключить устройство к Arduino, загрузить скетч, открыть консоль и увидеть адрес.

Тут мы видим функцию, которая, собственно, и будет заниматься выводом на дисплей. Принцип вывода примерно такой:

Задаём позицию начала вывода функцией setCursor()

Печатаем строку функцией print()

После этого следующая функцию print() начнет вывод со следующей позиции, после которой закончился предыдущий ввод. Также обращу внимание на то, что, в отличие от вывода в консоль, тут не используется функция println() для завершения вывода и перевода строки.

Таким образом у нас на экране в первой строке появится надпись "Test LCD1602", а во второй будет указано разрешение дисплея и счетчик, показывающий, сколько циклов отработал наш скетч.

Но, если нам надо будет выводить много значений переменных на экран, этот метод не совсем удобен. Дело в том, что процедура вывода на дисплей - очень энергоёмкая и медленная, а вывод мы делаем в этой функции аж 7 раз. Гораздо проще будет заранее сформировать строку заранее, а затем вывести её целиком. В этом нам поможет функция форматированного ввода sprintf().

Небольшое отступление №3: Функция форматированного ввода sprintf().

В Языке C существует несколько очень удобных функций для вывода строк - они называются функциями форматированного вывода - printf (от слов print и format). В нашем конкретном случае нас интересует функция sprintf, которая не выводит ничего на экран, а формирует строку для последующего вывода. Выглядит она примерно так:

sprintf (str , "Строка %d для вывода ", i );

Функция формирует строку (помечено синим) с использованием шаблона (желтым), в который подставляются значения переменных (зеленым). Полученный результат будет записан в строковую переменную (красным).

Шаблонов и переменных может быть несколько. В этом случае переменные записываются через запятую. Главное, следите за тем, чтобы количество шаблонов в строке соответствовало количеству переменных. Переменные для шаблонов берутся последовательно, т.е. в первый шаблон подставляется значение первой переменной, во второй - второй переменной и т.д.

Что же такое шаблоны? Любой шаблон начинается символом "%" и заканчивается одним из десяти (в случае Arduino - семи) символов типа. Между ними может быть указано довольно много информации о том, как выводить значение, а может быть не указано и ничего.

Давайте разберем что же может быть в шаблоне. В общем случае шаблон имеет такой вид:

%[флаг ][ширина ][.точность ]типа

Квадратные скобки показывают, что элемент заключенный в них может отсутствовать. Вертикальная черта говорит о том, что в этом поле должно быть выбрано одно из указанных значений (в нашем случае одна из букв H, I, или L).

Давайте сначала разберемся с обязательным элементом шаблона - типом. Он указывает, какой тип переменной будет выводится и может принимать одно из следующих значений:

Символ Значение
c Один символ
s Строка символов
d,i Целое десятичное со знаком
o Целое восьмеричное
u Целое десятичное без знака
x, X Целое шестнадцатеричное
p Указатель (в шестнадцатеричном виде)
f Дробное число в фиксированном формате
e, E Дробное число в научном формате
g, G Дробное число в научном или фиксированном формате

Серым помечены те типы, которые не применимы при работе с Arduino. Таким образом, для вывода строки надо указать "%s", а для вывода целого числа - "%d".

Далее рассмотрим поле ширины. Число в нем указывает минимальную ширину поля, в котором будет выведен шаблон. Если размер значения в переменной меньше - поле будет добито пробелами, если больше - запись выйдет за пределы поля. Таким образом шаблон "%6d" для числа 385 выведет 385 (обратим внимание на три пробела перед числом).

Спецификатор точности всегда начинается с точки и следующее за ним число указывает различные действия в зависимости от типа значения. Для типов "d,o,u,x" он укажет минимальное количество символов, которое должно появится при обработке. Для типа "f" - число знаков после запятой. Для типа "s" - максимальное число символов стоки, который будут выведены. Например, "%6.1f" для числа 34.2345 выведет "34.1" (обращу внимание, что точка также считается знаком и перед числом будет присутствовать два пробела). Или шаблон "%.3s" от строки "точность" выведет только первые три символа - "точ".

Флаг позволяет изменить отображение выводимого значения:

Более подробно о шаблонах функции printf можно прочитать интернете. Здесь же я дал краткий обзор наиболее часто используемых возможностей.

Таким образом, наша функция вывода, переписанная с учетом использования форматированного вывода будет выглядеть следующим образом:

Заметим, что в строках 33 и 37 мы формируем целую строку для вывода, а в строках 34 и 38 - выводим их.

Наконец, наши любимые функции setup и loop.

В строке 47 мы задаем разрешение дисплея, в строке 48 - включим подсветку (яркость которой можно отрегулировать потенциометром). В строке 49 установим счетчик циклов в ноль. Увеличивать его будем на единицу в 37-й строке при выводе (помните конструкцию count++?). Наконец, в строке 56 вызываем рассмотренную раннее функцию вывода на дисплей. Все.

Что можно поменять или улучшить?

К примеру, можно сделать автоматическое управление подсветкой в зависимости от освещенности, использовав фоторезистор или датчик освещенности из рассмотренной несколькими статьями ранее метеостанции. Допустим, при сильном освещении - увеличить яркость подсветки, а в ночное время - уменьшить. Или прикрутить датчик движения и зажигать подсветку при появлении объект перед дисплеем, или... В общем, я думаю, вы уже поняли, что при желании, заменив один или несколько компонентов и написав кусок кода можно довольно серьезно улучшить удобство работы с дисплеем. Также мы можем использовать для вывода на дисплей собственноручно разработанные символы.

Все эти вопросы я тут не рассматриваю, так как они выходят за рамки обзора для начинающих.

А на сегодня у меня все.

Arduino. Подключаем LCD-дисплей

26 оценок, Средняя оценка: 5 из 5