Схема резервного питания от батареи. Бесперебойное питание вашей электроники. Измерение тока и защита от перегрузки

С необходимостью организации резервного питания сталкивается практически каждый владелец загородной недвижимости. И причин этому несколько: изношенность коммуникаций, интенсивная застройка в микрорайоне, несоответствие характеристик подстанции возросшим потребностям и ряд других. Это вызывает систематические (порой надолго) отключения напряжения, его постоянные броски или перекосы фаз. Проблема, знакомая многим.

В таких условиях не то что говорить о гарантированном сроке эксплуатации различных (и порой весьма дорогостоящих) бытовых приборов; многие из них вообще не получается включить. Например, импортный газовый котел, который довольно популярен у «частников», очень требователен к качеству напряжения. «Заморским изобретателям» и в голову не может прийти, что с электричеством возможны такие недоразумения. И если сработает защита и он «встанет», зимой, при наших морозах, то это самое настоящее ЧП.

С целесообразностью резервирования по энергоснабжению все ясно. Но вот как лучше это сделать и что стоит учесть, мы рассмотрим подробно.

Здесь подразумевается, в течение какого срока необходимо организовать независимое электроснабжение участка. Одни устройства рассчитаны на длительную непрерывную работу ( , бензиновые двигатели с водяным охлаждением), другие требуют систематической остановки (те же бензиновые с охлаждением воздушным).

Кстати, некоторые специализированные фирмы предлагают услуги по подключению непосредственно к ЛЭП (минуя местную подстанцию). Иногда просто невозможно организовать энергоснабжение иным способом. Для этого используется или кабель, уложенный в траншею, или воздушная линия, протянутая к участку. Если у данной организации есть соответствующая лицензия, и она берет на себя все заботы по оформлению разрешительных документов, то это – отличный вариант.

Недостаток – стоимость работ, так как придется устанавливать свою собственную подстанцию. Хотя есть и выход – «скооперироваться» с соседями, которые испытывают те же неудобства в энергоснабжении. Зато есть и ощутимый «плюс» – перебои с напряжением исключены, да и его качество будет соответствовать всем нормативам.

Какие устройства необходимо «запитать»

примерная мощность

От этого будут зависеть и дальнейшие критерии подбора источника энергии. Ориентироваться следует, естественно, на те, которые должны работать постоянно. К примеру, тот же котел, холодильник, морозильная камера. Каждый собственник должен составить список всех изделий, которые должны быть постоянно включены.

Тип напряжения

Большинство бытовых агрегатов потребляют 1-фазное 220 В. Но встречаются и такие, которым необходимо 3 ф. Это нужно учесть, если они также постоянно используются. Но такие изделия встречаются довольно редко.

Мощность источника

По примерным оценкам специалистов, нужно ориентироваться по максимуму на 20 кВт. Для загородного дома (если это не дворец, напичканный различными устройствами) вполне достаточно. Но это для варианта «все включено». Возможно, хватит агрегата и на 4 кВт. Для примера – если одновременно будут работать котел (вместе с насосом), холодильник и телевизор + освещение, то понадобится не более 2 – 2,5 кВт. Если система водоснабжения автономная, то периодически будет включаться насосная станция. Ее мощность также нужно учесть.

Кроме того, необходимо принять во внимание, что некоторые бытовые приборы характеризуются большим пусковым током. Например, у электромясорубки он превышает номинальное значение в 6 – 7 раз. Кроме того, должен быть и расчет на перспективу. Возможно, что-то будет приобретено еще, и также с обязательным постоянным включением. Необходимо сделать и «запас» для самого генератора, так как он не должен работать на пределе. Оптимальная нагруженность – не более 80%.

Подведем итог. Как видим, нюансов довольно много. Поэтому следует определить все «изделия» (включая и приборы освещения на прилегающей территории, автоматику, сигнализацию и тому подобное), которые должны быть в любое время обеспечены бесперебойным питанием и посчитать их совокупную мощность. Полученную величину нужно умножить на 1,5. Вот по такому параметру и подбирать энергоустановку.

Вид топлива

Это может быть газ, дизельное топливо (соляра), бензин. Каждый определяет сам, с чем ему удобнее (и дешевле) работать.

Место установки

Оно определяет как габариты источника питания, так и его конструктивные особенности. Например, дизель больше дымит, поэтому необходима качественная «вытяжка». Агрегаты без кожуха – «шумные», следовательно, они более подходят для размещения в хозпостройках (пристройках).

Если предусмотрена установка резервного агрегата на улице, то нужно обратить внимание на способ его запуска (ручной или автоматический, от АКБ).

Особенности источников резервного питания

Газогенераторы

Если дом газифицирован, то это наиболее оптимальный вариант. Топливо для такого устройства самое дешевое. Мощность большинства таких изделий начинается от 7 кВт, что вполне достаточно для загородного дома с периодическим пропаданием напряжения в сети.

Примерная стоимость – 180 000 рублей. Но если учесть, сколько будет сэкономлено на топливе (по сравнению с бензином или солярой) за весь период эксплуатации, то цена вполне приемлемая. Кроме того, почти отсутствуют вредные выхлопы.

Бензогенераторы

Наиболее распространенный тип устройств для резервного эл/питания. Отчасти это потому, что мы лучше разбираемся именно в таких двигателях, чем в дизельных. Ведь многие собственники загородных домов имеют личный автомобиль, следовательно, хотя бы общее понятие о принципе работы есть. К тому же они проще в обслуживании.

Дизельные агрегаты

Под этим наименованием подразумевается несколько разновидностей подобной «техники» — дизель-генераторы, дизельные станции и так далее. Неоспоримое достоинство – возможность длительной (без остановок) эксплуатации. Кроме того, нет паров бензина, которые требуют принятия особых мер по пожарной безопасности.

Мы привели только наиболее распространенные устройства для организации резервирования. Но есть и ряд других, которые хотя и применяются реже, но тоже достойны внимания. Например, ИБП, солнечные батареи, системы на инверторах.

Вывод

Практика показывает, что независимо от способа решения проблемы резервирования системы электроснабжения, необходимо все-таки иметь запасной генератор. По отзывам большинства собственников загородных домов, более удобными как с точки зрения эксплуатации, так и ремонта являются агрегаты бензиновые. Например, их всегда можно дозаправить прямо из бака автомобиля.

Решая вопрос организации резервного электроснабжения, не стоит руководствоваться чьим-то мнением, ориентироваться на друзей или соседей. Главный «подсказчик» – собственный дом и находящееся в нем имущество (в первую очередь, технические устройства и расположение осветительных приборов). Они и определяют целесообразность приобретения того или иного агрегата.

Нужно учесть, что ИБП, солнечные батареи имеют ограниченное применение как по времени, так и по подключаемым устройствам (схемам). В их комплект входят АКБ, а они требуют постоянного внимания (контроль состояния, подзарядка). Кроме того, современные батареи (в отличие от «старых» моделей, в которых можно было заменять отдельные банки) ремонту не подлежат.

При наличии средств целесообразно смонтировать более сложную, но надежную комбинированную схему резервирования. Например, включение аварийного питания от ИБП с последующим автоматическим запуском дизеля. Это более затратно, зато перебои в электроснабжении исключены.

Ничего не может быть хуже, чем отключение света зимой. Любой из загородных жителей рано или поздно сталкивается с ситуацией, когда лампочки гаснут, скважинный насос перестаёт качать воду, а батареи системы отопления остывают на глазах. Время задействовать резервное питание!

Но есть и другое решение проблемы с перебоями электричества: система резервного питания дома или сокращённо – СРП.

Для правильного выбора такой системы питания необходимо понять, чем она отличается от системы автономного питания (САП).

Андрей-АА, Новая Москва.

СРП используется в том случае, когда к основной электросети. При отключении основного питания резервное электропитание «подхватывает» основных потребителей электроэнергии: скважинный насос, котёл, холодильник, компьютер, телевизор и другое электрооборудование . САП – это основная система электропитания для дома, применяемая при полном отсутствии основной электросети.

Переходим к выбору системы резервного питания. По мнению Андрей-АА , существует 4 основных типа резервного питания для дома.

  • Если сеть отключается ненадолго, но суммарно в месяц более чем на 10 часов, то оптимальной будет система, состоящая из инвертора, зарядного устройства и блока аккумуляторов, заряжаемых от сети.

Инвертор – это преобразователь постоянного тока от аккумуляторных батарей в переменное однофазное напряжение 220В, от которого работает оборудование в доме.

  • Если сеть отключают менее чем на 10 часов в месяц, то выгодней система из электрогенератора с двигателем внутреннего сгорания (ДВС), оборудованного системой автоматического пуска.
  • Если сеть отключают часто и надолго, или когда напряжение в сети слишком низкое, то оптимальной является система, состоящая из генератора, блока аккумуляторов, зарядного устройства и инвертора.

По аналогичному принципу строятся и системы автономного электропитания, но к ним предъявляются более высокие требования по мощности.

  • Если требуемую мощность можно ограничить 1-1,5 кВт, то в качестве резервной системы питания можно использовать автомобиль с подключённым к нему инвертором.

Остановимся подробнее на третьем варианте. Пользователь с ником galexy456 предлагает пошаговый план создания бюджетной системы резервного питания для дома.

1 В электрический щиток заводятся два кабеля из подсобного помещения. Первый кабель необходим, чтобы подать электричество на инвертор. Второй – чтобы передать электричество от инвертора в дом.

galexy456

У меня на улице смонтирован маленький щиток, в котором реализована схема автоматического ввода резерва, или сокращённо АВР

АВР – это автоматический переключатель одной нагрузки на две питающих линии – основную и резервную.

2 В подсобное помещение ставим инвертор, аккумуляторы и коммутируем все устройства.

Инверторы бывают двух основных типов – с синусом на выходе (оптимальный вариант) и с так называемым «модифицированным синусом». Если инвертор выдаёт «модифицированный синус», то некоторые приборы при подключении к нему могут выйти из строя из-за высокого уровня гармоник частоты в питании – 150Гц, 250Гц, 350Гц и т.д.

В случае отключения электричества такая система работает следующим образом. АВР самостоятельно и быстро – так, что приборы не успевают отключиться, переключает питание с основного на резервное.

Теперь все подключённые энергопотребители продолжают работать от аккумуляторов и инвертора. Если энергоснабжение отсутствует больше 5-6 часов, то, не дожидаясь полного разряда аккумуляторов (от этого сильно сокращается срок их службы), для продолжения бесперебойного питания необходимо вручную завести генератор.

Существуют системы резервного питания с автоматическим запуском генератора, установленным в отапливаемом подсобном помещении и снабжённом принудительным отводом выхлопных газов. Главный недостаток таких СРП – это их высокая цена.

galexy456

После запуска генератора инвертор переводит нагрузку на питание приборов от него и одновременно начинает заряжать аккумуляторы. Таким образом, продлевается время работы системы и экономится моторесурс генератора, т.к. он работает не в постоянном режиме.

Необходимо помнить, что запускать генератор следует уже после израсходования ёмкости аккумуляторов примерно на 30-60%.

Любая, даже самая продвинутая и дорогая система резервного питания, в первую очередь, приучает экономить энергоресурсы в доме, т.к. от этого напрямую зависит время работы системы резервного электроснабжения дома.

Форумчане советуют:

  • заменить все лампочки в доме на энергосберегающие;
  • проложить вторую, резервную линию электросети, к которой, в случае отключения электричества, можно подключить самое необходимое оборудование в доме;
  • как следует утеплить дом, чтобы уменьшить затраты на отопление;
  • при работе резервной системы питания не пользоваться мощными электроприборами: утюгом, электрочайником, пылесосом.

Андрей-АА

Включение фена, чайника или утюга на 3-7 минут сильно не разрядит аккумуляторы, но глажку или работу с мощным электроинструментом лучше не допускать.

Для построения СРП нагрузку в доме можно условно разделить на три части:

  1. Отопление.
  2. Водонагревательные приборы.
  3. Приборы, требующие обязательного резервного питания, а именно:
  • освещение;
  • циркуляционные насосы отопления;
  • скважинный насос и насосная станция;
  • компьютер;
  • холодильник, телевизор, Интернет.

Также в качестве резервной системы питания можно использовать и автомобиль. Для этого необходимо:

  1. Приобрести инвертор с синусоидальным выходом на 12-220 В мощностью до 2 кВт с защитой от перегрузки по току или по мощности.
  2. Пользователи сайта FORUMHOUSE могут узнать, как самостоятельно сделать систему питания. Вся информация по расчёту собрана в этом дневнике. Автоматический «от А до Я» описан в этой теме.

    А в этом видео рассказывается о том, как инвертор и блок аккумуляторов могут увеличить электрическую мощность в доме.

  • Электроника для начинающих
  • Пролог

    В была рассмотрена постановка задачи на разработку маломощного резервного источника питания на мощность 60 Вт с синусом на выходе для циркуляционного насоса системы отопления. Была выбрана концепция реализации данного устройства. В этой статье пойдет речь о разработке электрической схемы устройства, с необходимыми расчетами для выбора номиналов компонентов, входящие в состав устройства.

    Вооружившись САПРами и учебниками черновиками, карандашом и GOOGLE приступим к проектированию. Начнем с простого – система питания устройства.

    Организация питания

    Для питания элементов схемы нам понадобится три типа шины постоянного напряжения в 12, 5 и 3,3 Вольта.

    Двенадцати вольтная шина – основная. Она является питанием моста, осуществляющего закачку тока в низковольтную обмотку линейного сетевого трансформатора. С нее же питаем драйвера транзисторов, входящих в мост. Коммутирующие сеть реле тоже будут питаться с данной шины.

    Пяти вольтная шина необходима для питания токовой микросхемы ACS712, микросхемы логики, символьного ЖКИ и т.д.

    Трех вольтная шина будет питать «мозги» устройства – МК STM32F100C8T6B.

    Лирическое отступление

    Для наглядности куски схемы рисовались в Proteuse v 7.7. В его библиотеках есть не все использованные компоненты, так что некоторые компоненты заменены на аналоги. Окончательная, полная схема будет в формате САПРа Dip Trace. Со всеми утвержденными компонентами. Но это уже в следующей статье.


    Родилась вот такая схема:

    Картинка кликабельна.

    Формирователи шины 5 и 3,3 Вольта организованы на 1 % LDO стабилизаторах типа NCP1117STхх. Аналоговое питание модуля АЦП берется с шины 3,3 Вольта через индуктивность, сглаживающие и блокировочные конденсаторы. Аналоговую землю тоже стоило бы разделить. Но в данной схеме этого нет, так как измерения не критичные, и погрешность в пару разрядов не приведет к «расстройству» устройства. Применим программный фильтр – скользящее среднее и может даже погрешности в один разряд добьёмся.

    Измерение тока и защита от перегрузки

    Датчик тока ACS712ELCTR-05B-T представляет собой интегральную микросхему. Детектирование тока происходит на эффекте Холла. Данный датчик позволяет МК измерять как прямой, так и обратный ток. С остальными характеристиками можно ознакомиться из его pdf . Выход датчика аналоговый. Средняя точка, соответствующая нулевому току = 2,5 В. Усиление 185мВ на 1 Ампер. Хотя датчик регистрирует и большие токи, только линейность искажается, и при определенном токе входит в насыщение. Так что для согласования выхода датчика с МК, поставим делитель напряжения. И поделим шкалу пополам. Разрядности АЦП МК хватит для приемлемой точности.

    Для быстродействующей защиты от перегрузки или короткого замыкания в низковольтной обмотке линейного трансформатора, установим токовый шунт. Сигнал с шунта усилим на ОУ и на компараторе соберем схему сравнения с защелкой. Данные о перегрузке будем загонять в МК, а также по этому сигналу будем закрывать ВСЕ ключи моста.

    Небольшое видео, симуляции работы токовой защиты, представлено ниже.

    Силовая часть

    Силовая часть РИПа представлена на рисунке.


    Картинка кликабельна.

    Мост транзисторов «опирается» на токовый шунт, для обеспечения быстродействующей защиты. Выход моста через LC фильтр, рассчитанный на частоту среза в ~ 1 кГц, подается на низковольтную обмотку трансформатора. О фильтре и трансформаторе стоит поговорить более подробно.

    Расчет фильтра производился в программе «Калькулятор РЛ» ссылку на так называемый офф. сайт уже не найду. Поэтому архив с калькулятором выложил сюда . Вот скрин расчета.

    Полученная индуктивность в 10 миллигенри довольна внушительна. Но и емкость получилась приличная. Так как у нас на выходе с фильтра переменка, то полярным конденсатором не обойдешься. В схему заложил два керамических конденсатора в параллель - 4.7 мкФ, X7R, 25В (1206).

    Расчет дросселя по полученным данным производил в программе Coil32. Вот ссылка на архив с программой. Ферритовое кольцо для такого дросселя выбрал со следующими параметрами: Кольцо N87 R25x15x10. Вот скрин расчета в программе.

    Получилось 70 витков провода диаметром 1 мм, для обеспечения нужной индуктивности. Вполне приемлемо для ручной намотки.

    Выбор трансформатора пал на тороидальный трансформатор типа ТТП-60, со вторичным напряжение в 9 Вольт. Расчет прост. Переменное напряжение в 9 Вольт дает в амплитуде 12,7 Вольт. Напряжение заряженного АКБ порядка 13 Вольт. Так что сможем более менее на выходе получить 220 вольт. Для заряда АКБ конечно маловато. Поэтому есть предложение, домотать вторичку витков на 5-6. То есть получилась низковольтная обмотка с отводом. С крайних выводов обмотки снимаем повышенное напряжение для заряда АКБ, во время работы от сети. А на крайний и средний вывод подаем напряжение с моста, когда работаем от АКБ. По напряжению, снимаемому с крайних выводов обмотки, судим о напряжении в высоковольтной обмотке во время работы от АКБ, обратная связь для регулировки.

    Транзисторы моста управляются от МК через драйверы полумостов IRS2101S. Управление верхними ключами осуществляется по бутстрепной схеме. Управление P-канальным зарядным транзистором осуществляется обычным биполярником. Сглаживающий зарядный дроссель имеет те же габариты и расчетные величины, что и дроссель в LC фильтре после моста.

    Детектирование наличия сети и коммутация

    Для детектирование сети применятся конденсаторная схема питания. Напряжение заводится на оптопару. Выход оптопары загоняем в МК для контроля наличия сети. Схема показана ниже.


    Картинка кликабельна.

    Сетевое напряжение через гасящий конденсатор, диоды, стабилитрон, сглаживающие конденсаторы, токоограничивающий резистор подается на светодиод оптопары. Выход идет в МК.

    Управление реле, коммутирующие сеть на нагрузку, осуществляется от МК.

    Токовая защита реализована на ОУ и компараторе. Выход компаратора расходится на два транзистора. Один для ввода сигнала в МК, второй для закрывания всех транзисторов моста.

    На рисунке ниже представлены схемы включения драйверов для моста.


    Картинка кликабельна.

    Все типовое, согласно даташиту на драйвер IRS2101S.

    Схема формирование импульсов моста

    Чтоб не нагружать МК бесполезной работой, формирование сигналов импульсов моста собрано на логике И. От МК требуется три сигнала. Один синусоидальный ШИМ за период, а также два дискретных сигнала, первая полуволна и вторая. Реализация такого подхода изображена на рисунке.


    Картинка кликабельна.

    Перегрузка по току, заведена в МК и продублирована светодиодом. Управление зарядным P-канальным транзистором организованно на биполярном NPN транзисторе.

    Логика работы моста будет заключаться в следующем. 20 кГц ШИМ будет модулироваться таблицей синуса в количестве 400 значений. Передача значений в регистр ШИМ будет организованна через ДМА. После загрузки половины буфера, то есть 200 значений, одного полупериода, ДМА вызовет прерывание, где сигналы MCU_P_1 и MCU_P_2 будут взаимно инвертироваться. После загрузки всего буфера, в прерывании от ДМА будет происходить обратное инвертирование сигналов MCU_P_1 и MCU_P_2. И далее в циклическом режиме. Постоянный уровень полуволны, будет подаваться на верхний транзистор плеча, а синусоидальный ШИМ на нижний ключ противоположного плеча. Следующий полупериод – это другая пара транзисторов.

    Во время перегрузки по току, NPN транзистор Q7 обеспечит на входе логики низкий уровень, что в свою очередь приведет к низкому уровню на выходе логике и как следствие – запиранию ВСЕХ транзисторов моста.

    Аппаратная платформа

    Трех вольтная шина будет питать «мозги» устройства – МК STM32F100C8T6B.

    Как уже упоминалось выше, МК будет от ST семейства STM32. Чем обуславливается такой выбор?
    • МК имеет невысокую стоимость. Аналоги по возможностям от ATMEL или PIC имеют даже более высокие цены, при разрядности в 8 бит.
    • Наличие на борту 12 битного АЦП, ЦАП, контроллера ДМА.
    • 32 бит разрядность ядра.
    • Увеличенную емкость память программ и данных.
    Одним словом выигрывает по многим позициям.

    Для индикации работы устройства и вывода необходимых данных в схеме будет использоваться знакосинтезирующий ЖКИ с управляющим контролером KS0066 (HD44780). Библиотек для работы с таким дисплеем в рунете полно.

    Схема подключения дисплея к контроллеру выглядит следующим образом.


    Картинка кликабельна.

    Подключение происходит напрямую. Порты МК непосредственно подключены к дисплею. Сопряжение 3 вольтовой и 5 вольтовой логики не производилось. Здесь возможно появятся проблемы, и придется выводы МК настроить как выходы с открытым коллектором, и подтянуть линии к 5 вольтам, а сами выходы МК использовать толерантные к 5 вольтам. Как говорится жизнь покажет, но при разработке печатной платы, необходимо заложить данный «апдейт».

    Пользовательские кнопки необходимы для организации навигации по меню и параметрам, отображаемым на дисплее.

    Дополнительные расчеты

    Для расчета бутстрепного конденсатора воспользуемся методом, предложенным в данной статье . В конце описания есть пример расчета необходимой емкости бутстрепного конденсатора. Возьмем его за основу и пересчитаем для наших реалий.

    Определимся с параметрами схемы:

    • V IN,MAX = 15V максимальное входное напряжение,
    • V DRV = 12V напряжения питания драйвера и амплитуда управляющего сигнала,
    • dV BST = 0.5V пульсация напряжения на конденсаторе C BST в установившемся режиме,
    • dV BST,MAX = 3V максимальное падение напряжения на C BST перед тем как сработает схема защиты от пониженного напряжения или амплитуда управляющего сигнала станет недостаточной,
    • f DRV = 100 Hz частота преобразования, так как наш конденсатор работает в промежутке 10 мс,
    • D MAX = 1 максимальный коэффициент заполнения при минимальном входном напряжении.
    Характеристики применяемых компонентов:
    • Q G = 24 nC общий заряд переключения IRLZ44ZS при V DRV = 5V и V DS = 44V,
    • R GS = 10К величина резистора R GS ,
    • I R = 10uA ток утечки диода D BST при максимальном входном напряжении и температуре его перехода TJ = 80°C,
    • V F = 0.6V падение напряжения на диоде D BST при токе 0.1A и температуре перехода TJ = 80°C,
    • I LK = 0.13mA ток утечки схемы сдвига уровня при максимальном входном напряжении и температуре кристалла TJ = 100°C,
    • I QBS = 1mA ток, потребляемый драйвером верхнего уровня.

    Рассчитанное значение подберем из стандартного ряда. Тип конденсатора возьмем танталовый, для уменьшения тока утечки самого конденсатора. Итого получается 47 мкФ x 25 В, тип D.

    Рассчитаем ток заряда конденсатора, тем самым подберем диод.

    Так что диод рассчитанный на прямой ток в 1 А, справится с этой задачей.

    Заключение

    В этой статье разработали электрическую схему РИПа. Теперь все куски схемы соберем воедино. И на основе уже утвержденной схемы разработаем топологию печатной платы. Разводку печатной платы и обобщенную электрическую схему со спецификацией по компонентам представлю в следующей статье.

    Программную реализацию функционала устройства распишу в отдельной статье. Есть задумка реализовать в программе много интересных решений, например, ПИД регулирование выходного напряжения при работе от АКБ.

    Эпилог

    Этой статьей, хотел вынести на суд общественности и опытных радиолюбителей и не любителей тоже, схематические решения. Быть может, внимательный читатель найдет какие-либо критические ошибки в схемотехники или предложит более правильное исполнение отдельных узлов. Найдется какое-нибудь более простое решение узлов или для повышения надежности внести дополнительные схемотехнические решения.

    Ни одно электронное устройство не может быть застраховано от внезапного пропадания питания. Особенно, если речь идёт о сетевом напряжении 220 В и дело происходит в сельской местности. Для повышения надёжности стараются предусмотреть запасной источник энергии. В идеальном случае он должен при аварии автоматически включаться в работу, причём самостоятельно, без участия человека.

    Для резервирования обычно используют сменные батареи и аккумуляторы. При батарейном питании желательно применять «алкалиновые» гальванические элементы (Alkaline). Они имеют большую ёмкость, низкий саморазряд, правда, и по цене дороже. Отличить, что есть что, можно по маркировке на корпусе, например, «R6» (обычная батарея типоразмера АА) и «LR6» (то же самое, но Alkaline).

    Специфика современных МК заключается в том, что они могут программно переходить в энергосберегающий ждущий режим SLEEP с очень малым потреблением тока. Это позволяет вместо батарей/аккумуляторов использовать электролитические конденсаторы большой ёмкости или, ещё лучше, ионисторы.

    Первые ионисторы были разработаны в 1966 г. фирмой Standard Oil Company. Они представляют собой специальные накопительные конденсаторы с органическим электролитом. Типовая ёмкость достигает 0.1...50 фарад при рабочем напряжении 2... 10 В. Для справки, ёмкость Земли (шара размером с Землю, как уединённого проводника) составляет всего лишь 0.0007 фарад.

    Ионисторы известны в зарубежной технической литературе как конденсаторы с двойным электрическим слоем (Double-Layer capacitors), суперконденсаторы (SuperCaps), резервные конденсаторы (Backup capacitors). Встречаются и фирменные названия: UltraCap (EPCOS), Gold Capacitors (Panasonic), DynaCap (ELNA), BOOSTCAP (Maxwell Technologies). В странах СНГ используется устойчивый термин «ионистор», отражающий другую особенность этих приборов — участие ионов в формировании заряда.

    Современные ионисторы условно делятся на три группы в зависимости от рекомендуемого в даташите длительного тока нагрузки:

    Рабочее напряжение ионисторов подчиняется ряду: 2.5; 3.3; 5.5; 6.3 В.

    На Рис. 6.16, а...т показаны схемы организации бесперебойного питания.

    Рис. 6.16. Схемы организации бесперебойного питания (начало):

    а) диоды VDI, VD2 служат для развязки каналов, чтобы ток из основного источника не перетекал в резервный, и наоборот. Если два источника питания разные по величине, то основным будет канал с более высоким напряжением. При абсолютном равенстве питающих напряжений диод Шоттки в резервном канале следует заменить обычным кремниевым диодом 1N4004.

    б) развязывающие диоды VDI, VD2 включаются до (а не после) стабилизатора напряжения DA 1. Основное питание поступает через обычный диод VD1 (чтобы на нём рассеивалось побольше мощности), а резервное батарейное — через диод Шоттки VD2 (чтобы напряжение на входе стабилизатора DA I было как можно выше);

    в) диоды VD2...VD4 включаются после (а не до) стабилизатора DA 1;

    г) диод VD2 позволяет организовать дополнительный источник отрицательного напряжения -0.7 В, который, однако, перестаёт функционировать с переходом на резервное питание от батареи GB1. Диод Шоттки VD1 можно заменить обычным кремниевым диодом КД102А;

    д) ионистор С J позволяет «на ходу» производить замену истощившихся батарей GBl, GB2, не прерывая питание МК достаточно длительное время. Если напряжение на ионисторе снижается медленно, то М К не требует рестарта. Резистор RI ограничивает ток заряда ионистора;

    Рис. 6.16. Схемы организации бесперебойного питания (продолжение):

    е) стабилизатор DAI ограничивает начальный ток заряда резервного ионистора СЗ на уровне не более 100 мА. Для справки, большой ток, начиная примерно с 250 мА, может повредить иони-стор. Диод VDI снижает выходное напряжение на 0.2 В. Кроме того, при отключении основного питания он не даёт разряжаться ионистору СЗ через выходные цепи внутри стабилизатора DA1

    ж) транзистор VT1 выполняет функцию развязывающего диода наравне с «настоящим» диодом VD1, но имеет меньшее падение напряжения «коллектор — эмиттер» в открытом состоянии (0.1...0.15 В вместо 0.2 В). Основное питание +5 В(1), резервное питание +5 В(2);

    з) аналогично Рис. 6.16, ж, но на полевом транзисторе VT1, при этом падение напряжения на открытом переходе «сток — исток» будет меньше, чем у биполярного транзистора при прочих равных условиях;

    и) накопительный конденсатор C1 поддерживает некоторое время работоспособность МК при отключении батареи GB1. Длительность аварийного функционирования зависит от ёмкости и тока утечки конденсатора C1, а также от тактовой частоты МК и его способности устойчиво работать при пониженном питании;

    к) благодаря диодному мосту VDI... VD4, входное напряжение 9... 12 В может быть как постоянным (DC), так и переменным (АС);

    Рис. 6.16. Схемы организации бесперебойного питания (продолжение): л) резервный ионистор С2 некоторое время поддерживает напряжение в цепи +4.8 В (к которой подключается МК) при снятии основного питания +11 В от сетевого источника. Транзисторы VTI, VT2 не дают разряжаться ионистору через внутреннее сопротивление микросхемы DAI и нагрузку в цепи +5 В;

    м) светодиод HL1 индицирует питание только в том случае, когда работает резервная батарея GB1. Резистором R1 устанавливается требуемая яркость свечения. При замыкании контактов переключателя SAI питание поступает от основного источника +5 В, при этом диод VD1 и транзистор VT1 закрываются и светодиод HL1 гаснет;

    н) основной канал питания — это пальчиковые батареи GBl, GB2, а резервный каналлитиевый аккумулятор GB3. При отключённых батареях GBl и GB2 МК будет получать питание от аккумулятора GB3, находясь в дежурном режиме, поскольку внешние исполнительные устройства (цепь +3.2 В) будут обесточены. Диод VD1 не позволяет разряжаться аккумулятору GB3 через нагрузку, подключённую к цепи +3.2 В;

    о) в исходном состоянии питание устройства производится от трёх батарей GB1...GB3, при этом индикатор HL1 светится зелёным цветом. При подаче внешнего питания +5 В срабатывает реле К1, контакты К1.1 замыкаются, батареи отключаются, индикатор HL1 светится красным цветом. Если вместо красного наблюдается жёлтый цвет индикатора, то следует последовательно с выводом «G» светодиода включить диод типа КД522Б катодом к HL1. Резистор R1 уменьшает ток потребления по цепи +5 В, однако, при неустойчивом срабатывании реле этот резистор можно заменить перемычкой; О

    Рис. 6.16. Схемы организации бесперебойного питания (окончание): п) резервный аккумулятор GB1 постоянно подзаряжается небольшим током через резистор R1. Стабилитрон VD6 совместно с диодом VD7 ограничивают напряжение на аккумуляторе на уровне +13.7 В. Диоды VD4, VD5 открываются только при снятии основного питания +16 В. Диоды VD3, VD8 небходимы, поскольку ёмкость конденсаторов на выходе стабилизаторов DAI, DA2 больше, чем на входе (сравнить C1 и CJ, СЗ и С4)

    р) питание +5 В является основным, а питание от литиевой батареи/аккумулятора GBI — резервным. На выход OUT поступает большее из двух напряжений, подаваемых на входы VCC и ВАТ микросхемы DA1. При снижении напряжения на выводе VCC ниже +4.75 В (подстраивается резистором R2), на выходе PFO формируется НИЗКИЙ уровень. Это система раннего предупреждения о неполадках в питании, чтобы МК мог переключиться на резервный источник. При снижении напряжения на выводе VCC ниже +4.65 В, генерируется импульс сброса RES;

    с) аналогично Рис. 6.16, р, но с резервным питанием от ионистора C1. Сигнал сброса RES поступает на вход прерывания INT, поскольку аппаратно сбрасывать МК не обязательно из-за плавного снижения напряжения OUT;

    т) ВЫСОКИМ/НИЗКИМ уровнем с выхода МК питание коммутируется или от цепи +5 В, или от резервного аккумулятора GB1, который подзаряжается небольшим током через элементы VDI, R4. При пропадании питания +5 В аккумулятор GB1 включается автоматически, при этом в МК надо произвести сброс, поскольку он может «зависнуть» при резком скачке напряжений.

    Довольно часто возникает необходимость обеспечить резервное питания вашего устройства, в данной статье рассматривается 4 способа как обеспечить это.

    Самый простой

    Самый простой способ перейти на резервное питание-2 диода

    Будет открыт только один из диодов, от того источника питания, напряжение на котором больше. Преимущества схемы-простота и дешевизна. Недостатки схемы очевидны, зависимость напряжения на нагрузке от тока, типа диода(шотки или обычный), температуры. Напряжение всегда будет ниже чем у источника на величину падения напряжения на диоде.

    Немного сложней

    Это схема немного сложнее, работает она следующим образом: когда напряжение VCC присутствует, и оно больше чем напряжение резервного источника(в данном случае это батарея BT2), то мосфет закрыт, потому что напряжение на затворе(Gate) выше чем на Истоке(Source), пропуск напряжения к нагрузке и Истоку обеспечивает открывшийся диод D3. Когда VCC пропадет, напряжение на Затворе пропадет вслед за ним, зато откроется диод внутри мосфета, обеспечив напряжение на Истоке, ну а поскольку на истоке теперь есть напряжение, а на Затворе нет, то транзистор полностью откроется, обеспечив коммутацию батареи без потери напряжения. Данный способ отлично подходит для коммутации питания для модуля GSM, внешнее напряжение выбираем 4,5в, тогда к модулю через диод D3 придет 4,2-4,3в а от батареи напряжение будет идти без потерь.

    Дорогой но без потерь

    Без потерь напряжения можно коммутировать источники с помощью специальных микрочхем, в частности LTC4412 скачать даташит Однако, эта микросхема бывает дефицитной и дорогой.

    Оптимальный без потерь

    Ну вот и подошли к оптимальному способу, причем без потерь. Для начала рассмотрим блок схему LTC4412

    Сразу понятно, что в ней нет ничего сложного, так почему бы не повторить её на дискретных элементах? Блок PowerSorceSelector-это матрица из двух диодов, обеспечивает питание остальной схемы, A1-это компаратор, AnalogController-непонятно что, однако можно предположить, что ничего особо важного он не делает, позже станет понятно почему.

    Попробуем изобразить это.

    DA3-это компаратор. Он сравнивает напряжения на двух источниках. Питается через диод D4 или D5. Когда напряжение на VCC больше чем на батарее, на выходе компаратора устанавливается высокий уровень, это закрывает VT2, и открывает VT3, потому что он подключен на выход через инвертор. Таким образом, VCC проходит на нагрузку без потерь. В случае, когда VCC будет меньше батареи, низкий уровень на выходе компаратора закроет VT3 и откроет VT2.

    Надо сказать пару слов о выборе деталей. DA3, DD1 должны иметь потребление, которое допустимо в данной системе, выбор очень широк, от единиц миллиампер, до сотен наноампер (например MCP6541UT-E/OT и 74LVC1G02). Диоды обязательно шотки, если падение на диоде будет выше порога открытия транзистора(а у IRLML6402TR он может быть -0,4в), то он не сможет полностью закрыться.