Солнечная генерация электроэнергии. Собираем солнечный генератор для чрезвычайных ситуаций. Завершающий этап работы

Солнце является первичным и основным источником энергии для нашей планеты. Именно благодаря ему на 3емле накоплены запасы углеводородов, то есть нефти, угля, торфа, которые в настоящее время человечеством активно потребляются. Следует так же учитывать, что энергия ветра формируется за счет перепадов температур, обусловленных тепловым воздействием Солнца на землю, поэтому Солнце так же является первоисточником ветрогенерации.

Каждую секунду солнце излучает 3,75х10 26 Дж. На Землю попадает примерно 2 миллиардных доли этой энергии, из которых ~37% сразу отражается обратно в космос. Т.о. на Землю попадает лишь 6,3х10 17 Дж (за год 7х10 17 кВтч). Один Киловатт-час - это то количество энергии, которое требуется для работы одной лампочки накаливания мощностью 100 Вт в течение 10 часов. От всех источников энергии человечество потребляет приблизительно 2.5х10 16 кДж/год. Таким образом, энергия получаемая Землей от Солнца за счет излучения, в 8000 раз больше чем необходимо человечеству для удовлетворения всех его потребностей.

Учёные подсчитали, что запасы различных углеводородов на 3емле составляют примерно 6 триллионов тонн. Если исходить из этой цифры, то содержащуюся в них энергию Солнце отдает нашей планете всего за три недели. При этом резервы его настолько велики, что в таком режиме оно сможет функционировать еще около 5 миллиардов лет. Подсчитано, что земные растения и морские водоросли утилизируют примерно 34% поступающей от Солнца энергии, остальная же практически полностью теряется.

Исходя из расчетов, если покрыть 0,7% земной поверхности солнечными батареями, КПД которых составляет 10% (а в среднем КПД современных батарей 15%-40%), то полученная энергия обеспечит потребности всего человечества более чем на 100%. Если бы человек сумел взять для удовлетворения своих потребностей хотя бы один процент поступающей от Солнца энергии, то это решило бы энергетические проблемы человечества на много веков вперёд.

Что влияет на количество выработанного электричества?

Географическое положение. Количество солнечной энергии зависит и от географического месторасположения участка: чем ближе к экватору, тем оно больше.

Время года. Объём солнечной энергии, достигающей поверхности Земли, отличается от среднегодового значения: в зимнее время его показатель минимален, в то время как летом достигает максимального значения.

Природные явления (осадки). Во время дождя или снега небо плотно затянуто тучами, и вследствие этого количество солнечной радиации, достигающей поверхности земли, уменьшается.

Тень от деревьев, домов. В тени количество солнечной радиации меньше, чем непосредственно на солнце. Это объясняется тем, что, попав на препятствие в виде дома или дерева, она рассеивается.

КПД солнечной фотовольтаической панели. Он определяется путём деления мощности электрической энергии на мощность солнечного света, падающего на панель. На сегодняшний день среднее значение этого показателя на практике составляет 12-25%.

Солнечная установка для дома

Солнечная электростанция для дома необходима в следующих случаях:

Несмотря на низкий пока еще КПД, солнечные батареи являются эффективным источником электроэнергии среди автономных и альтернативных источников питания. Одна батарея солнечных элементов площадью 10 квадратных метров способна дать больше 1 кВтч мощности, а это обеспечит нормальную работу нескольких лампочек, телевизора и компьютера.

Для загородного дома, в котором проживают 3-4 человека, в весенне-летний период и в светлое время дня может оказаться достаточно 20 квадратных метров площади солнечных батарей (это примерная ежемесячная выдаваемая мощность — 200-300 кВтч, для Московской Области летом больше, зимой меньше).

Покупая устройства для преобразования солнечной энергии в электрическую, хозяин дома обретает частичную независимость от поставщика энергии и может в перспективе, расширяя систему получает столько электроэнергии, сколько ему может понадобиться в будущем.

Для обретения полной энергонезависимости, вероятно потребуется выбрать более мощную солнечную установку, по сравнению с большинством типовых предложений на рынке, еще один вариант - установить дополнительный дизель- или газовый генератор, который будет включаться если «все совсем плохо» - пасмурно несколько дней подряд или засыпало снегом. Но, возможно, это и не нужно?

Солнечная установка для предприятия

Солнечное электричество возможно использовать для обеспечения электроэнергией разного рода предприятий - вокзалы, торговые центры, парковки, дата-центры - перечень объектов можно продолжить на несколько страниц.

При создании солнечных установок для промышленных объектов, применяют сетевые (on grid) трехфазные инверторы, мощностью от 10 кВА и выше, в зависимости от требований. Данный тип инверторов работает исключительно при наличии напряжения в сети, синхронизация выходной мощности по напряжению и частоте основной сети электроснабжения.

В случае отключения основного электропитания, остановится и солнечная генерация. Поэтому нет возможности использования таких инверторов в качестве резервного источника питания.

Оборотная сторона этого обстоятельства - отсутствие необходимости в банке АКБ, который может стоить не менее 1/3 от стоимости всей системы. Косвенно, это ускоряет окупаемость проекта на 30-40%.

Основное преимущество установки солнечных панелей на предприятиях - это конечно же существенная экономия электроэнергии. Расчеты показывают, что при условии корректной установки и эксплуатации, для большинства случаев, любая промышленная установка вернет вложенные средства в течение 3-5 лет. Эта цифра получена для московского региона. За счет чего экономия?

  • Коммерческий объект потребляет большое количество электроэнергии, это означает, что практически все солнечное электричество будет использовано;
  • Часто, пик потребления коммерческого объекта совпадает с пиком солнечной генерации. Пример: лето, солнце в зените, магазин продуктов, максимальное потребление электроэнергии системами кондиционирования и холодильным оборудованием;
  • Стоимость киловатт часа для юридических лиц, до настоящего момента была всегда выше, чем для физических - это косвенный фактор, но он уменьшает срок окупаемости;
  • Возможность увеличения подключенной мощности, без согласования с энергосбытовой компанией.

Солнечные электростанции

Солнечная электростанция - инженерное сооружение, служащее для преобразования солнечной радиации в электрическую энергию.

Солнечные электростанции разделяются на два больших класса:

Солнечные электростанции, использующие для преобразования энергии фотовольтаические ячейки, объединенные в батареи солнечных элементов (панели). Это наиболее распространенный вид преобразования. Все что было написано выше - относится к данным электростанциям. Объем генерации станции зависит от количества установленных солнечных панелей.

Этот вид электростанций подойдет либо для сетевых генерирующих компаний, представители которых навряд ли будут читать данный материал, либо для отдельно стоящих населенных пунктов с хорошей годовой инсоляцией.

Большое количество людей, проживающих в отдаленных уголках нашей родины, отрезаны от основных генерирующих мощностей. Электричество вырабатывается с помощью дизель-генераторов, а это очень дорогое электричество. Установка солнечной электростанции - приносит немедленный экономический эффект.

Основной недостаток фотовольтаической генерации - невозможность работы в ночное время суток и необходимость установки либо дополнительного генератора, либо большого банка АКБ.

Второй большой класс - солнечные электростанции, использующие тепловую энергию . Идея метода - нагревание теплоносителя с помощь солнечного излучения и подача получаемого пара на лопатки турбины генератора. Электростанции этого класса могут быть башенного и модульного типа.

В башенных солнечных электростанциях (СЭС) используется центральный приемник (емкость с теплоносителем) окруженный сфокусированной на нем обширной системой зеркальных элементов. Для максимальной передачи тепла, каждый зеркальный элемент оснащен следящей за солнцем системой. «Солнечные зайчики» фокусируются на центральном приемнике и превращаю теплоноситель пар. Пар подается на лопатки генератора, а его избыток аккумулируется внутри дополнительного резервуара, этот избыток используется для генерации электроэнергии в ночное время суток. Главным недостатком башенных солнечных электростанций являются их высокая стоимость и большая занимаемая площадь, но если с площадь в избытке, то строительство такой СЭС экономически оправдано.

Идея, лежащая в основе работы солнечных электростанций башенного типа, была высказана более 350 лет назад, однако первое строительство СЭС этого типа состоялось только в 1965г., а в 80-х годах был построен ряд мощных солнечных электростанций в США, Западной Европе, СССР и в других странах.

Одной из крупнейших башенных станций на сегодня является станция Ivanpah Solar Electric Generating System в Калифорнии. Она включает в себя три башни высотой с 40-этажные здания, а также 350 000 зеркал размером с дверь гаража. Зеркала отражают солнечный свет на котлы на вершинах башен, создавая пар, который заставляет работать генераторы. Пиковая мощность электростанции 392 мВт, она может снабжать электричеством 140 тысяч домохозяйств.

В модульных солнечных электростанциях используется большое число модулей, в каждом из которых имеется параболо-цилиндрический концентратор солнечного излучения и физически соединенный с электрогенератором приемник. Физический принцип аналогичен башенным СЭС, но технически, каждый модуль теперь является миниэлектростанцией, подключающейся к сети генерирующей компании.

Стоимость установки солнечной генерации. И когда это все окупится?

Объективно, имеется тенденция к постоянному уменьшению стоимость солнечных электростанций, это приводит к постоянному удешевлению выработанной ими электроэнергии и снижению сроков окупаемости подобных проектов. На сегодняшний день наблюдается постепенное уравнивание цен на «солнечные» киловатт-часы и киловатт-часы, полученные традиционным способом.

Анализ окупаемости учитывает такие факторы как: тип и целевое назначение солнечной электростанции, ее географическое место расположения, мощность, а также стоимость альтернативных решений, с которыми она будет сравниваться.

Стоимость существенно зависит от поставленных задач. Для дачного дома с летним проживанием и небольшими подключенным мощностями стоимость будет одна, для коттеджа с круглогодичным проживанием, стоимость увеличится пропорционально подключаемой мощности. Для коммерческого объекта стоимость подключенного киловатта часто ниже, т.к. во многих случаях отсутствует необходимость в батарее АКБ.

Срок окупаемости электростанции коммерческого объекта 3 - 5 лет, дачная система, при использовании только по выходным, окупаться будет значительно дольше (не менее 15 лет). Солнечная установка коттеджа с постоянным проживанием окупится за 7-10 лет.

Многое зависит от стоимости кВт*ч, по которому заказчик покупает электроэнергию у государства и региона установки.

Иногда компании-инсталляторы стремятся «продавать мечту», обещая практически мгновенную окупаемость солнечной установки в домохозяйстве. В каком-то проценте случаев - так и получится, но таких случаев по опыту - меньше 20%. Срок окупаемости в большей степени зависит не от цены установки, не от производителя и даже не от цены киловатт часа, а от того как именно вы потребляете электроэнергию. Если потребление небольшое, то окупаться она будет долго. Хорошая новость в том, что при малом потреблении можно существенно уменьшить первоначальные затраты.

Солнечная установка в небольшом домохозяйстве - в первую инструмент комфорта и независимости, во вторую - способ экономии.

Преимущества и недостатки

К преимуществам солнечных батарей следует отнести:

  • Общедоступность и неисчерпаемость источника энергии (солнца);
  • 100% экологическая безопасность;
  • Возможность длительного использования - срок эксплуатации составляет 25 и более лет;
  • Электричество от солнечных батарей поступает полностью автономно;
  • После установки - бесплатная энергия;
  • Для установки солнечных батарей не требуется никаких согласований.

Одновременно с этим они имеют и ряд недостатков:

  • высокие первоначальные затраты и недостаточный КПД.
  • Низкая эффективность в зимнее время, а также при пасмурной и туманной погоде.
  • Потребность в дополнительном оборудовании (аккумуляторах, инверторах и т. д.) и вспомогательных помещениях для его размещения.
  • Зависимость от времени года в определенных климатических поясах.

По мнению Международного энергетического агентства, б ыстро сокращающиеся затраты на производство делают солнечные панели самым дешевым способом генерации электричества. По итогам прошлого года рост солнечной генерации превысил по темпам развития другие сектора электроэнергетики. С 2010 г. стоимость нового солнечного модуля снизилась на 70%, тогда как на оборудование в ветроэнергетике на 25% и расходы на аккумуляторы для электрокаров на 40%.

Согласно прогнозам независимых экспертов Bernreuter Research, к концу 2017 г. прирост мощностей в солнечной энергетике в глобальном масштабе достигнет 100 ГВт. Совокупная мощность установленных в мире СЭС по итогам 2016 г. составляла 74 ГВт. Самый большой прирост в этом сегменте приходится на Китай. Суммарная мощность новых солнечных станций достигла в КНР – 52 ГВт, на втором и третьем местах расположились США (12,5 ГВт) и Индия (9 ГВт). За год прирост составил более 30%: сейчас общие мощности солнечной электроэнергетики, по данным экспертов, составляют 300 ГВт.

По оценкам МЭА, в перспективе развитие солнечной энергетики получит особенно широкое распространение в Китае и Индии. Так, в последней недавно запустили специальную программу по электрификации, которая охватит 40 млн домохозяйств только до конца 2018 г. Решать проблемы снабжения электричеством будут в основном за счет дешевой солнечной энергии.

Однако, в отличие от АТР, в европейских странах доминирует ветроэнергетика. Согласно прогнозу МЭА, после 2030 г. именно она станет главным источником для выработки электроэнергии в европейских странах. «Солнечная энергетика быстро завоевывает рынки, включая Китай и Индию, поскольку именно она становится самым дешевым источником производства электроэнергии. Элекротранспорт, благодаря государственной поддержке и снижению затрат на выпускаемые аккумуляторы, быстро развивается», - утверждает исполнительный директор МЭА Фатих Бироль.

В период после 2030 г. в Европейском союзе на ВИЭ придется порядка 80% вводимых новых мощностей, а энергия ветра станет ведущим источником производства электроэнергии. Быстрое развитие солнечной энергетики, в особенности в Китае и Индии, позволит ей стать крупнейшим источником генерации к 2040 г. К этому времени доля всех возобновляемых источников энергии в общем объеме производства электроэнергии достигнет 40%.

МЭА отмечает быстрое развертывание мощностей и снижение затрат на экологически чистые энергетические технологии. Эксперты особо подчеркивают высокие темпы электрификации. По итогам прошлого года, расходы потребителей на электричество в глобальном масштабе достигли паритета с их расходами на нефтепродукты.

Вплоть до 2040 г. развитие возобновляемой энергетики будет по-прежнему поддерживаться со стороны государства. Однако трансформация энергетического сектора будет происходить главным образом благодаря миллионам домашних хозяйств, поселений и предприятий, инвестирующих в создание собственных распределенных мощностей возобновляемой энергетики.

Без учета крымских СЭС сегодня в России действует 10 станций общей мощностью около 100 МВт. В Крыму есть пять солнечных электростанций общей мощностью 300 МВт. В ноябре в России введена в строй первая Бичурская солнечная электростанция в Бурятии. Пока стоимость сооружения одной такой СЭС в стране составляет порядка 1 млрд рублей, при 70% локализации использованного оборудования. В сентябре компания «Хевел» запустила Майминскую СЭС на Алтае, мощностью в 20 МВт, стоимостью в 2 млрд рублей с использованием новых гетероструктурных моделей с повышенной эффективностью. Это уже четвертая СЭС на Алтае у «Хевел». Всего российским компаниям предстоит построить к 2024 г. 57 СЭС общей мощностью в 1,5 ГВт.

Нина Маркова