Лекция обобщенная структурная схема системы радиосвязи. Основы радиосвязи, радиовещания и телевидения. Формирование телевизионного сигнала

Для оценки систем радиосвязи используют ТТХ, представляющие совокупность числовых показателей, определяющих основные свойства системы и её возможности по передаче информации с заданными свойствами в заданное время при определенных условиях.

ТТХ можно разделить на 3 группы:

    оперативно-тактические характеристики;

    технические характеристики;

    конструктивно-эксплуатационные характеристики.

Эти характеристики определяются схемным исполнением аппаратуры системы связи.

Тракты формирования и обработки сигналов по своему техническому исполнению идентичны трактам аппаратуры проводной связи.

Специфика характеристик системы радиосвязи определяется используемым каналом радиосвязи. Рассмотрим его более подробно.

Канал радиосвязи или радиоканал образуется совокупностью технических средств и среды распространения радиоволн и представляет собой тот путь, по которому обеспечивается передача радиосигнала (модулирующего ВЧ сигналы) на расстояние.

Совокупность технических устройств и среды распространения сигнала, образующая сигнал связи, основной частью которого является канал радиосвязи, называется линией радиосвязи .

Линия радиосвязи может быть одноканальной и многоканальной.

Свойства канала радиосвязи (особенности).

1. Канал радиосвязи может обладать очень большим затуханием, достигающим 140 ÷ 160 дб. Мощность сигнала на входе приемной части канала часто измеряется величинами 10 – 10 ÷ 10 – 14 Вт., т.е. очень мала.

Для надежной работы оконечной аппаратуры требуется мощность единицы Ватт и более.

Это значит, приемная аппаратура должна иметь КУ не менее 10 10 ÷ 10 14 по мощности или 10 5 ÷ 10 7 пол напряжению.

2. Затухание канала радиосвязи является переменным в широких пределах. Это создает трудности в обеспечении постоянного уровня выходного сигнала, затрудняется дуплексная связь, возможно самовозбуждение канала, большие трудности для связи с подвижными объектами, в горах, в городах.

3. Затухание канала является переменным в силу изменчивости параметров земной атмосферы. Это наиболее заметно в диапазоне КВ при отражении от ионосферы, что обусловлено флуктуациями ионосферы.

4. Неизбежность взаимных помех радиостанций, приводящих к потере части информации:

    естественные помехи;

    промышленные помехи;

    намеренные помехи.

Необходимость решения проблемы совместимости электромагнитных полей.

5. Радиоканал вносит искажения в передаваемый сигнал за счет ограничения его спектра частот.

Необходимость максимального ограничения спектра вызывается:

    недостаточной емкостью частотного диапазона;

    стремлением уменьшить вероятность попадания посторонних помех в полосу радиоканала.

6. Эффект Допплера.

f = f o + F д F д ~

Итак : радиоканал характеризуется широким диапазоном быстрых и медленных изменений затухания и действием большого количества помех от внешних источников.

Технические характеристики каналов радиосвязи

    Полоса частот, пропускаемая радиоканалом

    Характеристика нелинейных искажений.

1. Полоса частот

Для разделения радиоканалов необходимо ограничить полосу частот, отводимую каждому радиоканалу. Эта полоса определяется шириной спектра передаваемого радиосигнала и учитывает возможную частотную нестабильность аппаратуры.

Эффективная ширина спектра – это полоса частот, до которой можно ограничить спектр данного вида сигнала без превышения норм на допустимые искажения.

Ширина полосы частот радиоканала задается приемо-передающей аппаратурой и фильтрами.

Свойства распространения RV оказывают влияние на выбор ширины полосы пропускания (например, скорость распространения при связи с самолетом – полоса должна быть больше из-за эффекта Допплера).

Такие свойства радиоканала, как многолучевость распространения RV и их рассеивание в ионосфере, ограничивают возможность передачи шпс сигналов из-за искажения радиоимпульсов, выраженного в увеличении их длительности.

2. АЧХ

Эта характеристика отражает степень влияния радиоканала на амплитудные соотношения составляющих спектра радиосигнала.

В аппаратурной части радиоканала наибольшие искажения возникают на краях полосы пропускаемых частот, т.к. избирательные системы сигнальных трактов не имеют прямоугольную характеристику.

Приходится расширять полосу пропускания, что приводит к потере помехоустойчивости или её снижению.

АЧХ может изменяться в широких пределах за счет селективных замираний при распространении радиоволн через йоносферу. Существуют методы борьбы с этим.

3. ФЧХ

ФЧХ представляет собой зависимость фазового сдвига составляющих спектра радиосигнала от частоты. Искажения сигнала отсутствуют, когда эта зависимость линейна.

При ограниченной полосе пропускания частот достичь линейности ФЧХ невозможно – она принципиально нелинейна на краях полосы пропускания избирательной системы.

Зависимость качества радиосвязи от нелинейности ФЧХ определяется видом сигнала.

Менее чувствительны - тлф сигналы.

Более чувствительны - дискретные сигналы.

4. Характеристика нелинейных искажений

Это амплитудная характеристика - зависимость амплитуды сигнала на выходе радиоканала от амплитуды на входе.

Нелинейность АX может быть вызвана аппаратурой радиоканала или средой распространения.

Нелинейные искажения ведут к преобразованию спектрального состава радиосигнала. Усложняется проблема ЭМС.

Допустимые нелинейные искажения нормируются.

Степень нелинейных искажений, вызываемых замираниями, зависит от вида сигнала: AM сигнал искажается сильнее, чем ОМ.

Информационные характеристики радиоканала связи:

1.Объем канала

2. Пропускная способность

3. Помехоустойчивость Р о - это вероятность искажения единичного символа - для дискретного р/канала.

В мирное время - 10 – 3

В военное время - 10 – 2

4. Скрытность радиоканала

    пространственная;

    энергетическая;

    частотная;

    временная;

    организационная;

    поляризационная;

    структурно-кодовая.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Общие принципы организации радиосвязи

Радиосвязь - это разновидность беспроводной связи, у которой в качестве сигнала используются, распространяемые в пространстве, радиоволны. Принцип радиосвязи основан на передаче радиосигнала от передающего устройства, содержащего передатчик и передающую антенну, путем перемещения радиоволн в открытом пространстве, приемному устройству, содержащему приемную антенну и радиоприемник. Гармонические колебания с несущей частотой, принадлежащей какому-либо диапазону радиочастот, подвергаются модуляции в соответствии с передаваемым сообщением. Модулированные радиочастотные колебания представляют собой радиосигнал. От передатчика радиосигнал поступает в антенну, с помощью которой в окружающем пространстве возбуждаются соответственно модулированные электромагнитные волны. Свободно перемещаясь, радиоволны достигают приёмной антенны и возбуждают в ней электрические колебания, которые поступают далее в радиоприёмник. Принятый радиосигнал поступает в электронный усилитель, демодулируется, далее выделяется сигнал, аналогичный сигналу, которым были модулированы колебания с несущей частотой в радиопередатчике. После этого, дополнительно усиленный сигнал, преобразуется при помощи соответствующего воспроизводящего устройства в сообщение, аналогичное исходному. В местах приёма на радиосигнал могут накладываться электромагнитные колебания от посторонних источников радиоизлучений, способные помешать качественному воспроизведению сообщений, называемые помехами радиоприёму. Влияние на качество радиосвязи могут оказывать изменение во времени затухания радиоволн на пути распространения от передающей антенны к приёмной и распространение радиоволн одновременно по двум или нескольким траекториям различной протяжённости. В последнем случае электромагнитное поле в месте приёма представляет собой сумму взаимно смещенных во времени радиоволн, интерференция которых также вызывает искажения радиосигнала. Поэтому и эти явления относят к категории помех радиоприёму. Принципы радиосвязи далеко не новы. За это время радиосредства прошли путь от первых передатчиков сигналов азбуки Морзе до систем спутниковой связи. Радиоэфир наполнился музыкой радиостанций, сигналами далеких галактик и нашими разговорами. Однако с тех пор не изменилось главное - радиоволны

На рисунке 1.1 приведена упрощенная структурная схема радиолинии. Передаваемое сообщение поступает на преобразователь (микрофон, телевизионную камеру, телеграфный аппарат или ключ), который преобразует его в электрический сигнал. Последний поступает на радиопередающее устройство, которое состоит из модулятора (М), синтезатора несущей частоты (СЧ) и усилителя модулированных колебаний (УМК). С помощью модулятора один из параметров высокочастотного колебания изменяется по закону передаваемого сообщения. С помощью антенны (А) энергия радиочастотных колебаний передатчика излучается в тракт распространения радиоволн.

На приемном конце радиоволны наводят ЭДС в антенне. Радиоприемное устройство с помощью селективных (избирательных) цепей (СЦ) отфильтровывает сигналы от помех и других радиостанций. В детекторе (Д) происходит процесс, обратный модуляции - преобразование модулированных колебаний в исходный электрический сигнал, который управлял радиопередатчиком. С помощью преобразователя (громкоговорителя, телеграфного аппарата, приемной телевизионной трубки) электрический сигнал связи преобразуется в сообщение, доставляемое абоненту.

Рисунок 1.1 - Структурная схема радиолинии

Рассмотренная радиолиния обеспечивает одностороннюю передачу сообщения, что приемлемо только в службах оповещения. Одностороннюю радиосвязь представляет собой, в сущности, и радиовещание, хотя в этом случае приём ведётся не в одном, а во множестве пунктов. Приём во многих пунктах ведётся также при циркулярной передаче: распоряжения передаются многим исполнителям; сообщения передаются из пресс-центра редакциям газет и т.д.

Для организации двусторонней радиосвязи в каждом пункте надо иметь и передатчик, и приёмник. Если при этом передача и приём на каждой радиостанции осуществляется поочерёдно, то такая связь называется симплексной (рисунок 1.2, а). Двусторонняя радиосвязь, при которой связь между радиостанциями реализуется одновременно, называется дуплексной (рисунок 1.2, б).

При дуплексной радиосвязи передача в одном и другом направлениях ведётся, как правило, на разных несущих частотах. Это делается для того, чтобы приёмник принимал только сигналы от передатчика с противоположного пункта и не принимал сигналов собственного передатчика.

Рисунок 1.2 - Структурные схемы организации: а - симплексной, б - дуплексной радиосвязи

Симплексная связь используется, как правило, при наличии относительно небольших информационных потоков. Для объектов с большой нагрузкой характерна дуплексная связь.

Если необходимо иметь радиосвязь с большим числом объектов, то организуется так называемая радиосеть (рисунок 1.3). Одна радиостанция, называемая главной (ГР), может передавать сообщения как для одного, так и для нескольких подчинённых объектов. Ее радист-оператор следит за порядком в радиосети и устанавливает очередность работы на передачу подчиненных станций (ПР). Последние при соответствующем разрешении могут обмениваться информацией не только с ГР, но между собой. Этот вариант организации радиосети может быть построен на основе как сложного симплекса (рисунок 1.3, а), так и сложного дуплекса (рисунок 1.3, б). В первом случае возможно использование совмещенных приемопередатчиков и общей рабочей радиоволны (частоты). Во втором случае ГР ведет передачу на одной частоте, а принимает на нескольких (по числу подчиненных радиостанций). Для радиосвязи на большие расстояния применяют радиопередатчики мощностью десятки и сотни киловатт. Поэтому, хотя при дуплексной связи приемник настраивается не на ту частоту, на которую настроен свой передатчик, трудно обеспечить его нормальные действия вблизи от мощного передатчика. Исходя из этого, приемник и передатчик приходится размещать на расстоянии в десятки километров друг от друга.

Рисунок 1.3 - Структурные схемы радиосетей: а - сложный симплекс, б - сложный дуплекс

В этих условиях передатчики и передающие антенны располагают на радиостанции, которую называют радиопередающим центром. Приемники и приемные антенны располагают на приемном радиоцентре.

Процессы в электроэнергетических сооружениях, на электрифицированных железных дорогах, в электрических установках и бытовых электроприборах, множество которых имеется в городах, связаны с излучением электромагнитных волн. Поскольку эти излучения могут быть помехами радиоприему, приемный радиоцентр обычно помещается в стороне от населенных пунктов и железных дорог. Для соединения источников сообщения с радиопередатчиками и радиоприемниками и контроля качества радиосвязи в городах оборудуют радиобюро.

Схема комплекса средств радиосвязи, обслуживающих административный или хозяйственный центр, изображена на рисунке 1.4.

Рисунок 1.4 - Схема комплекса средств радиосвязи

На рисунке: 1 - передающий радиоцентр с радиопередающими устройствами Пер 1 , Пер 2 ,…, Пер n ; 2 - приемный радиоцентр с радиоприемными устройствами Пр 1 , Пр 2 ,…, Пр n ; 3 - город, который связан с радиоцентрами соединительными линиями связи 4 и 5. По линиям 4 на радиоцентр 1 поступают передаваемые сигналы, а по линиям 5 в город передаются сигналы, принятые радиоцентром 2; по этим же линиям передаются сигналы дистанционного контроля работы радиоцентров и сигналы дистанционного управления оборудование. Радиобюро - 6, соединено линиями связи с телеграфной и фототелеграфной аппаратными центрального телеграфа 7 и 8, междугородной телефонной станцией 9, а также радиовещательной аппаратной 10. Радиовещательная аппаратная служит для обмена радиовещательными программами с другими городами или странами

2. Схемы питания узлов проводного вещания

В зависимости от построения сети проводного вещания могут быть однозвенными, двухзвенными и трехзвенными (рис. 2)

Однозвенные сети применяются в маломощных узлах. Сигналы звукового вещания поступают с выхода усилителя станции (УС) на вход абонентских громкоговорителей по абонентским линиям (АЛ). Номинальное напряжение в АЛ принято равным 30 В. К одной АЛ можно подключить несколько десятков абонентских устройств, поэтому однозвенные сети применяют в небольших населенных пунктах.

Для расширения обслуживаемой территории применяют двухзвенные сети. В таких сетях энергия сигналов вещания передается с помощью повышенного напряжения (обычно 240 В) по распределительным фидерным линиям (РФ). В местах расположения абонентов устанавливаются понижающие абонентские трансформаторы (АТ), с помощью которых осуществляется питание АУ через АЛ. Распределительные фидерные линии называют вторым, а абонентские - первым звеном распределения.

При большой нагрузке (более 10 тыс. абонентских устройств) двухзвенная сеть не может обеспечить распределение сигналов с достаточно малыми потерями. В этих случаях создают трехзвенные сети. Территория, обслуживаемая такой сетью, разбивается на зоны, в каждой из которых строят автономные двухзвенные сети. Питание этих сетей осуществляется по высоковольтным (обычно 960 В) магистральным фидерным линиям (МФ) через понижающие трансформаторные подстанции (ТП). Сеть МФ считают третьим звеном распределения.

Все городские узлы проводного вещания можно разделить на две группы: с централизованным и децентрализованным питанием сетей (рис. 2.1).

Рисунок 2 - Схемы однозвенной (а), двухзвенной (б) и трехзвенной (в) сетей проводного вещания

При централизованном питании все мощные усилители сети установлены в одном месте - на станции. Такое построение сети упрощает резервирование и обслуживание станционного оборудования, обеспечение его гарантийным энергоснабжением, но из-за сложности сети она не способна обеспечить высокую надежность работы. При нагрузке более 50ч100 тыс. абонентских устройств централизованные системы неприменимы.

радиосвязь магнитный сигнал электрический носитель

Рисунок 2.1 - Схема узлов проводного вещания с централизованной (а) и децентрализованной (б) системами питания узлов

При децентрализованной системе питания территория города разбивается на районы, в каждом из которых сооружается двухзвенная или трехзвенная сеть.

Для питания этих сетей организуются мощные опорные усилительные станции (ОУС). Управление и контроль всем оборудованием проводного вещания осуществляется из одного пункта, называемого центральной станцией проводного вещания (ЦСПВ).

Для повышения надежности работы проводного вещания предусмотрено резервирование тех звеньев, отказ которых вызывает прекращение подачи программ большому количеству абонентов. В крупных городских узлах такими звеньями являются источники программ, усилительное оборудование ЦСПВ, соединительные линии, усилители ОУС, магистральные фидеры. На рис.2.3 приведена структурная схема узла ПВ города. Из рисунка видно, что к каждой ТП подведен рабочий и резервный магистральные фидеры, причем резервный фидер (РМФ) подведен от другой ОУС. При выключении ОУС или МФ питание ТП переключается на соседние ОУС. Если вблизи нет ОУС, от которой можно провести РМФ, то для резервного питания ТП строят резервную усилительную подстанцию - так называемую блок-подстанцию (БП). Эта подстанция включается только при аварийном отключении МФ. В качестве примера на рис.2.3 приведена схема узла проводного вещания, в состав которого входят четыре ОУС и восемь ТП.

Рисунок 2.3 - Структурная схема узла ПВ города

Распределительные фидеры и абонентские линии - наиболее протяженная и дорогая часть линейных сооружений. В то же время повреждения этой части приводят к прекращению подачи программ только ограниченному числу абонентов. Поэтому для данной части сети применяют меры локализации повреждений, то есть меры, сводящие к минимуму число необслуживаемых абонентов при повреждениях сети.

3. Физические принципы магнитной записи электрических сигналов

Принцип магнитной записи электрических сигналов на движущийся магнитный носитель основан на явлении остаточного намагничивания магнитных материалов. Запись и хранение информации на магнитном носителе производится путем преобразования электрических сигналов в соответствующие им изменения магнитного поля, воздействия его на магнитный носитель и сохранения следов этих воздействий в магнитном материале длительное время, благодаря явлению остаточного магнетизма. Воспроизведение электрических сигналов производится путем обратного преобразования.

При цифровой магнитной записи в магнитную головку поступает ток, при котором поле записи через определенные промежутки времени изменяет свое направление на противоположное. В результате под действием поля рассеяния магнитной головки происходят намагничивание или перемагничивание отдельных участков движущегося магнитного носителя. Для осуществления записи звуконоситель необходимо подготовить, т.е. удалить с него записанные ранее сигналы. Процесс удаления сигналов называется стиранием и осуществляется оно с помощью головки стирания ГС. Питается ГС от генератора стирания и подмагничивания (ГСП).

Транспортирование носителя записи осуществляет движущий механизм ДМ, который в случае использования ленты в качестве звуконосителя называется лентопротяжным (ЛПМ).

Лентопротяжный механизм содержит ведущий двигатель Д 1 , к оси которого лента прижимается прижимным роликом Р; подающий узел, снабженный двигателем Д 2 , и приемный узел, снабженный двигателем Д 3 . Вращающий момент двигателя Д 2 направлен противоположно вращающим моментам двигателей Д 1 и Д 3 . Благодаря подтормаживающему действию двигателя Д 2 лента находится в натянутом состоянии и плотно прилегает к сердечникам головок. Во многих бытовых магнитофонах функции двигателей объединяются в одном с целью уменьшения массы, размеров и снижения стоимости.

Из сказанного следует, что в любом аппарате для магнитной записи можно выделить три основных функциональных узла:

магнитное звено (магнитный носитель и головки);

движущий (чаще всего лентопротяжный) механизм;

электронные блоки (усилители записи и воспроизведения, генератор стирания и подмагничивания, входной и выходной преобразователи).

Размещено на Allbest.ru

Подобные документы

    Состояние и перспективы развития средств беспроводной связи на железнодорожном транспорте. Оборудование сети мониторинга поездной радиосвязи в ОАО "РЖД" (ЕСМА). Структурная схема мониторинга, технические параметры радиостанций поездной радиосвязи.

    дипломная работа , добавлен 15.05.2014

    Принципы расчета и построения систем беспроводной связи. Особенности распространения и затухания сигналов в системах радиосвязи с радиальной структурой. Определение максимального расстояния уверенного приема и посредственного, неуверенного приема.

    курсовая работа , добавлен 08.10.2012

    Устройство общих схем организации радиосвязи. Характеристика радиосистемы передачи информации, в которой сигналы электросвязи передаются посредством радиоволн в открытом пространстве. Особенности распространения и области применения декаметровых волн.

    реферат , добавлен 10.07.2010

    Особенности видеосигналов и трудности, возникающие при их записи. Траектория движения магнитной ленты в магнитофоне. Сущность наклонно-строчной записи. Структурная схема конструкции видеомагнитофона. Основные характеристики записи в формате VHS.

    реферат , добавлен 14.11.2010

    Описание существующей схемы связи на участке проектирования. Оборудование поездной радиосвязи участка. Описание радиостанции РВС-1-12. Электрический расчет дальности связи в сетях технологической железнодорожной радиосвязи диапазона 160 МГц (ПРС-С).

    дипломная работа , добавлен 16.04.2015

    Общие принципы работы телевизионных приемников PHILIPS на базе шасси L01.1E AB. Принципиальные и структурные схемы ряда узлов. Принципы работы видеопроцессоров, микроконтроллеров, источников питания. Блок-схема алгоритма диагностики модуля радиоканала.

    курсовая работа , добавлен 24.03.2015

    Анализ оснащенности участка проектирования системами связи. Требования к стандартам радиосвязи. Преимущества GSM-R, принципы построения, организация каналов доступа, особенности базовой структуры. Энергетический расчет проектируемой системы радиосвязи.

    дипломная работа , добавлен 24.06.2011

    Системы связи как наиболее распространенный вариант радиоэлектронных систем передачи информации, их классификация и типы, принципы функционирования и структура, управление. УКВ- и СВЧ-системы радиосвязи: сравнительное описание, условия применения.

    реферат , добавлен 21.08.2015

    Структурная схема системы связи. Сущность немодулированных сигналов. Принципы формирования цифрового сигнала. Общие сведения о модуляции и характеристики модулированных сигналов. Расчет вероятности ошибки приемника в канале с аддитивным "белым шумом".

    курсовая работа , добавлен 07.02.2013

    Схемотехнические принципы проектирования усилителя электрических сигналов. Обоснование его структурной схемы. Выбор типов и номиналов элементов устройства. Обоснование схемы инверсного и реостатного каскадов. Проверка расчётов по коэффициенту усиления.

Системы радиосвязи являются частным случаем информационных электрических систем связи. Их отличительной особенностью является то, что в качестве переносчика сообщений, т.е. сигнала, используется пере­менное ЭМ поле, распространяющее за счет тока смещения в материальной среде, т.е. радиоволна.

Отсюда вытекает определение:

Система радиосвязи - это такая система связи, линией связи в которой, является среда распространения радиоволн.

В ходе ведения боевых действий проводные линии связи могут быть легко прерваны противником.

Это определяет ведущую роль средств радиосвязи в ходе ведения боевых действий.

Помимо этого, средства радиосвязи обладают еще целым рядом достоинств.

Достоинства радиосвязи:

    меньшая, чем у проводной связи, зависимость от силового воздействия противника (оружия);

    возможность обеспечения управления с любых мест дислокации и в движении;

    гибкость в выборе способов организации связи (маневр диапа­зонами частот и режимами работы);

    возможность оперативного резервирования канала и т.д.;

    простота циркулярной связи;

    легко наращивается число абонентов и т.д.

Можно назвать ещё целый ряд достоинств и преимуществ радиосвязи.

Рассмотрим обобщённую схему системы радиосвязи:

    передающая часть;

    линия связи;

    приёмная часть;

    элементы, непосредственно не входящие в систему радиосвязи, но влияющие на её характеристики и структуру.

ИС – источник сообщения;

ОУ1, ОУ3 – оконечные устройства связи;

ПС – получатель сообщений;

АПС1,АПС3 – аппаратура преобразования сигналов;

АПК1, АПК3 – аппаратура повышения криптостойкости.

ИС вырабатывает подлежащую передаче информацию, которая может иметь различные формы представления. Это могут быть речевые и видеосообщения, буквенный текст, формализованные сообщения и т.д..

Для преобразования этих сообщений в первичные электрические сигналы используются оконечные устройства (ОУ).

В качестве ОУ могут выступать телефонные аппараты, микрофоны, телеграфные и фототелеграфные аппараты, видеокамеры, ЭВМ и т.д.

Для передачи по радиоканалу они должны быть преобразованы в радиочастотные с помощью радиопередатчика (рпд).

(Он осуществляет модуляцию и усиливает эти сигналы).

С помощью антенны эти высокочастотные электромагнитные колебания преобразуются в радиоволны свободного пространства.

В ряде случаев первичный сигнал требует дополнительного преобразования:

Это осуществляет аппаратура преобразования сигналов ЛПС1.

Это называют первой ступенью модуляции (кодирования).

В РПД осуществляется вторая ступень модуляции – формиррование радиосигнала х (t) путём изменения информационного параметра радиочастотного колебания по закону d (t).

С целью повышения достоверности передаваемой информации применяют аппаратуру АПД.

Для увеличения криптостойкости информации используют аппаратуру увеличения криптостойкости АПК.

АПС1 + АПД1 = АПК1 = тракт формирования сигналов.

Радиоволны принимаются антенной, которая:

    осуществляет пространственную, поляризационную и предварительную частотную селекцию;

    преобразует электромагнитные волны в высокочастотные колебания тока, которые подаются на РПр.

РПр осуществляет основную частотную селекцию сигналов, их преобразование, усиление и демодуляцию.

Совокупность АПК3 + АПД3 + АПС2 образует тракт обработки сигналов. Который преобразует выходной сигнал РПр в НЧ сигнал а ′ (t).

Рассмотрим структуру радиосвязи (рис. 2.15).

Микрофон (М) преобразует звуковые колебания речи в электрические колебания тока звуковой (низкой) частоты. Одним из основных блоков радиопередатчика является задающий генератор (ЗГ) (или генератор высокой частоты), преобразующий энергию постоянного тока (специального источника питания) в энергию колебания токов высокой частоты (ВЧ). Усиленный в усилителе низкой частоты (УНЧ) ток звуковой частоты поступает на модулятор (Мод), воздействуя на один из параметров (амплитуду, частоту или фазу) тока высокой частоты. Вырабатываемого задающим генератором. В результате в антенну передатчика подаются токи высокой частоты (радиочастоты), изменяющиеся по амплитуде, частоте или фазе в соответствии с передаваемыми звуковыми колебаниями (передаваемыми первоначальным сообщением). Процесс воздействия на один из параметров ВЧ-сигнала по закону изменения передаваемого первоначального сообщения называется модуляцией , соответственно амплитудной, частотной или фазовой.

Рисунок 2.15 – Структурная схема радиосвязи

Токи высокой частоты, проходя по антенне передатчика, образуют вокруг нее электромагнитное поле. Электромагнитные волны (радиоволны) отделяются от антенны и распространяются в пространстве со скоростью 300000 км/с.

В приемной антенне радиоволнами (электромагнитным полем) наводится ЭДС радиочастоты, создающая модулированный ток ВЧ, который в точности повторяет все изменения тока в передающей антенне. Токи высокой частоты от приемной антенны по фидерной линии передаются на избирательный усилитель высокой частоты (УВЧ). Избирательность обеспечивается резонансным контуром, чаще всего состоящим из параллельно включенных катушки индуктивности и конденсатора, образующих параллельный колебательный контур, имеющий резонанс тока на частоте электромагнитных колебаний, передаваемых передатчиком. К передатчикам радиостанций, работающих на других частотах, данный радиоприемник практически не чувствителен.

Усиленный сигнал подается на детектор (Дет), преобразующий принятые сигналы ВЧ в токи звуковых колебаний, изменяющиеся подобно токам звуковой частоты, создаваемым микрофоном на передающем пункте. Такое преобразование называется детектированием (демодуляцией). Полученный после детектирования ток звуковой или низкой частоты (НЧ) обычно еще усиливается в УНЧ и передается на громкоговоритель (динамик или наушники), который преобразует этот ток НЧ в звуковые колебания.

Радиосвязь бывает одно- и двухсторонней. При односторонней радиосвязи одна из радиостанций осуществляет только передачу, а другая (или другие) – только прием. При двухсторонней радиосвязи радиостанции осуществляют одновременно передачу и прием.

Симплексная радиосвязь – это двухсторонняя радиосвязь, при которой каждый абонент ведет только передачу или только прием поочередно, выключая свой передатчик на время приема (рис. 2.16). Для симплексной связи достаточно одной радиочастоты (одночастотная симплексная радиосвязь). Каждая радиостанция имеет одну антенну, которая при приеме и передаче переключается соответственно на вход радиоприемника или на вход радиопередатчика.

Рисунок 2.16 – Структурная схема симплексной радиосвязи

Симплексная радиосвязь обычно используется при наличии относительно небольших информационных потоков. Для радиосетей с большой нагрузкой характерна дуплексная связь.

Дуплексная радиосвязь – это двухсторонняя радиосвязь, при которой прием и передача ведутся одновременно. Для дуплексной радиосвязи требуются две разные несущие частоты, а передатчики и приемники должны иметь свои антенны (рис. 2.17). Кроме того, на входе каждого приемника устанавливают специальный фильтр (дуплексер ), не пропускающий колебаний радиочастоты собственного передатчика. Достоинствами дуплексной радиосвязи являются ее высокая оперативность и пропускная способность радиосети.

Рисунок 2.17 – Структурная схема дуплексной радиосвязи

Радиосвязь имеет следующие преимущества перед проводной связью:

    быстрое развертывание на любой местности и в любых условиях;

    высокая оперативность и живучесть радиосвязи;

    возможность передачи различных сообщений любому количеству абонентов циркулярно, избирательно или группе абонентов;

    возможность связи с подвижными объектами.

Любой вид связи предназначен для передачи информации на расстояние. Информация - это совокупность сведений о событиях в окружающем мире. Формой представления информации является сообщение, которое может представлять собой речь, текст, последовательность чисел и т.д.

Чтобы передать сообщение от источника информации получателю, необходимо использовать любой физический процесс, способный распространяться с некоторой скоростью от источника к получателю информации, например: звуковые колебания, электрический ток в проводниках, свет, электромагнитное поле и др.. физическая величина, определяющая данный процесс, изменяющаяся во времени и отображающая передаваемое сообщение (сила тока, интенсивность электромагнитного поля, яркость света и т.д.называется сигналом. Сигналы не являются передаваемым сообщением, а лишь отображают его. Часто сигнал, полученный в результате преобразования сообщения, называют первичным электрическим сигналом.

В зависимости от характера сообщения.первичные электрические сигналы могут быть непрерывными или дискретными

Непрерывные сигналы принимают любые значения по состояниям в некотором интервале. Такие сигналы описываются на некотором достаточно большом интервале времени непрерывными функциями времени. Типичным примером непрерывного сигнала является речевой сигнал, его амплитуда непрерывно меняется во времени в пределах ±Umax. При передаче такого телефонного сигнала необходимо в первую очередь учитывать его спектр частот.

Известно, что спектр звуков, воспринимаемых человеческим ухом, занимает полосу частот в пределах от 16 до 20000 Гц. Однако передача такого широкого спектра частот по каналам связи сопряжена с определёнными трудностями, связанными с увеличением полосы частот, занимаемой каналом связи, а, следовательно, и с уменьшением количества каналов связи, обеспечиваемых в определённом диапазоне частот. Поэтому при телефонной связи спектр речевого сигнала ограничивают полосой частот от 300 до 3400 Гц, в которой расположены основные частотные составляющие и основная энергия звуков человеческой речи (рис. 2.1).

При этом такое ограничение спектра частот телефонного сигнала не ведёт к заметному искажению сигнала. Ширина спектра 0,3¸3,4 КГц получила название стандартного телефонного канала.

Дискретные сигналы принимают конечное число вполне определённых значений по состоянию. Наиболее общим примером дискретных сигналов могут служить телеграфные сигналы, отображающие текст сообщения с помощью определённого алфавита (кода). При этом каждая буква или цифра кода выражается вполне определённым дискретным состоянием сигнала. На рис.2.2. показаны дискретные состояния, которые принимает сигнал при передаче буквы «Ж» с помощью кода Морзе.


Передача телеграфных сигналов может осуществляться с различной скоростью телеграфирования. Скорость телеграфирования определяется количеством элементарных импульсов, передаваемых в единицу времени (1с) и измеряется в Бодах (Б).

1 Б = 1 имп / 1 с

Для большинства буквопечатающих телеграфных аппаратов скорость телеграфирования составляет 50 Бод.

Первичный электрический сигнал независимо от его вида носит низкочастотный характер. Он может быть непосредственно переданным по проводным линиям связи, но не может эффективно излучаться в среду распространения радиоволн, так как практически невозможно создать антенны, геометрические размеры которых были бы соизмеримы с длинной волн сигнала.

Например, при F=1кГц длина волны l=300(км), а длина антенны L=l/4 = 75(км), что практически не осуществимо.

Следовательно, для передачи по радио первичный электрический сигнал должен быть преобразован в высокочастотный сигнал, способный эффективно излучаться в окружающее пространство.

Такой сигнал принято называть радиосигналом. Преобразование первичных низкочастотных электрических сигналов в радиосигналы осуществляется в радиопередатчиках, являющихся основной частью радиопередающих устройств. Процесс преобразования непрерывных первичных сигналов в радиосигналы носит название модуляции, а дискретных - манипуляции.

Радиосигнал, сформированный и излучённый в окружающую среду в виде радиоволн, распространяясь с определённой скоростью, достигает места расположения получателя информации. При прохождении радиосигнала в среде распространения на него воздействуют другие сигналы, определяемые как свойствами самой среды распространения, так и другими источниками электрических сигналов. В точке получения переданной информации необходимо произвести обратное преобразование радиосигнала в сообщение. Преобразование радиосигналов, пришедших в точку приёма, в исходное сообщение осуществляется радиоприёмным устройством. Задача преобразования принимаемого радиосигнала в сообщение более сложная, чем преобразование сообщения в радиосигнал, так как преобразованию подвергаются не только переданный радиосигнал, а его смесь с другими сигналами (помехами), которые могут исказить переданное сообщение.

Источник информации, радиопередающее устройство, среда распространения радиоволн, радиоприёмное устройство и получатель информации образуют линию радиосвязи (рис. 2.3).

Структурная схема линии радиосвязи, изображённая на рис.2.3., обеспечивает передачу сообщения только в одном направлении - от источника информации к получателю, т.е. одностороннюю радиосвязь. Для обеспечения двусторонней радиосвязи необходимо на каждом конце радиолинии иметь радиопередающее радиоприемное устройство. В этом случае источник информации и получатель информации периодически меняются функциями, выполняемыми в линии радиосвязи, поэтому их принято объединять одним понятием корреспондент.

Для двусторонней радиосвязи режим работы радиолинии может быть симплексным или дуплексным.

Линия радиосвязи, в которой передача и приём сообщений осуществляются поочерёдно, называется симплексной, если же линия радиосвязи обеспечивает одновременную передачу и приём информации, то такая радиолиния называется дуплексной. Линия радиосвязи, которая позволяет одновременно передавать несколько сигналов, отображающих независимые сообщения, называется многоканальной (двухканальной, трёхканальной и т.д.), если же линия радиосвязи предназначена для передачи только одного сигнала, соответствующего одному сообщению, то она называется одноканальной. Таким образом, под каналом радиосвязи понимают часть линии, обеспечивающую передачу и приём сигнала.

В общем случае под каналом радиосвязи понимают часть радиопередающего устройства, среду распространения радиоволн и часть радиоприёмного устройства. Какие части радиопередающего и радиоприёмного устройства входят в понятие радиоканала, оговаривается отдельно. Наиболее часто канал радиосвязи (радиоканал) ограничивается только средой распространения радиоволн. Это объясняется тем, что наиболее характерные особенности радиоканала, отличающие его от других каналов связи, определяются именно средой распространения. В дальнейшем, если не будет специально оговорено, под радиоканалом будем понимать среду распространения радиоволн.

Таким образом, любое радиопередающее устройство должно обеспечивать выполнение следующих трех функций:

1. Преобразование сообщения в первичный электрический сигнал, которое осуществляется оконечной передающей аппаратурой (микрофон, телеграфный ключ, телеграфный аппарат, передающая телевизионная трубка и т.д.).

2. Преобразование первичного электрического сигнала путём модуляции (манипуляции) высокочастотного колебания в радиосигнал, способный эффективно излучаться и распространяться в виде радиоволн на заданное расстояние. Эту функцию выполняет собственно радиопередатчик.

3. Излучение сформированных радиопередатчиком радиосигналов в виде электромагнитных волн, осуществляемое передающим антенно-фидерным устройством (АФУ).

На приёмном конце линии радиосвязи с помощью радиоприёмного устройства производиться обратное преобразование радиосигналов в сообщение. Радиоприёмное устройство также выполняет следующие три основные функции:

1. Приёмное антенно-фидерное устройство (АФУ) улавливает энергию электромагнитных волн и преобразует её в радиосигнал.

2. Выделение принимаемого радиосигнала из множества сигналов, наводимых в антенне, и преобразование его в первичный низкочастотной сигнал необходимой мощности, осуществляемые радиоприёмником.

3. Преобразование первичного сигнала в сообщение, выполняемое приёмной оконечной аппаратурой (головные телефоны, динамик, приёмный телеграфный аппарат, телевизионная трубка и т.д.). Для обеспечения двусторонней радиосвязи необходимо на каждом конце радиолинии иметь радиопередающее и радиоприёмное устройства, которые организационно, а часто и конструктивно, вместе с устройствами управления объединяются в единый комплекс-радиостанцию.


На рис.2.4 представлена обобщенная структурная схема линии радиосвязи между корреспондентами А и Б.

Основные свойства радиоканала, отличающие его от других каналов связи, определяются, главным образом, свойствами среды распространения. Поэтому, при рассмотрении данного вопроса понятие радиоканала ограничим средой распространения радиоволн.

В радиосвязи в качестве среды распространения используется пространство, окружающее земную поверхность. Такая среда не обладает направленными свойствами, как это имеет место, например в проводных и кабельных линиях связи. В линиях радиосвязи излучённые передающей антенной, распространяются практически во все стороны от излучателя и только незначительная часть их энергии излучается в сторону радиоприёмного устройства корреспондента. Происходит рассеивание энергии радиоволн в среде распространения. Кроме того, за счет поглощения энергии радиоволн в земной поверхности и ионосфере, а также за счет преломления радиоволн происходит дополнительное уменьшение энергии радиоволн, приходящих в точку приёма. В тех случаях, когда энергия радиоволн, пришедших в точку приёма оказывается недостаточной для преобразования её в первичный сигнал, радиосвязь оказывается невозможной.

Первое свойство радиоканала и заключается в том, что в процессе распространения радиоволн из-за их рассеивания и поглощения в земной поверхности и ионосфере происходит резкое уменьшение мощности радиосигналов на входе радиоприёмников. Поэтому радиоканал в отличии от других каналов связи рассматривается, как канал с большим затуханием.

Большое затухание радиоканала приводит к тому, что уровень радиосигнала на входе радиоприёмного устройства оказывается соизмеримым с уровнем флуктуационных токов (собственных шумов) радиоприёмника, что затрудняет, а в некоторых случаях делает и невозможным, распознавание принимаемых сигналов и отделение их от шумов.

«Уменьшить» затухание радиоканала можно за счет выбора оптимальных рабочих частот для данного времени требуемой дальности радиосвязи, а также за счет более направленных и эффективных передающих и приёмных антенных устройств.

Вторым свойством радиоканала является изменение затухания во времени в
весьма широких пределах, поэтому радиоканал принято считать каналом связи с
переменными параметрами.

Изменение затухания радиоканала может происходить по различным причинам. На величину затухания в радиоканале влияют изменения взаимного расположения радиостанций на местности и расстояний между ними, что особенно заметно при осуществлении радиосвязи земными волнами. Поскольку напряжённость электромагнитного поля убывает практически пропорционально квадрату длины пути, проходимому волной в процессе распространения, то любое изменение расстояния между работающими радиостанциями приводит к изменению мощности радиосигнала в точке приёма. Очевидно, что эти изменения особенно сильно влияют на обеспечение радиосвязи между подвижными объектами. Но даже в случаях, когда расстояние между работающими радиостанциями остаётся постоянным, а изменяется только их взаимное расположение на местности, могут происходить достаточно резкие изменения затухания в радиоканале, вызываемые изменениями параметров почвы, а, следовательно, и её поглощающих свойств. Параметры сухой почвы отличаются от параметров влажной почвы и от параметров водной поверхности, а также зависят от вида самой почвы - песок, глина и т.д.

В диапазоне метровых волн, на поглощающие свойства среды распространения сильное влияние оказывают рельеф местности и местные предметы - холмы, горы, растительный покров, строения и т.д. Всё это приводит к изменению величины затухания радиоканала, которое может достигать сотен децибел.

Третьим свойством радиоканала является его общедоступность, т.е. возможность использования одной и той же среды распространения любыми радиотехническими устройствами. Общедоступность среды распространения обеспечивает возможность одновременного функционирования большого количества линий радиосвязи.

Таким образом, на входе приёмного устройства всегда кроме принимаемого радиосигнала будут присутствовать помехи, которые искажают его, а. следовательно, и первичный сигнал, непосредственно отображающих переданное сообщение. Степень искажения первичною сигнала определяет правильность принятого сообщения, т.е. его достоверность.

Итак, для повышения надежности радиосвязи и обеспечения высокой достоверности принятого сообщения необходимо принимать следующие меры:

Осуществлять радиосвязь на оптимально выбранных по радио прогнозам частотах, свободных от помех;

Использовать такие виды радиосигналов, которые обеспечивают требуемую надёжность радиосвязи при возможно меньших значениях степени превышения сигнала над помехой;

Применять эффективные и направленные передающие и приёмные антенны;

Уменьшать полосу пропускания радиоприёмника до возможно меньших значений, определяемых спектром принимаемого радиосигнала.