Методы поиска неисправностей в электрических схемах. Самостоятельный ремонт электроники. Проверка стабилитрона – процесс более деликатный. Цифровым мультиметром здесь пользоваться не рекомендуется – он запросто может «пробить» исправную деталь в обоих нап

В жизни каждого домашнего мастера, умеющего держать в руках паяльник и пользоваться мультиметром, наступает момент, когда поломалась какая-то сложная электронная техника и он стоит перед выбором: сдать на ремонт в сервис или попытаться отремонтировать самостоятельно. В этой статье мы разберем приемы, которые могут помочь ему в этом.

Итак, у вас сломалась какая-либо техника, например ЖК телевизор, с чего нужно начать ремонт? Все мастера знают, что начинать ремонт надо не с измерений, или даже сходу перепаивать ту деталь, которая вызвала подозрение в чем-либо, а с внешнего осмотра. В это входит не только осмотр внешнего вида плат телевизора, сняв его крышку, на предмет подгоревших радиодеталей, вслушивание с целью услышать высокочастотный писк либо щелканье.

Включаем в сеть прибор

Для начала нужно просто включить телевизор в сеть и посмотреть: как он себя ведет после включения, реагирует ли на кнопку включения, либо моргает светодиод индикации дежурного режима, или изображение появляется на несколько секунд и пропадает, либо изображение есть, а звук отсутствует, или же наоборот. По всем этим признакам, можно получить информацию, от которой можно будет оттолкнуться при дальнейшем ремонте. Например в мигании светодиода, с определённой периодичностью, можно установить код поломки, самотестирования телевизора.

Коды ошибок ТВ по миганию LED

После того, как признаки установлены, следует поискать принципиальную схему устройства, а лучше если выпущен Service manual на устройство, документацию со схемой и перечнем деталей, на специальных сайтах посвященных ремонту электроники. Также не лишним, будет в дальнейшем, вбить в поисковик полное название модели, с кратким описанием поломки, передающим в нескольких словах, ее смысл.

Сервис мануал

Правда иногда лучше искать схему по шасси устройства, либо названию платы, например блока питания ТВ. Но как же быть, если схему все же найти не удалось, а вы не знакомы со схемотехникой данного устройства?

Блок схема ЖК ТВ

В таком случае, можно попробовать попросить помощи на специализированных , после проведения предварительной диагностики самостоятельно, с целью собрать информацию, от которой мастера, помогающие вам смогут оттолкнуться. Какие этапы включает в себя, эта предварительная диагностика? Для начала, вы должны убедиться в том, что питание поступает на плату, если устройство вообще не подает никаких признаков жизни. Может быть это покажется банальным, но не лишним будет прозвонить шнур питания на целостность, в режиме звуковой прозвонки. как пользоваться обычным мультиметром.

Тестер в режиме звуковой прозвонки

Затем в ход идет прозвонка предохранителя, в этом же режиме мультиметра. Если у нас здесь все нормально, следует померять напряжения на разъемах питания, идущих на плату управления ТВ. Обычно напряжения питания, присутствующие на контактах разъема, бывают подписаны рядом с разъемом на плате.

Разъем питания платы управления ТВ

Итак, мы замеряли и напряжение какое-либо у нас отсутствует на разъеме - это говорит о том, что схема функционирует не правильно, и нужно искать причину этого. Наиболее частой причиной поломок встречающейся в ЖК ТВ, являются банальные электролитические конденсаторы, с завышенным ESR, эквивалентным последовательным сопротивлением. Про ESR .

Таблица ESR конденсаторов

В начале статьи я писал про писк, который вы возможно услышите, так вот, его проявление, в частности и есть следствие завышенного ESR конденсаторов небольшого номинала, стоящих в цепях дежурного напряжения. Чтобы выявить такие конденсаторы требуется специальный прибор, ESR (ЭПС) метр, либо , правда в последнем случае, конденсаторы придется выпаивать для измерения. Фото своего ESR метра позволяющего измерять данный параметр без выпаивания выложил ниже.

Мой прибор ESR метр

Как быть если таких приборов нет в наличии, а подозрение пало на эти конденсаторы? Тогда нужно будет проконсультироваться на форумах по ремонту, и уточнить, в каком узле, какой части платы, следует заменить конденсаторы, на заведомо рабочие, а таковыми могут считаться только новые (!) конденсаторы из радиомагазина, потому что у бывших в употреблении этот параметр, ESR, может также зашкаливать или уже быть на грани.

Фото - вздувшийся конденсатор

То что вы могли выпаять их из устройства, которое ранее работало, в данном случае значения не имеет, так как этот параметр важен только для работы в высокочастотных цепях, соответственно ранее, в низкочастотных цепях, в другом устройстве, этот конденсатор мог прекрасно функционировать, но иметь параметр ESR сильно зашкаливающий. Сильно облегчает работу то, что конденсаторы большого номинала имеют в своей верхней части насечку, по которой в случае прихода в негодность просто вскрываются, либо образовывается припухлость, характерный признак их непригодности для любого, даже начинающего мастера.

Мультиметр в режиме Омметра

Если вы видите почерневшие резисторы, их нужно будет прозвонить мультиметром в режиме омметра. Сначала следует выбрать режим 2 МОм, если на экране будут значения отличающиеся от единицы, или превышения предела измерения, нам следует соответственно уменьшить предел измерения на мультиметре, для установления его более точного значения. Если же на экране единица, то скорее всего такой резистор находится в обрыве, и его следует заменить.

Цветовая маркировка резисторов

Если есть возможность прочитать его номинал, по , нанесенными на его корпус, хорошо, в противном случае без схемы, не обойтись. Если схема есть в наличии, то нужно посмотреть его обозначение, и установить его номинал и мощность. Если резистор прецизионный, (точный) его номинал можно набрать, путем включения двух обычных резисторов последовательно, большего и меньшего номиналов, первым мы задаем номинал грубо, последним мы подгоняем точность, при этом их общее сопротивление сложится.

Транзисторы разные на фото

Транзисторы, диоды и микросхемы: у них не всегда можно определить неисправность по внешнему виду. Потребуется измерение мультиметром в режиме звуковой прозвонки. Если сопротивление какой либо из ножек, относительно какой то другой ножки, одного прибора, равно нулю, или близко к к этому, в диапазоне от нуля до 20-30 Ом, скорее всего, такая деталь подлежит замене. Если это биполярный транзистор, нужно вызвонить в соответствии с распиновкой, его p-n переходы.

Проверка транзистора мультиметром

Чаще всего такой проверки бывает достаточно, чтобы считать транзистор рабочим. Более качественный метод . У диодов мы также вызваниваем p-n переход, в прямом направлении, должны быть цифры порядка 500-700 при измерении, в обратном направлении единица. Исключение составляют диоды Шоттки, у них меньшее падение напряжения, и при прозвонке в прямом направлении на экране будут цифры в диапазоне 150-200, в обратном также единица. , полевые транзисторы, обычным мультиметром без выпаивания так не проверить, приходится часто считать их условно рабочими, если их выводы не звонятся между собой накоротко, или в низком сопротивлении.


Мосфет в SMD и обычном корпусе

При этом следует учитывать, что у мосфетов между Стоком и Истоком стоит встроенный диод, и при прозвонке будут показания 600-1600. Но здесь есть один нюанс: в случае, если например вы прозваниваете мосфеты на материнской плате и при первом прикосновении слышите звуковой сигнал, не спешите записывать мосфет в пробитый. В его цепях стоят электролитические конденсаторы фильтра, которые в момент начала заряда, как известно, на какое-то время ведут себя, как будто цепь замкнута накоротко.

Мосфеты на материнской плате ПК

Что и показывает наш мультиметр, в режиме звуковой прозвонки, писком, первые 2-3 секунды, а затем на экране побегут увеличивающиеся цифры, и установится единица, по мере заряда конденсаторов. Кстати по этой же причине, с целью сберечь диоды диодного мостика, в импульсных блоках питания ставят термистор, ограничивающий токи заряда электролитических конденсаторов, в момент включения, через диодный мост.

Диодные сборки на схеме

Многих знакомых начинающих ремонтников, обращающихся за удаленной консультацией в Вконтакте , шокирует - им говоришь прозвони диод, они прозваниют и сразу-же говорят: он пробитый. Тут стандартно всегда начинается объяснение, что нужно либо приподнять, выпаять одну ножку диода, и повторить измерение, либо проанализировать схему и плату, на наличие параллельно подключенных деталей, в низком сопротивлении. Таковыми часто бывают вторичные обмотки импульсного трансформатора, которые как раз и подключаются параллельно выводам диодной сборки, или иначе говоря сдвоенного диода.

Параллельное и последовательное соединение резисторов

Здесь лучше всего один раз запомнить, правило подобных соединений:

  1. При последовательном соединении двух и более деталей, их общее сопротивление будет больше большего каждой, по отдельности.
  2. А при параллельном соединении, сопротивление будет меньше меньшего каждой детали. Соответственно наша обмотка трансформатора, имеющая сопротивление в лучшем случае 20-30 Ом, шунтируя, имитирует для нас “пробитую” диодную сборку.

Конечно все нюансы ремонтов, к сожалению, в одной статье раскрыть не реально. Для предварительной диагностики большинства поломок, как выяснилось, бывает достаточно обычного мультиметра, применяемого в режимах вольтметра, омметра, и звуковой прозвонки. Часто при наличии опыта, в случае простой поломки, и последующей замены деталей, на этом ремонт бывает закончен, даже без наличия схемы, проведенный так зазываемым “методом научного тыка”. Что конечно не совсем правильно, но как показывает практика, работает, и, к счастью, совсем не так как изображено на картинке выше). Всем удачных ремонтов, специально для сайта Радиосхемы - AKV.

Обсудить статью ДИАГНОСТИКА И РЕМОНТ ЭЛЕКТРОНИКИ БЕЗ СХЕМ

Здесь я планирую описать практические методы поиска и устранения неисправностей в электронике, по возможности, без привязки к конкретному оборудованию. Под причинами неработоспособности подразумеваются выход из строя элемента, ошибки разработчиков, монтажников и т.д. Методы являются взаимосвязанными между собой, и почти всегда необходимо их комплексное применение. Порой поиск очень тесно связан с устранением. В процессе работы над текстом стало выясняться, что методы очень взаимосвязаны и зачастую имеют схожие черты. Может быть, можно сказать, что методы дублируют друг друга. Тем не менее, было принято решение не объединять схожие методы в один, чтобы осветить проблемы с разных сторон и более полно описать процесс поиска и устранения неисправности.

Основные концепции поиска неисправностей.

1.Действие не должно наносить вреда исследуемому устройству.

2.Действие должно приводить к прогнозируемому результату: - выдвижение гипотезы о исправности или неисправности блока, элемента и пр. - подтверждение или опровержение выдвинутой гипотезы и, как следствие, локализации неисправности;

3. Необходимо различать вероятную неисправность и подтвержденную (обнаруженную неисправность), выдвинутую гипотезу и подтвержденную гипотезу.

4. Необходимо адекватно оценивать ремонтопригодность изделия. Например, платы с элементами в корпусе BGA имеют очень низкую ремонтопригодность вследствие невозможности или ограниченной возможности применения основных методов диагностики.

5. Нужно адекватно оценивать выгодность и необходимость ремонта. Зачастую ремонт не выгоден с точки зрения затрат, но необходим с точки зрения отработки технологии, изучения изделия или по каким-то иным причинам.

Схема описания методов:

  • Суть метода
  • Возможности метода
  • Достоинства метода
  • Недостатки метода
  • Применение метода

1. Выяснения истории появления неисправности.

Суть метода: История появления неисправности очень много может рассказать о локализации неисправности, о том, какой модуль является источником неработоспособности системы, а какие модули вышли из строя вследствие первоначальной неисправности, о типе неисправного элемента. Также знание истории появления неисправности позволяет сильно сократить время тестирования устройства, повысить качество ремонта, надежность исправленного оборудования. Выяснение истории позволяет выяснить, не является ли неисправность результатом внешнего воздействия, как то: климатические факторы (температура, влажность, запыленность и пр.), механические воздействия, загрязнение различными веществами и пр.

Возможности метода: Метод позволяет очень оперативно выдвинуть гипотезу о локализации неисправности.

Достоинства метода:

  • Нет необходимости знать тонкости работы изделия;
  • Сверхоперативность;
  • Не требуется наличие документации.

Недостатки метода:

  • Необходимость получить информацию о событиях, растянутых во времени, при которых вы не присутствовали, неточность и недостоверность предоставляемой информации;
  • Требует подтверждения и уточнения другими методами; в некоторых случаях велика вероятность ошибки и неточность локализации;

Применение метода:

  • Если неисправность сначала проявлялась редко, а затем стала проявляться все чаще (в течении недели или нескольких лет), то, скорее всего, неисправен электролитический конденсатор, электронная лампа или силовой полупроводниковый элемент, чрезмерный разогрев которого приводит к ухудшению его характеристик.
  • Если неисправность появилась в результате механического воздействия, то, вполне вероятно, ее удастся выявить внешним осмотром блока.
  • Если неисправность появляется при незначительном механическом воздействии, то ее локализацию следует начать с использования механических воздействий на отдельные элементы.
  • Если неисправность появилась после каких-либо действий (модификация, ремонт, доработка и др.) над прибором, то следует обратить особое внимание на часть изделия, в которой производились действия. Следует проконтролировать правильность этих действий.
  • Если неисправность появляется после климатических воздействий, воздействия влажности, кислот, паров, электромагнитных помех, бросков питающего напряжения, необходимо проверить соответствие эксплуатационных характеристик изделия в целом и его компонентов условиям работы. При необходимости - принять соответствующие меры. (изменение условий работы или изменения в изделии, в зависимости от задач и возможностей)
  • О локализации неисправности очень много могут рассказать проявления неисправности на разных этапах ее развития.

2. Внешний осмотр.

Суть метода: Внешним осмотром зачастую пренебрегают, но именно внешний осмотр позволяет локализовать порядка 50% неисправностей, особенно в условиях мелкосерийного производства. Внешний осмотр в условиях производства и ремонта имеет свою специфику.

Возможности метода:

  • Метод позволяет сверхоперативно выявить неисправность и локализовать ее с точностью до элемента при наличии внешнего проявления.

Достоинства метода:

  • Сверхоперативность;
  • Точная локализация;
  • Требуется минимум оборудования;
  • Не требуется наличие документации (или наличие в минимальном количестве).

Недостатки метода:

  • Позволяет выявлять только неисправности, имеющие проявление во внешнем виде элементов и деталей изделия;
  • Как правило, требует разборки изделия, его частей и блоков;
  • Требуется опыт исполнителя и отличное зрение.

Применение метода:

  • В условиях производства особое внимание необходимо уделять качеству монтажа. Качество монтажа включает в себя: правильность размещение элементов на плате, качество паянных соединений, целостность печатных проводников, отсутствие инородных включений в материал платы, отсутствие замыканий (порой замыкания видны только под микроскопом или под определенным углом), целостность изоляции на проводах, надежное крепление контактов в разъемах. Иногда неудачный конструктив провоцирует замыкания или обрывы.
  • В условиях ремонта следует выяснить, работало ли устройство когда-нибудь правильно. Если не работало(случай заводского дефекта), то следует проверить качество монтажа.
  • Если же устройство работало нормально, но вышло из строя (случай собственно ремонта), то следует обратить внимание на следы тепловых повреждений электронных элементов, печатных проводников, проводов, разъемов и пр. Также при осмотре необходимо проверить целостность изоляции на проводах, трещины от времени, трещины в результате механического воздействия, особенно в местах, где проводники работают на перегиб (например, слайдеры и флипы мобильных телефонов). Особое внимание следует обратить на наличие загрязнений, пыли, вытекания электролита и запах(горелого, плесени, фекалий и пр.). Наличие загрязнений может являться причиной неработоспособности РЭА или индикатором причины неисправности (например, вытекание электролита).
  • Осмотр печатного монтажа требует хорошего освещения. Желательно применение увеличительного стекла. Как правило,замыкания между пайками и некачественные пайки видны только под определенным углом зрения и освещения.

Естественно, во всех случаях следует обратить внимание на любые механические повреждения корпуса, электронных элементов, плат, проводников, экранов и пр. пр.

3. Прозвонка.

Суть метода: Суть метода в том, что при помощи омметра, в том или ином варианте, проверяется наличие необходимых связей и отсутствие лишних соединений (замыканий).

Возможности метода:

  • Предупреждение неисправностей при производстве, контроль качества монтажа;
  • Проверка гипотезы о наличии неисправности в конкретной цепи;

Достоинства метода:

  • простота;
  • не требуется высокая квалификация исполнителя;
  • высокая надежность;
  • точная локализация неисправности;

Недостатки метода:

  • высокая трудоемкость;
  • ограничения при проверке плат со смонтированными элементами и подключенных жгутов, элементов в составе схемы.
  • необходимость получить прямой доступ к контактам и элементам.

Применение метода:

  • На практике, как правило, достаточно проверить наличие необходимых связей. Отсутствие замыканий проверяется только по цепям питания.
  • Отсутствие лишних связей также обеспечивается технологическими методами: маркировка и нумерация проводов в жгуте.
  • Проверку на наличие лишних связей проводят в случае, когда есть подозрение на конкретные проводники, или подозрение на конструкторскую ошибку.
  • Проводить проверку на наличие лишних связей чрезвычайно трудоемко. В связи с этим ее проводят, как один из заключительных этапов, когда возможная область замыкания (например, нет сигнала в контрольной точке) локализована другими методами.
  • Очень точно локализовать замыкание можно при помощи миллиомметра, с точностью до нескольких сантиметров.
  • Хотя данная методика имеет определенные недостатки, она очень широко применяется в условиях мелкосерийного производства, в связи со своей простотой и эффективностью.
  • Прозванивать лучше по таблице прозвонки, составленной на основании схемы электрической принципиальной. В этом случае исправляются возможные ошибки конструкторской документации и обеспечивается отсутствие ошибок в самой прозвонке.

4. Снятие рабочих характеристик

Суть метода. При применении этого метода изделие включается в рабочих условиях или в условиях, имитирующих рабочие. И проверяют характеристики, сравнивая их с необходимыми характеристиками исправного изделия или теоретически рассчитанными. Также возможно и снятие характеристик отдельного блока, модуля, элемента в изделии.

Возможности метода:

  • Позволяет оперативно диагностировать изделие в целом или отдельный блок;
  • Позволяет примерно оценить расположение неисправности, выявить функциональный блок, работающий неправильно, в случае, если изделие работает неправильно;

Достоинства метода:

  • Достаточно высокая оперативность;
  • Точность, адекватность;
  • Оценка изделия в целом;

Недостатки метода:

  • Необходимость специализированного оборудования или, как минимум, необходимость собрать схему подключения;
  • Необходимость стандартного оборудования;
  • Необходимость достаточно высокой квалификации исполнителя;
  • Необходимо знать принципы работы прибора, состав прибора, его блок-схему (для локализации неисправности).

Применение метода: Например:

  • В телевизоре проверяют наличие изображения и его параметры, наличие звука и его параметры, энергопотребление, тепловыделение. По отклонению тех или иных параметров судят о исправности функциональных блоков.
  • В мобильном телефоне на тестере проверяют параметры RF тракта и по отклонению тех или иных параметров судят о исправности функциональных блоков.
  • Естественно, необходимо быть уверенным в исправности всех внешних блоков и правильности входных сигналов. Для этого работу изделия (элемента, блока) сравнивают с работой исправного в этих же условиях и в этой схеме включения. Имеется в виду не теоретически такая же схема, а практически это же «железо». Или нужно сравнить все входные сигналы.

5. Наблюдение прохождения сигналов по каскадам.

Суть метода: При помощи измерительной аппаратуры (осциллограф, тестер, анализатор спектра и др.) наблюдают правильность распространения сигналов по каскадам и цепям устройства. Для этого проводят измерения характеристик сигналов в контрольных точках.

Возможности метода:

  • оценка работоспособности изделия в целом;
  • оценка работоспособности по каскадам и функциональным блокам;

Достоинства метода:

  • высокая точность локализации неисправности;
  • адекватность оценки состояния изделия в целом и по каскадам;

Недостатки метода:

  • большая затрудненность оценки цепей с обратной связью;
  • необходимость высокой квалификации исполнителя;
  • трудоемкость;
  • неоднозначность результата при неправильном использовании;

Применение метода:

  • В схемах с последовательным расположением каскадов пропадание правильного сигнала в одной из контрольных точек говорит о возможной неисправности либо выхода, либо замыкания по входу, либо о неисправности связи.
  • В начале вычленяют встроенные источники сигналов (тактовые генераторы, датчики, модули питания и пр.) и последовательно находят узел, в котором сигнал не соответствует правильному, описанному в документации или определенному при помощи моделирования.
  • После проверки правильности функционирования встроенных источников сигналов на вход (или входы) подают испытательные сигналы и вновь контролируют правильность их распространения и преобразования. В ряде случаев для более эффективного применения метода требуется временная модификация схемы, т.е. если необходимо и возможно - разрыв цепей обратной связи, разрыв цепей связи входа и выхода подозреваемых каскадов

Рис.1 Временная модификация устройства для устранения неоднозначности нахождения неисправности. Крестиками обозначен временный обрыв связей.

  • В цепях с обратными связями очень тяжело получить однозначные результаты.

6.Сравнение с исправным блоком.

Суть метода: Заключается в том, что сравниваются различные характеристики заведомо исправного изделия и неисправного. По отличиям внешнего вида, электрических сигналов, электрического сопротивления судят о локализации неисправности. Возможности метода:

  • Оперативная диагностика в комбинации с другими методами;
  • Возможность ремонта без документации.

Достоинства метода:

  • Оперативный поиск неисправностей;
  • Нет необходимости использовать документацию;
  • Исключает ошибки моделирования и документации;

Недостатки метода:

  • Необходимость в наличии исправного изделия;
  • Необходимость в комбинации с другими методами

Применение метода: Сравнение с исправным блоком - очень эффективный метод, потому что документированны не все характеристики изделия и сигналы не во всех узлах схемы. Необходимо начать сравнение со сравнения внешнего вида, расположения элементов и конфигурации проводников на плате, отличие в монтаже говорит о том, что конструктив изделия был изменен и, вполне вероятно, допущена ошибка. Затем сравнивают различные электрические характеристики. Для сравнения электрических характеристик смотрят сигналы в различных точках схемы, работу прибора в различных условиях, в зависимости от характера проявления неисправности. Достаточно эффективно измерять электрическое сопротивления между различными точка (метод периферийного сканирования).

7.Моделирование.

Суть метода: Моделируется поведение исправного и неисправного устройства и на основе моделирования выдвигается гипотеза о возможной неисправности, и затем гипотеза проверяется измерениями. Метод применяется в комплексе с другими методами для повышения их эффективности.

Возможности метода:

  • Оперативное и адекватное выдвижение гипотезы о расположении неисправности;
  • Предварительная проверка гипотезы о расположении неисправности.

Достоинства метода:

  • Возможность работать с исчезающими неисправностями,
  • Адекватность оценки.

Недостатки метода:

  • необходима высокая квалификация исполнителя,
  • необходима комбинация с другими методами

Применение метода: При устранении периодически проявляющейся неисправности необходимо применять моделирование для выяснения - мог ли заменяемый элемент провоцировать данную неисправность. Для моделирования необходимо представлять принципы работы оборудования и порой знать даже тонкости работы.

8.Разбиение на функциональные блоки.

Суть метода: Для предварительной локализации неисправности весьма эффективно разбить устройство на функциональные блоки. Надо учитывать, что зачастую конструкторское разбиение на блоки не является эффективным с точки зрения диагностики, так как один конструктивный блок может содержать несколько функциональных блоков или один функциональный блок может быть конструктивно выполнен в виде нескольких модулей. С другой стороны, конструктивный блок гораздо проще заменить, что позволяет определить, в каком конструктивном блоке находится неисправность.

Возможности метода:

  • Позволяет оптимизировать применение других методов;
  • Позволяет быстро определить область расположения неисправности;
  • Позволяет работать со сложными неисправностями

Достоинства метода:

  • Ускоряет процесс поиска неисправности;

Недостатки метода:

  • Необходимо глубокое знание схемотехники изделия;
  • Необходимо время для тщательного анализа прибора

Применение метода: Возможны два варианта:

  • Если изделие состоит из блоков(модулей, плат) и возможна их быстрая замена, то, по очереди меняя блоки, находят тот, при замене которого неисправность пропадает;
  • В другом варианте – анализируя документацию, составляют функциональную схему прибора, на основе функциональной схемы моделируют (как правило, мысленно) работу изделия и выдвигают гипотезу о расположении неисправности.

9. Временная модификация схемы.

Суть метода: Для исключения взаимного влияния и для устранения неоднозначности в измерениях иногда приходится изменять схему изделия: обрывать связи, подключать дополнительные связи, выпаивать или впаивать элементы.

Возможности метода:

  • Локализация неисправности в цепях с ОС;
  • Точная локализация неисправности;
  • Исключение взаимного влияния элементов и цепей.

Достоинства метода:

  • Позволяет уточнить расположение неисправности.

Недостатки метода:

  • Необходимость модифицировать систему
  • Необходимость знания тонкостей работы устройства

Применение метода: Частичное отключение цепей применяется в следующих случаях:

  • когда цепи оказывают взаимное влияние и неясно, какая из них является причиной неисправности;
  • когда неисправный блок может вывести из строя другие блоки;
  • когда есть предположение, что не правильная/неисправная цепь блокирует работу системы.

Следует с особой осторожностью отключать цепи защиты и цепи отрицательной обратной связи, т.к. их отключение может привести к значительному повреждению изделия. Отключение цепей обратной связи может приводить к полному нарушению режима работы каскадов и в результате не дать желаемого результата. Размыкание цепе ПОС в генераторах естественно приводит к срыву генерации, но может позволить снять характеристики каскадов.

10. Включение функционального блока вне системы, в условиях, моделирующих систему.

Суть метода: По сути метод является комбинацией методов: Разбиение на функциональные блоки и Снятие внешних рабочих характеристик. При обнаружении неисправностей «подозреваемый» блок проверяется вне системы, что позволяет либо сузить круг поиска, если блок исправен, либо локализовать неисправность в пределах блока, если блок неисправен.

Возможности метода:

  • проверка гипотезы о работоспособности той или иной части системы

Достоинства метода:

  • возможность испытания и ремонта функционального блока без наличия системы.

Недостатки метода:

  • необходимость собирать схему проверки.

Применение метода: При применении данного метода необходимо следить за корректностью создаваемых условий и применяемых тестов. Блоки могут быть плохо согласованный между собой на стадии разработки.

11.Предварительная проверка функциональных блоков.

Суть метода: Функциональный блок предварительно проверяется вне системы, на специально изготовленном стенде (рабочем месте). При ремонте данный метод имеет смысл,если для блока требуется не слишком много входных сигналов или, иначе говоря, не слишком трудно имитировать систему. Например, этот метод имеет смысл применять при ремонте блоков питания. Возможности метода:

  • Проверка гипотезы о работоспособности блока;
  • Предупреждение возможных неисправностей при сборке больших систем.

Достоинства метода:

Недостатки метода:

  • Необходимость собирать схему проверки

Применение метода: Очень широко применяется для профилактики неисправностей системы в условиях производства новых изделий.

12. Метод замены.

Суть метода: Подозреваемый блок/компонент заменяется на заведомо исправный, и проверяется функционирование системы. По результатам проверки судят о правильности гипотезы в отношении неисправности.

Возможности метода:

  • Проверка гипотезы о исправности или не исправности блока или элемента.

Достоинства метода:

  • Оперативность.

Недостатки метода:

  • Необходимость наличия блока для замены.

Применение метода: Возможны несколько случаев: когда поведение системы не изменилось, это означает, что гипотеза неверна; когда все неисправности в системе устранены, значит. неисправность действительно локализована в замененном блоке; когда исчезла часть дефектов, это может означать, что устранена только вторичная неисправность и исправный блок вновь сгорит под воздействием первичного дефекта системы. В этом случае, возможно, лучшим решением будет вновь поставить замененный блок (если это возможно и целесообразно) и продолжить поиск неисправностей с тем. чтобы устранить именно первопричину. Например, неисправность блока питания может привести к неудовлетворительной работе нескольких блоков, один из которых выйдет из строя в результате перенапряжения.

13. Проверка режима работы элемента.

Суть метода: Сравнивают значения токов и напряжений в схеме с предположительно правильными. Их можно найти в документации, рассчитать при моделировании, измерить при исследовании исправного блока. На основании этого делают заключение о исправности элемента.

Возможности метода:

  • Локализация неисправности с точностью до элемента.

Достоинства метода:

  • Точность

Недостатки метода:

  • Медленность
  • Требуется высокая квалификация исполнителя;

Применение метода:

  • Проверяют правильность логических уровней цифровых схем (соответствие стандартам, а также сравнивают с обычными, типичными уровнями);
  • проверяют падения напряжений на диодах, резисторах (сравнивают с расчетным или со значениями в исправном блоке);
  • Измеряют напряжения и токи в контрольных точках.

14. Провоцирующие воздействие.

Суть метода: Повышение или понижение температуры, влажности, механическое воздействие. Использование подобных воздействий очень эффективно для обнаружения пропадающих неисправностей.

Возможности метода:

  • Обнаружение пропадающих неисправностей.

Достоинства метода:

  • Соломинка для утопающего. :-)
  • В некоторых случаях достаточно воздействовать руками или отверткой.

Недостатки метода:

  • Зачастую необходимо специальное оборудование.

Применение метода: Как правило, следует начать с постукивания по элементам. Попробовать прикоснуться к элементам и жгутам. Нагреть плату под лампой. В более сложных случаях применяют специальные методы охлаждения или климатические камеры.

15. Проверка температуры элемента.

Суть метода проста, любым измерительным прибором (или пальцем) нужно оценить температуру элемента, или сделать вывод о температуре элемента по косвенным признакам (цвета побежалости, запах горелого и пр.). На основании этих данных делают вывод о возможной неисправности элемента.

Применение метода: В общем, все просто и понятно, сложность возникает при оценке высоковольтных цепей. И не всегда бывает понятно, находится ли элемент в штатном режиме или перегревается. В этом случае нужно сравнить с исправным изделием.

16. Выполнение тестовых программ.

Суть метода: На работающей системе выполняется тестовая программа, которая взаимодействует с различными компонентами системы и предоставляет информацию о их отклике, либо система под управлением тестовой программы управляет периферийными устройствами, и оператор наблюдает отклик периферийных устройств, либо тестовая программа позволяет наблюдать отклик периферийных устройств на тестовое воздействие (нажатие клавиши, реакция датчика температуры на изменение температуры и пр.).

Достоинства метода: К достоинствам метода следует отнести очень быструю оценку по критерию работает - не работает.

Недостатки метода: Метод имеет существенные недостатки, т.к. для исполнения тестовой программы ядро системы должно находиться в исправном состоянии, неправильный отклик не позволяет точно локализовать неисправность (может быть неисправна как периферия, так и ядро системы, так и тест-программа).

Применение метода: Метод применим только для заключительного тестирования и устранения очень мелких недоработок.

17. Пошаговое исполнение команд.

Суть метода: Применяя специальное оборудование, микропроцессорную систему переводят в режим потактного (пошагового) исполнения инструкций (машинных кодов). При каждом шаге проверяют состояние шин (данных, адресов, управления и пр.) и, сравнивая с моделью или с исправной системой, делают выводы о работе узлов устройства. Этот метод можно классифицировать как одну из разновидностей «метода исполнения тестовых программ», но применение метода возможно на почти неработоспособной системе.

Достоинства метода:

  • Возможна отладка почти неработающей системы;
  • Низкая стоимость необходимого оборудования.

Недостатки метода:

  • Очень большая трудоемкость.

Применение метода: Метод очень эффективен для отладки микропроцессорных систем на стадии разработки.

18. Тестовые сигнатуры.

Суть метода: При помощи специального оборудования определяют состояние шин микропроцессорного устройства в штатном режиме работы на каждом шаге программы (или тестовой программы). Можно сказать, что это вариант пошагового выполнения программ, только более быстрый (за счет применения специального оборудования).

Достоинства метода:

  • Возможна отладка почти неработающей системы

Недостатки метода:

  • Большая трудоемкость.
  • Высокая квалификация исполнителя.

Применение метода: Метод очень эффективен для отладки микропроцессорных систем на стадии разработки.

19.«Выход на вход».

Суть метода: Если изделие/система имеет выход (множество выходов) и имеет вход (множество входов) и вход/выход могут работать в дуплексном режиме, то возможна проверка системы,в которой сигнал с выхода через внешние связи подается на вход. Анализируется наличие/отсутствие сигнала, его качество и по результатам дается оценка о работоспособности соответствующих цепей.

Достоинства метода:

  • Минимум дополнительного оборудования
  • Недостатки метода:
  • Ограниченность применения

Применение метода:

  • Применяется для заключительной проверки систем управления. Может, где-то еще.

20.Типовые неисправности.

Суть метода: На основании прошлого опыта ремонта конкретного изделия составляется список проявления неисправности и соответствующего неисправного элемента. Метод основан на том, что в массовых изделиях имеются слабые места, недоработки, которые, как правило, и приводят к выходу изделий из строя. Так же к этому методу стоит отнести и предположение о выходе того или иного элемента из строя на основании показателей надежности.

Достоинства метода:

  • Высокая скорость
  • Не слишком высокая квалификация исполнителя

Недостатки метода:

  • Не применим при отсутствии статистики неисправностей;
  • Требует подтверждения гипотезы другими методами.

Применение метода: Большинство специалистов держат статистику и симптомы неисправностей в голове. Я встречал попытки систематизированного изложения в «Сервис мануалах» (в документации по ремонту) фирмы Нокиа.

21. Анализ влияния неисправности.

Суть метода: На основании имеющейся информации о проявлении неисправности и предпосылки о том, что все проявления вызваны одной неисправностью, проводят анализ устройства. В этом анализе строят «дерево» взаимных влияний блоков (элементов) и находят блок (элемент), неисправность которого могла вызвать все (большинство) проявления. Если решения нет, собирают дополнительную информацию.

Достоинство и недостатки: По мере сбора и получения информации ее необходимо постоянно анализировать с точки зрения этого метода. Метод необходим как воздух. Без него - никуда.

Применение метода: Например, простейший случай - устройство совсем не включается. Нет нагрева, посторонних звуков, нет запаха горелого. При выдвижении гипотезы необходимо предполагать минимальную причину и минимальный вред - это сгоревший предохранитель. Проверяем предохранитель. В случае исправности предохранителя продолжаем собирать информацию. Ключевой принцип - это предположение о минимальности причины.

22. Периферийное сканирование.

Суть метода: Измеряют сопротивление между контрольными точками. От прозвонки отличается тем, что нас интересует значение сопротивления, а не только наличие или отсутствие связи. Термин «Контрольная точка» применен в широком смысли. Контрольные точки может выбирать сам исполнитель.

Достоинства метода:

  • Возможность внутрисхемной проверки элементов
Недостатки метода:
  • Необходим образец или база данных о сопротивлениях в исправном блоке
  • Теоретическое предположение о правильном значении сопротивления высказать трудно, особенно если схема сложная и развлетвленная.

Применение метода: Для измерения сопротивления необходимо применять оборудование, исключающее выход из строя устройства, в результате измерений. Можно применять как тестер в условиях ремонта, так и автоматы в составе большой производственной линии.

Количество электронных приборов с каждым годом растет с небывалой скоростью.

Так, производство электроники в Санкт-петербурге может только радовать. Однако, как бы ни было высоко ее качество, сломаться она все-таки может. Иногда поломку можно исправить и своими силами, поэтому не нужно без нужды везти технику в сервисный центр.

С чего начать

Исправление неполадок электронных приборов вещь тонкая, а чтобы научиться это делать самостоятельно, нужны некоторые знания физики, минимум школьного курса.

Вы хотя бы должны иметь понятие о том, что такое:

  • сила тока;
  • сопротивление металлов;
  • индуктивность и т.д.

Также вам надо приобрести опыт паяния радиодеталей, и научится пользоваться электрическим тестером и мультиметром. Для ремонта вы должны будете приобрести все необходимое оборудование, а также в зависимости от вида ремонтируемой техники вы должны будете разбираться в электросхемах.

Множество людей думают, что починка ПК это дело мастерских. Но даже новички могут почить компьютер дома, не имея специальных навыков при наличии минимум оборудования. Самостоятельно, при наличии паяльника, вы можете заменить конденсаторы. Но в случае потребности замены микросхем, если вы не имеете опыта и оборудования, такую поломку не желательно чинить самому.

Если электроника не включается

При подсоединении к электрической сети прибор не работает, не срабатывают никакие светодиодные сигналы или не выдается звук, причина этому сгоревший блок питания. Попробуйте включить аппарат последовательно с мощной лампой накаливания, для предотвращения короткого замыкания. Когда блок питания работает, лампа не будет гореть, а в случае короткого замыкания на блоке лампа загорится.

Потом ищем неисправность в самом блоке питания. Это может быть простой обрыв кабеля или выгорание предохранителя. В случае успеха устраняем неполадку заменой новых деталей или пайкой отломанных.

Некорректная работа

Если ваша электроника работает с перебоями, периодически выдавая проблему, причин такой работы множество. Например, когда при нагрузках на компьютер он отключается, а по истечении некоторого времени снова работает, неисправность может крыться в перегреве или повреждении контактов.

Р аздел Мастерская составлен для начинающих радиолюбителей , которые хотят не только собирать и мастерить самоделки, но и самостоятельно производить ремонт бытовой электроники.

З десь Вы найдёте статьи по ремонту, начиная с таких аппаратов как CD/MP3-проигрыватели и заканчивая бытовыми компактными люминесцентными лампами. Узнаете, как правильно разобрать/собрать CD деку автомобильного проигрывателя и как восстановить работоспособность портативной звуковой колонки. Также рассматриваются основные моменты ремонта и приводятся качественные фотографии для наглядности.

Н а страницах этого раздела найдётся информация о том, как отремонтировать DVD – плеер и музыкальный центр. Рассказано о таких типичных неисправностях современных цветных телевизоров, как, например, появление цветных пятен на экране кинескопа. Есть статьи и о современной портативной технике – MP3 плеерах, переносных звуковых колонках и малогабаритных LCD-телевизорах.

Д ля более полного освоения информации приводятся качественные фотографии ремонтируемых аппаратов и их узлов. В некоторых случаях приводятся принципиальные схемы, фотографии радиодеталей и их цоколёвка. Вся предоставленная информация основывается исключительно на личном опыте ремонта бытовой электроники.

Для перехода на интересующую статью кликните ссылку или миниатюрную картинку-иконку, расположенную рядом с кратким описанием материала.

Удачного ремонта!

Ремонт телевизионной техники

Что делать, если у ЖК-телевизора слетела прошивка и он не включается? Перепрошиваем SPI Flash память 25 серии. Подробный мануал для начинающих радиомехаников и электронщиков.

В телевизорах Erisson распространена неисправность транзистора 2SB764 в цепях кадровой развёртки. Однако неисправность проявляется повторно даже после замены неисправного транзистора на новый. Причина неисправности - "баг", ошибка при проектировании аппарата. В статье подробно рассмотрен пример устранения данного дефекта при ремонте телевизоров Erisson моделей 1401 и 2102.

В статье рассмотрен ремонт переносного LCD-телевизора Prology HDTV-909S. Неисправность - телевизор не включается. В процессе ремонта портативного телевизора был заменён отечественным аналогом транзистор 2SA2039, что никак не сказалось на работоспособности LCD-телевизора Prology.

Ремонт аппаратуры с лазерным оптическим приводом

Главная часть любого дискового устройства - лазерный привод. Немного знаний о ремонте и устранении причин сбоев этих устройств не помешает, особенно начинающим радиомеханикам!

Основные неисправности DVD плееров и методы их устранения (No disk и Error). Наиболее уязвимые детали DVD плееров - лазерный считыватель, привод шпинделя, драйвер и главный процессор. Рекомендации по ремонту и замене неисправных деталей и узлов DVD проигрывателей.

Как быстро заменить оптический лазерный блок в DVD? Простая пошаговая методика избавит начинающих радиомехаников от кропотливой работы по разборке DVD-привода и замены в нем лазера.

При ремонте автомобильных CD/MP3-проигрывателей иногда необходимо произвести чистку линзы оптического лазерного блока, заменить двигатель шпинделя в CD-приводе. Как правильно и быстро разобрать/собрать CD-привод? В статье рассмотрена пошаговая методика разборки CD-привода, для наглядности приводится много фотографий.

Переносной CD/MP3-проигрыватель плохо воспроизводит запись с диска? Узнайте о том, как устранить сбой в CD/MP3-проигрывателе при воспроизведении записи с диска. Пример из реальной практики ремонта, плюс несколько советов о том, как устранить неисправность переносного CD/MP3-проигрывателя.

Ремонт звуковоспроизводящей аппаратуры

С данной статьи мы начнём знакомство с устройством, схемотехникой, а также "комплектухой" автомобильного усилителя. Несмотря на кажущиеся различия, все автомобильные усилители имеют схожую конструкцию и схемотехнику. Материал, изложенный в статье, поможет начинающим радиомеханикам разобраться в устройстве любого автоусилителя.

В этой статье рассказывается об устройстве и ремонте акустической системы SVEN IHOO MT5.1R. Информация будет интересна всем тем, кто интересуется самостоятельным ремонтом звукоусилительной аппаратуры. Пример реальной неисправности и методики ремонта. Прилагается архив с принципиальной схемой аппарата.

Несмотря на всю сложность схемотехники современных музыкальных центров неисправности их довольно типичны. Показана практика ремонта на примере устранения неисправности музыкального центра Samsung MAX-VS720 - хриплый и тихий звук. Узнай сейчас!

Простой ремонт плеера Xcube. Наиболее распространённые неисправности миниатюрных MP-3 плееров, это механические поломки, связанные с интенсивной эксплуатацией этих популярных устройств.

Как-то раз мне на ремонт принесли Bluetooth-колонку JBL Charge 3, но это оказалось не она... Пример ремонта дешёвой копии одной из популярных беспроводных акустических систем.

В последнее время широкое распространение получили переносные акустические системы, по английской терминологии - Portable Speakers (Портативные громкоговорители). Особенно востребованы портативные акустические системы в молодёжной среде. Переносные акустические системы имеют малые габариты, хорошее качество звуковоспроизведения, автономное питание. Какова "электронная начинка" этих устройств?

В практике ремонта нередки случаи, когда ремонт прибора невозможен по причине невозможности замены какого-либо электронного компонента. В таких случаях приходится искать наиболее подходящую замену неисправной детали. В статье рассмотрен ремонт портативной акустической системы. Вместо неисправной микросхемы PAM8403 была довольно успешно встроена микросхема TDA2822.

По статистике неисправностей автомагнитол на первом месте идут поломки связаные с цепями питания этих приборов. Рассмотрен простой ремонт автомагнитолы Mystery MCD-795MPU - выгорел защитный предохранитель, магнитола не включается. Данная методика ремонта пригодится при ремонте любых автомагнитол: кассетных, дисковых, бездисковых (с USB).

Ремонт различной бытовой радиоэлектроники

В этой статье рассказывается об устройстве и ремонте электрического чайника-термоса. Подробно рассмотрена конструкция и назначение конкретных деталей и электронных узлов.

В данной статье рассматривается принципиальная схема термопота. Подробно рассмотрены основные электрические узлы, а также электронные компоненты, которые применяются в термопотах разных фирм. Информация будет непременно полезна всем тем, кто хочет самостоятельно починить неисправный чайник-термос.

Взамен обычных бытовых ламп накаливания приходят компактные энергосберегающие лампы, которые можно установить в стандартный цоколь Е27(Е14). Несмотря на то, что энергосберегающие лампы долговечнее обычных ламп накаливания, они также выходят из строя. Стоимость энергосберегающих ламп довольно высока и их ремонт оправдан хотя бы в личных целях. Особенно, если учесть тот факт, что в большинстве случаев сама лампа исправна, а из строя выходит высокочастотный преобразователь, который несложно починить.

SMD монтаж - один из самых сложных в плане ремонта, особенно при отсутствии спецоборудования и необходимых запчастей. Проблему замены SMD компонентов каждый радиомеханик решает для себя сам. Вот один из примеров...

Электробезопасность при обслуживании и ремонте радиоэлектронной аппаратуры

При ремонте электроустановок, электронных приборов и электропроводки необходимо соблюдать простые правила электробезопасности. В статье кратко описаны некоторые приёмы и правила, которые используют радиолюбители и электрики в повседневной практике.

Электрооборудование транспортных средств

Данная статья посвящена электрике и электрооборудованию рядового китайского скутера. Рассказывается практически обо всех элементах электрической схемы скутера, их назначении и особенностях. Информация будет интересна всем владельцам китайских скутеров, которые не знакомы с электрооборудованием скутера, но желают узнать об этом больше.

Неисправность реле-регулятора скутера приводит к нежелательным последствиям: выгорают лампы освещения, выходит из строя аккумуляторная батарея, со временем заряд аккумулятора снижается и приходится заводить скутер кикстартером. Проверить реле-регулятор на скутере можно с помощью мультиметра. О том, как это сделать читайте здесь.

Ремонт источников питания

Вторая часть является продолжением первой части и в ней разбирается состав и работа схемы управления и контроля сварочного инвертора.

Схемотехнике блоков питания ПК посвящены 5 частей. В каждой из них рассказывается об одном из электронных узлов импульсного блока питания (ИБП). Приводятся принципиальные схемы, а также рассказывается о схемотехнических решениях, применяемых в конкретной схеме и возможных неисправностях.

Цикл статей поможет тем начинающим радиолюбителям, которые хотят научиться ремонтировать, модернизировать и самостоятельно анализировать схемотехнику реальных блоков питания. И хотя в качестве примеров приводятся схемы электронных узлов ИБП форм-фактора AT, предоставленная информация поможет понять принцип работы компьютерного ИБП и в дальнейшем разобраться в устройстве более сложных ИБП формата ATX.

Проверка электронных компонентов с использованием мультиметра это довольно простая задача. Для ее выполнения нужен обычный мультиметр китайского производства, покупка которого не представляет проблемы, важно только избегать самых дешевых, откровенно некачественных моделей.

Аналоговые приборы со стрелочным указателем до сих пор способны выполнять такие задачи, но более удобны в применении цифровые мультиметры , в которых выбор режима осуществляется при помощи переключателей, а результаты измерения отображаются на электронном дисплее.

Внешний вид аналоговых и цифровых мультиметров:


Сейчас чаще всего используются цифровые мультиметры, так как у них меньший процент погрешности, их легче использовать и данные выводятся сразу на дисплей прибора.

Шкала цифровых мультиметров больше, имеются удобные дополнительные функции – температурный датчик, частотомер, проверка конденсатора, и др.

Проверка транзистора


Если не вдаваться в технические подробности, то транзисторы бывают полевые и биполярные


Биполярный транзистор представляет собой два встречных диода, поэтому проверка выполняется по принципу «база-эмиттер» и «база-коллектор». Ток может идти только в одном направлении, в другом его быть не должно. Не нужно проверять переход «эмиттер-коллектор». Если на базе нет напряжения, но ток все же проходит, прибор неисправен.

Для проверки полевого транзистора N-канального типа, нужно присоединить черный (отрицательный) щуп к выводу стока. К выводу истока транзистора присоединяется красный (положительный) щуп. В таком случае транзистор закрыт, мультиметр высвечивает падение напряжения примерно 450 мВ на внутреннем диоде, и бесконечное сопротивление на обратном. Теперь нужно присоединить красный щуп к затвору, после чего вернуть на вывод истока. Черный щуп при этом остается присоединен к выводу стока. Показав на мультиметре 280 мВ, транзистор открылся от прикосновения. Не отсоединяя красный щуп, дотронемся черным щупом к затвору. Полевой транзистор закроется, а на дисплее мультиметра увидим падение напряжения. Транзистор исправен, что и показали данные манипуляции. Диагностика Р-канального транзистора выполняется аналогично, но щупы меняют местами.

Проверка диода


Сейчас выпускается несколько основных типов диодов (стабилитрон, варикап, тиристор, симистор, свето- и фотодиоды), каждый из них используется для определенных целей. Для проверки на диоде замеряется сопротивление с плюсом на аноде (должно быть от нескольких десятков до нескольких сотен Ом), затем с плюсом на катоде – должна быть бесконечность. Если показатели другие – прибор неисправен.

Проверка резисторов

Как можно понять из картинки, резисторы тоже бывают разные:


На всех резисторах производителями указывается номинальное сопротивление. Его мы и замеряем. Допускается 5% погрешности значения сопротивления, если погрешность больше – прибор лучше не использовать. Если резистор почернел, его тоже лучше не использовать, даже если сопротивление в пределах нормы.

Проверка конденсаторов

Сначала осматриваем конденсатор. Если на нем нет никакие трещин и вздутий, нужно попытаться (осторожно!) покрутить выводы конденсатора. Если получается прокрутить или даже вообще вытащить – конденсатор сломан. Если внешне все нормально, проверяем мультиметром сопротивление, показания должны быть равны бесконечности.

Катушка индуктивности

В катушках поломки могут быть разные. Поэтому сначала исключаем механическую неисправность. Если внешне повреждений нет, измеряем сопротивление, подключая мультиметр к параллельным выводам. Оно должно быть близким к нулю. Если номинальное значение превышено, возможно, поломка произошла внутри катушки. Можно попытаться перемотать катушку, но проще поменять.

Микросхема

Микросхему мультиметром проверять не имеет смысла – в них десятки и сотни транзисторов, резисторов и диодов. На микросхеме не должно быть механических повреждений, пятен от ржавчины и перегрева. Если внешне все в порядке, микросхема скорее всего повреждена внутри, починить ее не удастся. Однако можно проверить выходы микросхемы на напряжение. Слишком низкое сопротивление выходов питания (относительно общего) свидетельствует о коротком замыкании. Если хотя бы один из выходов неисправен, скорее всего схему уже не вернуть в строй.

Работа с цифровым мультиметром

Подобно аналоговому, цифровой тестер имеет щупы красного и черного цвета, а также 2-4 дополнительных гнезда. Традиционно, «масса» или общий вывод маркируется черным. Гнездо общего вывода обозначается знаком «-» (минус) или кодом СОМ. Конец вывода бывает оснащен зажимом типа «крокодильчик», для укрепления на проверяемой схеме.

Красный вывод всегда использует гнездо с маркировкой «+» (плюс) или кодом V. В более сложных мультиметрах имеется дополнительное гнездо для красного щупа, обозначенное кодом «VQmA». Его использование позволяет измерять сопротивление и напряжение в миллиамперах.

Гнездо, обозначенное 10ADC предназначено для измерения постоянного тока, силой до 10А.

Главный переключатель режимов, имеющий круглую форму и расположенный в большинстве мультиметров посредине передней панели, служит для выбора режимов измерения. При выборе напряжения следует выбирать режим больший, чем сила тока. Если требуется проверить бытовую розетку, из двух режимов, 200 и 750 В, выбираем режим 750.