Простейший интегратор на активных элементах. Интеграторы на основе операционных усилителей

Из принципиальной схемы (рис. 1) следует применимость формулы (4) на том основании, что в интеграторе имеется -цепочка (рис. 2), работающая при аналогичных условиях.

Экспериментальная установка

Установка (рис. 1) включает интегратор на ОУ КP140УД8А (см. приложение 7), генератор Л31 и осциллограф C1-73.

Задание

1. Рассчитайте форму осциллограммы выходного напряжения интегратора при входном напряжении в форме прямоугольных колебаний.

2. Получите экспериментальную осциллограмму для этого случая.


КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Почему усилители называются операционными?

2. Какай ОУ называется идеальным?

3. Как обозначается ОУ?

4. Как он устроен?

5. Изобразите структурную схему базового ОУ и назовите основные функциональные узлы.

6. Изобразите принципиальную схему входного каскада ОУ.

7. С какой целью в ОУ используется двуполярное питание?

8. Изобразите принципиальную схему выходного каскада базового ОУ.

9. Какие два режима работы ОУ используются в аналоговых и в импульсных устройствах?

10. В чем заключается эффект кажущейся «земли»?

11. Как влияет параллельная отрицательная обратная связь по напряжению на входное сопротивление ОУ?

12. Какую функцию выполняет резистор R 1 в усилителе-инверторе?

13. Какую функцию выполняет резистор R 2 в усилителе-инверторе?

14. Какие преимущества имеет усилитель на ОУ?

15. Как изменить принципиальную схему усилителя в работе 1, чтобы он стал неинвертирующим?

16. Докажите формулу (7) в работе 1.

17. Изобразите принципиальную схему сумматора-инвертора.

18. Докажите формулу (8) работы 2.

19. Как изменить принципиальную схему сумматора-инвертора, чтобы получить неинвертирующий сумматор?

20. Изобразите принципиальную схему дифференциатора на ОУ.

21. Докажите формулу (4) работы 3.

22. Объясните смысл требования малости выходного напряжения при использовании дифференцирующей цепочки.

23. Какие преимущества имеет использование дифференциатора на ОУ по сравнению с дифференцирующей цепочкой?

24. Объясните, почему ОУ в схеме рис. 1 работы 3 дифференцирует входной сигнал?

25. Для чего используется дифференциатор в импульсной технике?

26. Графически продифференцируйте сигнал треугольной формы.

27. Графически продифференцируйте сигнал прямоугольной формы.


ПРИЛОЖЕНИЕ 1

СТРУКТУРНАЯ СХЕМА ОПЕРАЦИОННОГО УСИЛИТЕЛЯ

ПРИЛОЖЕНИЕ 2

ПРИНЦИПИАЛЬНАЯ СХЕМА ОУ К140УД8


ПРИЛОЖЕНИЕ 3

СХЕМА ВКЛЮЧЕНИЯ ОПЕРАЦИОННОГО УСИЛИТЕЛЯ

ПРИЛОЖЕНИЕ 4

ЦОКОЛЕВКА МИКРОСХЕМЫ

1 – подложка микросхемы, 2, 6 – балансировка, 3 – инвертирующий вход,

4 – неинвертирующий вход, 5 – питание – 15 В, 8 – питание + 15 В, 7 – выход.

ПРИЛОЖЕНИЕ 5

МАРКИРОВКА МИКРОСХЕМЫ

К – микросхема широкого применения;

Р – в прямоугольном пластмассовом корпусе;

1 – полупроводниковая

40 – номер серии;

УД – усилитель дифференциальный;

8 – вариант микросхемы в серии;

А – вариант значений параметров микросхемы.

ПРИЛОЖЕНИЕ 6

СХЕМА СМЕННОГО УСТРОЙСТВА 1 (УС-1) СТЕНДА К-32

ПЕРЕЧЕНЬ ЭЛЕМЕНТОВ УС-1


ПРИЛОЖЕНИЕ 7

СХЕМА СМЕННОГО УСТРОЙСТВА 9 (УС-9) СТЕНДА К-32


ПЕРЕЧЕНЬ ЭЛЕМЕНТОВ УС-9

Обозначение Наименование Количество
DA1 … DA3 Микросхема КР140УД8А
Конденсаторы
С1 К73-17-250V – 0,47 mF ±10 %
С2 … С4 К73-17-250V – 0,1 mF ±10 %
С5, С6 К10-7В-Н90- 0,068 mF ±20%
Резисторы
R1 … R3 МЛТ-0,25 – 3 кW ± 10 %
R4 МЛТ-0,25 – 1 кW ± 10 %
R5 МЛТ-0,25 – 10 кW ± 10 %
R6 СП3-38Г-10 кW
R7 МЛТ-0,25 – 5,1 кW ± 10 %
R8 МЛТ-0,25 – 200 W ± 10 %
R9, R10 МЛТ-0,25 – 2 кW ± 10 %
R11 СП3-38Г-22 кW
R12 СП3-38Г-10 кW
R13 МЛТ-0,25 – 5,1 кW ± 10 %
R14 МЛТ-0,25 – 200 W ± 10 %
R15 СП3-38Г-4,7 кW
R16 МЛТ-0,25 – 4,7 W ± 10 %
R17 МЛТ-0,25 – 2 кW ± 10 %
R18 СП3-38Г-10 кW
R19 МЛТ-0,25 – 10 кW ± 10 %
R20 МЛТ-0,25 – 200 W ± 10 %
R21 МЛТ-0,25 – 2 кW ± 10 %

ПРИЛОЖЕНИЕ 8

ЛИЦЕВАЯ ПАНЕЛЬ СТЕНДА К-32

(выписка из альбома 1)

Указанные на панели надписи означают:

BнК – внешняя команда, означает соединение соответствующей цепи с гнездом, расположенным на передней панели.

ВСв – внутренняя связь, означает соединение соответствующей цепи с входным разъемом Х4 блока управления комплекта.

ВХ1 – вход 1.

ВХ2 – вход 2.

ГН1 – генератор напряжения постоянного тока первый.

ГН2 генератор напряжения постоянного тока второй.

ГС1 – генератор сигналов первый.

ГС2 – генератор сигналов второй.

КВТ – коммутатор внешних устройств.

КОММУТ – коммутатор.

ПРОГРАММАТОР СИ – программатор серии импульсов.

ФВ – фазовращатель.

Общие сведения

Подключение к ОУ цепи частотно-зависимой (комплексной) обратной связи позволяет создавать устройства, обладающие усилением и частотной избирательностью. Их частотная и фазовая характеристики определяются только видом и параметрами цепи обратной связи. К таким устройствам относятся интеграторы.

Интегратором называется устройство на основе операционного усилителя, выходной сигнал которого пропорционален интегралу от входного. Если обратная связь, которой охвачен ОУ, образуется конденсатором, то схема выполняет математическую операцию интегрирования по времени. Другими словами, она действует как накопитель, в котором входной сигнал суммируется на заданном отрезке времени. На основе операционных усилителей можно строить почти идеальные интеграторы на которые не распространяется ограничение «.

Интегратор на операционном усилителе можно считать точным в силу очень большого коэффициента усиления (сотни тысяч) и очень малых входных токов (доли наноампера). При этом выходное напряжение оказывается практически равным минус напряжению на конденсаторе, ток через конденсатор - практически равным току через резистор и напряжение на резисторе - практически равным входному. Интегрирование можно представлять себе как определение площади под кривой. Поскольку интегратор на операционном усилителе производит действия над напряжениями в течение некоторого периода времени, результат его работы можно интерпретировать как сумму напряжений за некоторое время.

Принципиальные схемы и основные выражения

Схема интегратора на операционном усилителе приведена на рисунке 2.1.

Рисунок 2.1 - Интегратор на основе операционного усилителя

Математическую модель интегратора можно записать в таком виде:

где: x(t) - входная функция времени;

y(t) - выходная функция времени;

k - коэффициент передачи;

y0 - начальное значение выходной переменной.

В связи с тем что инвертирующий вход имеет потенциальное заземление, выходное напряжение определяется следующим образом:

Входным сигналом может быть и ток, в этом случае резистор R не нужен.

Основные проблемы и способы их решения

Основной проблемой в интеграторах является дрейф выходного напряжения, вызванный зарядом конденсатора, токами утечки, входными токами смещения и входным напряжением смещения ОУ. Если не принять никаких мер, на выходе схемы появится большое непостоянное смещение, которое, в конечном счете, приводит к насыщению ОУ. В представленной здесь схеме (см. рисунок 2.1) тоже присутствует этот недостаток - тенденция к дрейфу. Это нежелательное явление можно ослабить, если использовать ОУ на полевых транзисторах, отрегулировать входное напряжение сдвига ОУ и выбрать большие величины для R и С. Но на практике можно прибегнуть к сбросу на нуль интегратора с помощью переключателя подсоединенного к конденсатору. На рисунке 2.2 показан интегратор с переключателем для сброса.

Рисунок 2.2 - Интегратор с переключателем для сброса на нуль

Если остаточный дрейф по-прежнему слишком велик для конкретного случая использования интегратора, то к конденсатору С следует подключить большой резистор R2, который обеспечит стабильное смещение за счет обратной связи по постоянному току. Но следует указать что такое подключение приведет к ослаблению интегрирующих свойств на очень низкой частоте: . На рисунке 2.3 показано подключение резистора.

Рисунок 2.3 - Подключение резистора к схеме интегратора

Рассмотрев интегратор с переключателем на полевом транзисторе (см. рисунок 2.2), можно понять, что ток утечки перехода сток-исток2 2 Электрод, из которого в канал входят основные носители заряда, называют истоком. Электрод, через который из канала уходят основные носители заряда, называют стоком. протекает через суммирующий переход даже в том случае, когда полевой транзистор находится в состоянии ВЫКЛ. Эта ошибка может быть преобладающей в интеграторе в случае использования операционного усилителя с очень малым входным током и конденсатора с небольшой утечкой.

Применение интегратора на ОУ

Интегратор служит полезным источником линейно изменяющегося напряжения, необходимого для осциллографов в качестве сигнала развертки и используемого также при реализации некоторых методов аналого-цифрового преобразования. Если на вход интегратора подать неизменное по величине постоянное напряжения - , то на выходе получим:

На рисунке 2.4 показано линейно нарастающее напряжение с градиентом, как отклик интегратора на скачок напряжения. Когда на входе действует симметричное относительно земли периодическое прямоугольное колебание, это приводит к возникновению на выходе колебания треугольной формы.

Рисунок 2.4 - Линейно нарастающее напряжение, отклик интегратора

Интегратор так же можно использовать в схеме нужной для обнаружения ядерных частиц. Схема является зарядо-чувствительным усилителем или другими словами преобразователем заряда в напряжение у которой выходное напряжение пропорционально количеству заряда, поступившего на вход. В таком случае очень полезен интегратор на основе ОУ. В схеме представленной на рисунке 2.5 убирается резистор и входная клемма напрямую соединяется с инвертирующим входом.


Рисунок 2.5 - Электрометрический усилитель



На основе операционных усилителей можно строить почти идеальные интеграторы на которые не распространяется ограничение U вых « U вх. На рис. 4.47 показана такая схема. Входной ток U вх /R протекает через конденсатор С. В связи с тем что инвертирующий вход имеет потенциальное заземление, выходное напряжение определяется следующим образом:

U вх /R = - C(dU вх /dt) или U вх = 1/RC ∫U вх dt + const.

Безусловно, входным сигналом может быть и ток, в этом случае резистор R не нужен. Представленной здесь схеме присущ один недостаток, связанный с тем, что выходное напряжение имеет тенденцию к дрейфу, обусловленному сдвигами ОУ и током смещения (обратной связи по постоянному току, которая нарушает правило 3 из разд. 4.08 , здесь нет). Это нежелательное явление можно ослабить, если использовать ОУ на полевых транзисторах, отрегулировать входное напряжение сдвига ОУ и выбрать большие величины для R и С. Кроме того, на практике часто прибегают к периодическому сбросу в нуль интегратора с помощью подключенного к конденсатору переключателя (обычно на полевом транзисторе), поэтому играет роль только кратковременный дрейф. В качестве примера рассмотрим интегратор, в котором использован ОУ на полевых транзисторах типа LF411 (ток смещения составляет 25 пА), настроенный на нуль (напряжение сдвига составляет не более 0,2 мВ). Резистор и конденсатор выбраны так: R = 10 МОм и С = 10 мкФ; для такой схемы дрейф не превышает 0,005 В за 1000 с.


Рис. 4.47. Интегратор


Если остаточный дрейф по-прежнему слишком велик для конкретного случая использования интегратора, то к конденсатору С следует подключить большой резистор R 2 , который обеспечит стабильное смещение за счет обратной связи по постоянному току. Такое подключение приведет к ослаблению интегрирующих свойств на очень низкой частоте: ƒ разд. 4.09) описанный выше прием может привести к увеличению эффективного входного напряжения сдвига. Например, если схема, показанная на рис. 4.49, подключена к источнику с большим импедансом (скажем, на вход поступает ток от фотодиода и входной резистор опущен), то выходной сдвиг будет в 100 раз превышать U сдв. Если в той же схеме есть резистор обратной связи величиной 10 МОм, то выходное напряжение равно U сдв (сдвигом, обусловленным входным током, можно пренебречь).


Рис. 4.48. Интеграторы на основе ОУ с переключателями для сброса.



Схемная компенсация утечки полевого транзистора. Рассмотрим интегратор с переключателем на полевом транзисторе (рис. 4.48). Ток утечки перехода сток-исток протекает через суммирующий переход даже в том случае, когда полевой транзистор находится в состоянии ВЫКЛ. Эта ошибка может быть преобладающей в интеграторе в случае использования операционного усилителя с очень малым входным током и конденсатора с небольшой утечкой. Например, превосходный «электрометрический» ОУ типа AD549 со входами на полевых транзисторах обладает входным током величиной 0,06 пА (максимум), а высококачественный металлизированный тефлоновый или полистироловый конденсатор емкостью 0,01 мкФ обладает сопротивлением утечки величиной 10 7 МОм (минимум). При таких условиях интегратор, без учета схемы сброса, поддерживает на суммирующем переходе прямой ток величиной ниже 1 пА (для худшего случая, когда выходной сигнал составляет 10 В двойной амплитуды), что соответствует величине изменения dU/dt на выходе, равной 0,01 мВ с. Для сравнения посмотрите, чему равна утечка такого популярного МОП - транзистора, как например 2N4351 (в режиме обогащения). При U ист-сток = 10 В и U ист-затв = 0 В максимальный ток утечки равен 10 нА. Иными словами, утечка полевого транзистора в 10000 раз больше, чем утечка всех остальных элементов, взятых вместе.


На рис. 4.50 показано интересное схемное решение оба n- канальных МОП - транзистора переключаются вместе, однако транзистор Т 1 переключается тогда, когда напряжение на затворе равно нулю и + 15 В, при этом в состоянии ВЫКЛ (напряжение на затворе равно нулю) утечка затвора (а также утечка перехода сток-исток) полностью исключается. В состоянии ВКЛ конденсатор как и прежде, разряжается, но при удвоенном R вкл. В состоянии ВЫКЛ небольшой ток утечки транзистора Т 2 через резистор R 2 стекает на землю, создавая пренебрежимо малое падение напряжения. Через суммирующий переход ток утечки не протекает. Так как к истоку стоку и подложке транзистора Т 1 приложено одно и тоже напряжение. Сравните эту схему со схемой пикового детектора с нулевой утечкой, приведенной на рис. 4. 40 .


Широкое применение находят также устройства, и которых используются ОУ с реактивными элементами в цепи обратной связи. На рис. 5.8. а приведена схема простейшего интегратора. Чтобы понять, почему такая схема способна интегрировать, запишем выражение для тока, протекающего через конденсатор:

Если ОУ близок к идеальному с током I вх = 0 и значением К настолько большим, что потенциал инвертирующего входа можно считать равным нулю, то I R =- I C .Так как U c = - U вых , то можно записать

Разрешая это выражение относительно dU вых , находим

dU вых = (-1/RC)U вх dt,

а интегрируя его, получаем

Пределами интегрирования здесь являются моменты времени, соответствующие началу и концу интервала времени наблюдения сигнала. Для скачка входного сигнала U вх интеграл является линейной функцией времени:

Этим свойством интегратора широко пользуются при проектировании прецизионных генераторов линейно изменяющегося напряжения.


Рис. 5.8 Применение ОУ для интегрирования входного сигнала: а -- интегратор на ОУ на ОУ; б -- входной сигнал интегратора; в -- выходной сигнал интегратора

Пример. В схеме генератора R =10 кОм, С =0,1 мкф. На вход ОУ подаются прямоугольные импульсы в виде меандра с частотой 1 кГц и амплитудой 5 В. (см. рис. 5.8 б). Определить, какое будет выходное напряжение?

Решение. Поскольку сигнал периодический, для описания выходного напряжения достаточно рассмотреть только один полный период, например, длительностью t 3 - t 1 . Имеем U вх = 5B при t 1 < t < t 2 , U вх = - 5В при t 2 < t < t 3 .

Эту функцию можно интегрировать на каждом из ее полупериодов. Для описания выходного сигнала достаточно выяснить его форму и значение напряжений на концах каждого полупериода. Так как U вх в течение полпериода постоянно, то

представляет собой наклонную прямую на каждом полупериоде.

Напряжение на конденсаторе за первый полупериод, т. е. в интервале между t 1 и t 2 , изменяется на величину:

Аналогично находим изменение напряжения на выходе за второй полупериод между t 3 и t 2

В установившемся режиме, на выходе получится симметричный двуполярный сигнал (без постоянной составляющей). Поскольку скорость изменения выходного напряжения одинакова по абсолютной величине и противоположна по знаку, то на границах полупериодов выходное напряжение будет принимать значение 1.25В. Полученный выходной сигнал показан на рис. 5.8, в.

Если последовательно с конденсатором обратной связи включить сопротивление (рис. 5.9 а), то выходное напряжение окажется линейной функцией входного напряжения и интеграла по времени от входного напряжения. Такая схема фактически объединяет интегратор и усилитель. Напряжение на ее выходе имеет вид

U вых = -(R ос /R 1 )U вх -1/(R 1 C) U вх dt.

Заметим, что интегратор-усилитель может иметь более одного входа.

Разностный интегратор (рис. 5.9 б) формирует интеграл по времени от разности двух сигналов. Его схему можно получить, если на рис. 5.3 г вместо резисторов nR 1 и nR 2 включить конденсаторы С 1 = С 2 = С . Выходное напряжение в этой схеме имеет вид

U вых = (1/RC)(U 2 - U 1 )dt.

Количество входов интегратора не обязательно равно одному. Схема суммирующего интегратора с n входами показана на рис. 5.9 в. Из рисунка видно, что

i C = iR 1 + iR 2 + iR n ,

-С(dU вых /dt) = (U 1 /R 1 ) + (U 2 /R 1 ) + + (U n /R n ).

При R1 = R2 = Rn =R имеем

dU вых /dt = -(U 1 + U 2 + +U n ) /CR.

Проинтегрировав это равенство, получим


Рис. 5.9 Разновидности интеграторов на ОУ: а -- интегратор усилитель, б -- разностный интегратор, в -- суммирующий интегратор

Любой интегратор, предназначенный для интегрирования в течение длительного времени, необходимо периодически сбрасывать в некоторое заданное начальное состояние (например, нулевое). Кроме того, желательно иметь возможность останавливать на некоторое время изменение выходного напряжения (режим фиксации); это дает возможность последовательно считывать несколько значений выходного напряжения и гарантирует неизменность выходного напряжения в течение времени, необходимого для такого считывания. Трехрежимный интегратор, схема которого приведена на рис. 5.10 обеспечивает возможность производить интегрирование, фиксировать выходной сигнал и периодически сбрасывать интегратор в исходное состояние. Схема имеет следующие режимы:

  • · Рабочий -- собственно интегрирование.
  • · Фиксации (сравнения) -- в течение определенного интервала времени выходной сигнал не меняется.
  • · Установка начальных условий (или сброс) -- интегратор возвращается в исходное состояние.

В рабочем режиме интегрирование производится обычным образом и в качестве трехрежимного интегратора может быть использован любой из описанных выше интеграторов. При большой длительности интегрирования накапливается большая ошибка за счет интегрирования входного тока, напряжения смещения и тока утечки конденсатора. Максимальное время непрерывной работы интегратора определяется величиной суммарной ошибки, допустимой в данном конкретном применении. В рабочем режиме сигнал на выходе схемы рис. 5.10 имеет вид

U вых =-(1/R 1 C) U 1 dt + U нс .,

где U нс - значение напряжения, которое выходное напряжение интегратора принимает в режиме сброса. Это напряжение сброса равно

U нс =-(R ос /R 2 )U 2 .

Напряжение сброса равно нулю, если U 2 = 0. Максимальное время, в течение которого интегратор может непрерывно работать, можно найти следующим образом. Так как С=It/U , а t = CU/I , то имеем

t раб.мак.=CU ош / I вх,

где I вх -- ток смещения ОУ, U ош -- максимально допустимое напряжение ошибки за счет входного тока.

В режиме выдержки (хранения) (K1, K2 разомкнуты) входное сопротивление отсоединяется от интегратора. При этом напряжение на конденсаторе остается практически постоянным, так как входное сопротивление ОУ велико. Однако, это напряжение не будет удерживаться на конденсаторе бесконечно долго, потому что ни входное сопротивление усилителя, ни сопротивление утечки конденсатора не бесконечны. Если ток утечки конденсатора достаточно мал, то напряжение на конденсаторе будет уменьшаться по экспоненциальному закону с постоянной времени = СR вх ус .

Рис. 5.10

В режиме сброса конденсатор вынужден зарядиться или разрядиться до напряжения, определяемой цепью обратной связи R ос и R 2 . Чтобы сброс происходил достаточно быстро, резисторы выбираются настолько малой величины, насколько позволяет усилитель. В качестве ключей обычно применяют ключи на биполярных или полевых транзисторах.

Погрешность интегратора в первую очередь определяется таким параметром ОУ, как напряжение смещения и входной ток. Напряжение смещения интегрируется как ступенчатая функция, что дает дополнительный линейно нарастающий (или спадающий) выходной сигнал, полярность и наклон которого определяется соответственно полярностью и величиной U см . Ток I вх течет через конденсатор обратной связи, что также приводит к появлению наклонного выходного сигнала. В результате действия этих эффектов (они никогда не компенсируют друг друга полностью, но могут складываться и вычитаться) конденсатор обратной связи через некоторое время неизбежно зарядится до максимально возможного выходного напряжения усилителя. Такое постоянное нарастание заряда на конденсаторе накладывает ограничение на интервал времени, в течение которого может быть осуществлено интегрирование с достаточной точностью. Кроме того, U см2 -U см1 добавляется к напряжению на конденсаторе, т. е. к выходному напряжению. В итоге выражение для U вых интегратора принимает вид

Последние три члена в правой части приведенного равенства соответствуют указанным выше ошибкам, а первый -- описываемому полезному выходному сигналу. Для уменьшения ошибки интегрирования необходимо использовать ОУ с малыми значениями I см и U см , большим значением К, периодически разряжать конденсатор до некоторого заранее выбранного значения.

Операцию дифференцирования выполняет схема, приведенная на рис. 5.11.

Она создает выходное напряжение, пропорциональное скорости изменения входного. При дифференцировании входного сигнала усилитель должен пропускать только переменную составляющую входного напряжения и коэффициент усиления дифференциатора должен возрастать при увеличении скорости изменения входного сигнала.

1 с =С.

Рис. 5.11

Напряжение U c равно входному напряжению U вх , так как потенциал инвертирующего входа близок к нулю. Ели предположить, что ОУ идеален, то ток через Rос можно считать равным току через конденсатор, т. е. I R =I C . Но U вых = -RI R =-I C R , поэтому

U вых = -RC dU вх /dt.

С увеличением частоты входного сигнала уменьшается реактивное сопротивление Х С . При этом возрастает коэффициент усиления дифференциатора по отношению к высокочастотным составляющим на входе. Однако это возрастание коэффициента усиления ограничивается частотными свойствами ОУ.

Особенностью схемы дифференциатора является также ее склонность к самовозбуждению, что требует принятия мер для динамической стабилизации дифференциатора.

Представляет опасность и значительное увеличение усиления дифференциатора, обусловленное свойством входной цепи на достаточно высоких частотах. В результате высокочастотные составляющие спектра собственного шума ОУ после значительного усиления накладываются на полезный сигнал и искажают его. Поэтому на практике применяют модифицированную схему, которая выполняет функцию дифференцирования входных сигналов до частоты 1 = 1/(R 1 C 1 ) , выполняет функцию усилителя в диапазоне частот от 1 = 1(/R 1 C 1 ) , до 2 = 1/(R 2 C 2 ) и является интегратором на частотах выше 2 .

Рис. 5.12 а -- схема дифференцирующего устройства, применяемого на практике; б -- логарифмическая амплитудно-частотная характеристика дифференциатора

На рис. 5.12 б приведена логарифмическая амплитудно-частотная характеристика ОУ, которая обеспечивает нормальную работу рассматриваемой схемы в режимах дифференциатора, усилителя и интегратора. Это позволяет устранить влияние собственной полосы пропускания ОУ на участке частот, где осуществляется интегрирование.

Интегратор и дифференциатор - это две важные вычислительные схемы, которые используются на операционном усилителе.

Интегратор

Интегратор - схема, имеющая выходное напряжение, равное сумме его входных напряжений за последовательные промежутки времени.

В схеме интегратора входной сигнал Ein подается на инвертирующий входной зажим; неинвертирующий входной зажим заземлен. Входной сигнал формируется через входной резистор Rin. Интегратор аналогичен инвертирующему усилителю за исключением одной особенности: вместо резистора в цепи обратной связи у него имеется конденсатор. Этот конденсатор Cfb называется конденсатором цепи обратной связи.

Выходной сигнал инвертирующего усилителя формируется через резистор цепи обратной связи. А в интеграторе выходное напряжение Eout формируется через конденсатор цепи обратной связи. При подаче на схему входного сигнала конденсатор заряжается для формирования выхода. Именно конденсатор делает схему интегрирующей. Поэтому для понимания работы схемы интегратора нужно рассмотреть, как действует конденсатор.


Важным вопросом в схеме интегратора является то, за какое время произойдет заряжание конденсатора до определенной величины.

На практике достижимый уровень выходного напряжения ограничен - оно никогда не может превысить напряжение питания. При постоянной величине входного сигнала конденсатор зарядится до уровня напряжения питания, но не больше. В этот момент произойдет насыщение операционного усилителя. Разумеется, на практике величина входного сигнала обычно изменяется, пока будет достигнуто насыщение.

В электронных контрольно-измерительных приборах скорость заряжания конденсатора в интеграторе обычно регулируется изменением значения Rin или Сfb. Например, регулятор возврата в электронном контроллере часто изменяет величину сопротивления Rin.

Дифференциатор

Дифференциатор - тип операционного усилителя, действие которого прямо противоположно действию интегратора. Иными словами, при наличии изменяющегося входного напряжения в какой-то период времени в дифференциаторе образуется неизменное выходное напряжение.

В схеме дифференциатора входное напряжение Ein подается на инвертирующий зажим, неинвертирующий зажим заземлен. В действительности, и для интеграторов, и для дифференциаторов нет необходимости в заземлении неинвертирующего зажима - на него может подаваться напряжение. В таком случае напряжение на неинвертирующем зажиме будет служить опорным напряжением, и выходное напряжение будет соотноситься с ним. Выходное напряжение Eout формируется через резистор цепи обратной связи Rfb.


Так же как интегратор, дифференциатор напоминает инвертирующий усилитель. Основным отличием является то, что входное напряжение в дифференциаторе образуется через входной конденсатор Cin, а не через входной резистор. Действие дифференциатора основано на том, как конденсатор реагирует на изменение входного напряжения.

В дифференциаторе зависимость между током в конденсаторе и выходным напряжением дифференциатора прямая - то есть, выходное напряжение дифференциатора будет высоким при сильном токе, выходное напряжение низкое при слабом токе в конденсаторе.

Следовательно, выходное напряжение дифференциатора будет высоким, когда входное напряжение Ein изменяется быстро, и оно будет низким, когда Ein изменяется медленно. Разумеется, если Ein постоянно, независимо от уровня, выходное напряжение дифференциатора будет равно 0 В.

Поскольку дифференциатор образует неизменное выходное напряжение с уровнем, пропорциональным скорости изменения входного напряжения, он часто используется для формирования управляющего сигнала скорости изменения процесса в электронных контроллерах. При его использовании схема управления скоростью подает управляющий сигнал, который прямо связан со скоростью изменения переменного параметра процесса. Если переменный параметр процесса изменяется быстро, в контроллере образуется управляющий сигнал высокого уровня. Более слабые управляющие сигналы образуются при медленном изменении переменного параметра процесса.

Регуляторы скорости в электронных контроллерах обычно изменяют величину конденсатора в схеме дифференциатора. Изменение величины конденсатора влияет на уровень выходного напряжения, образующегося при данном входном напряжении. Поэтому в электронных контроллерах применяется регулировка скорости для варьирования «величины» управляющего воздействия, производимого для данного изменения переменного параметра процесса.