Устанавливаем шрифты в css. Свой шрифт на странице. Самый простой способ подключения шрифтов

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

АМУРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

(ГОУВПО «АмГУ»)

КОНТРОЛЬНАЯ РАБОТА

по дисциплине «Информационные системы в экономике»

на тему: «Принципы построения и этапы проектирования баз данных»

Исполнитель

студент группы С – 81 Н.А. Вохмянина

Руководитель

доцент, к. т. н. Д. Г. Шевко

Благовещенск 2010


Введение

1. Принципы построения баз данных

2. Концепции построения баз данных

3. Этапы проектирования баз данных

Библиографический список


ВВЕДЕНИЕ

Восприятие реального мира можно соотнести с последовательностью разных, хотя иногда и взаимосвязанных, явлений. С давних времен люди пытались описать эти явления (даже тогда, когда не могли их понять). Такое описание называют данными.

Традиционно фиксация данных осуществляется с помощью конкретного средства общения, например, с помощью естественного языка на конкретном носителе.

В настоящее время успешное функционирование различных фирм, организаций и предприятий просто не возможно без развитой информационной системы, которая позволяет автоматизировать сбор и обработку данных. Обычно для хранения и доступа к данным, содержащим сведения о некоторой предметной области, создается база данных.

База данных (БД) - именованная совокупность данных, отражающая состояние объектов и их отношений в рассматриваемой предметной области.

Под предметной областью принято понимать некоторую область человеческой деятельности или область реального мира, подлежащих изучению для организации управления и автоматизации, например, предприятие, вуз и.т.д.

Система управления базами данных (СУБД) - совокупность языковых и программных средств, предназначенных для создания, наполнения, обновления и удаления баз данных.

Программы, с помощью которых пользователи работают с БД, называются приложениями.


1. ПРИНЦИПЫ ПОСТРОЕНИЯ БАЗ ДАННЫХ

К современным базам данных, а, следовательно, и к СУБД, на которых они строятся, предъявляются следующие основные требования.

1. Высокое быстродействие (малое время отклика на запрос).

Время отклика - промежуток времени от момента запроса к БД до фактического получения данных. Похожим является термин время доступа - промежуток времени между выдачей команды записи (считывания) и фактическим получением данных. Под доступом понимается операция поиска, чтения данных или записи их. Часто операции записи, удаления и модификации данных называют операцией обновления.

2. Простота обновления данных.

3. Независимость данных.

4. Совместное использование данных многими пользователями.

5. Безопасность данных - защита данных от преднамеренного или непреднамеренного нарушения секретности, искажения или разрушения.

6. Стандартизация построения и эксплуатации БД (фактически СУБД).

8. Дружелюбный интерфейс пользователя.

Важнейшими являются первые два противоречивых требования: повышение быстродействия требует упрощения структуры БД, что, в свою очередь, затрудняет процедуру обновления данных , увеличивает их избыточность.

Независимость данных - возможность изменения логической и физической структуры БД без изменения представлений пользователей.

Независимость данных предполагает инвариантность к характеру хранения данных, программному обеспечению и техническим средствам. Она обеспечивает минимальные изменения структуры БД при изменениях стратегии доступа к данным и структуры самих исходных данных. Это достигается «смещением» всех изменений на этапы концептуального и логического проектирования с минимальными изменениями на этапе физического проектирования.

Безопасность данных включает их целостность и защиту.

Целостность данных - устойчивость хранимых данных к разрушению и уничтожению, связанных с неисправностями технических средств, системными ошибками и ошибочными действиями пользователей.

Она предполагает:

1. отсутствие неточно введенных данных или двух одинаковых записей об одном и том же факте;

2. защиту от ошибок при обновлении БД;

3. невозможность удаления (или каскадное удаление) связанных данных разных таблиц;

4. неискажение данных при работе в многопользовательском режиме и в распределенных базах данных;

5. сохранность данных при сбоях техники (восстановление данных).

Целостность обеспечивается триггерами целостности – специальными приложениями-программами, работающими при определенных условиях. Защита данных от несанкционированного доступа предполагает ограничение доступа к конфиденциальным данным и может достигаться:

1. введением системы паролей;

2. получением разрешений от администратора базы данных (АБД);

4. формирование видов - таблиц, производных от исходных и предназначенных конкретным пользователям.

Три последние процедуры легко выполняются в рамках языка структуризованных запросов Structured Query Language - SQL, часто называемого SQL2.

Стандартизация обеспечивает преемственность поколений СУБД, упрощает взаимодействие БД одного поколения СУБД с одинаковыми и различными моделями данных. Стандартизация (ANSI/SPARC) осуществлена в значительной степени в части интерфейса пользователя СУБД и языка SQL. Это позволило успешно решить задачу взаимодействия различных реляционных СУБД как с помощью языка SQL, так и с применением приложения Open DataBase Connection (ODBC). При этом может быть осуществлен как локальный, так и удаленный доступ к данным (технология клиент/сервер или сетевой вариант).

2. КОНЦЕПЦИЯ ПОСТРОЕНИЯ БАЗЫ ДАННЫХ

Существует два подхода к построению БД, базирующихся на двух подходах к созданию автоматизированной системы управления (АСУ).

Первый из них, широко использовавшийся в 80-е годы и потому получивший название классического (традиционного), связан с автоматизацией документооборота (совокупность документов, движущихся в процессе работы предприятия). Исходными и выходными координатами являлись документы, как это видно из примера1.

Использовался следующий тезис. Данные менее подвижны, чем алгоритмы, поэтому следует создать универсальную БД, которую затем можно использовать для любого алгоритма. Однако вскоре выяснилось, что создание универсальной БД проблематично. Господствовавшая до недавнего времени концепция интеграции данных при резком увеличении их объема оказалась несостоятельной. Более того, стали появляться приложения (например, текстовые, графические редакторы), базирующиеся на широко используемых стандартных алгоритмах.

К 90-м годам сформировался второй, современный подход , связанный с автоматизацией управления. Он предполагает первоначальное выявление стандартных алгоритмов приложений (алгоритмов бизнеса в зарубежной терминологии), под которые определяются данные, а стало быть, и база данных. Объектно-ориентированное программирование только усилило значимость этого подхода.

В работе БД возможен одно- и многопользовательский (несколько пользователей подключаются к одному компьютеру через разные порты) режимы.

Используют восходящее и нисходящее проектирование БД. Первое применяют в распределенных БД при интеграции спроектированных локальных баз данных, которые могут быть выполнены с использованием различных моделей данных. Более характерным для централизованных БД является нисходящее проектирование.

3. ЭТАПЫ ПРОЕКТИРОВАНИЯ БАЗ ДАННЫХ

Проектирование баз данных происходит в четыре этапа.

На этапе формулирования и анализа требований устанавливаются цели организации, определяются требования к БД. Они состоят из общих требований, определенных в разделе 1, и специфических требований. Для формирования специфических требований обычно используется методика интервьюирования персонала различных уровней управления. Все требования документируются в форме, доступной конечному пользователю и проектировщику БД.

Этап концептуального проектирования заключается в описании и синтезе информационных требований пользователей в первоначальный проект БД. Исходными данными могут быть совокупность документов пользователя при классическом подходе или алгоритмы приложений (алгоритмы бизнеса) при современном подходе. Результатом этого этапа является высокоуровневое представление (в виде системы таблиц БД) информационных требований пользователей на основе различных подходов.

Сначала выбирается модель БД. Затем создается структура БД, которая заполняется данными с помощью систем меню, экранных форм или в режиме просмотра таблиц БД. Здесь же обеспечивается защита и целостность (в том числе ссылочная) данных с помощью СУБД или путем построения триггеров.

В процессе логического проектирования высокоуровневое представление данных преобразуется в структуру используемой СУБД. Основной целью этапа является устранение избыточности данных с использованием специальных правил нормализации. Цель нормализации – минимизировать повторения данных и возможные структурные изменения БД при процедурах обновления. Это достигается разделением (декомпозицией) одной таблицы в две или несколько с последующим использованием при запросах операции навигации. Заметим, что навигационный поиск снижает быстродействие БД, т.е. увеличивает время отклика на запрос. Полученная логическая структура БД может быть оценена количественно с помощью различных характеристик (число обращений к логическим записям, объем данных в каждом приложении, общий объем данных). На основе этих оценок логическая структура может быть усовершенствована с целью достижения большей эффективности.

Лекция

Проектирование БД.

Модели многоуровневой архитектуры систем баз данных. Средства автоматизации проектирования

1. Модели многоуровневой архитектуры систем баз данных

В области проектирования и разработки систем баз данных используются различные средства моделирования, причем даже в рамках одной конкретной системы необходим целый комплекс моделей разного назначения.

Опубликованный в 1975 году отчет ANSI/X3/SPARC зафиксировал не только широкое признание концепций многоуровневой архитектуры систем баз данных, но и необходимость явного выделения специального концептуального уровня представления базы данных, единого для всех ее приложений и независимого от них. Кроме этого уровня предусматривались еще два уровня: внутренний уровень, который должен обеспечивать поддержку представления хранимой базы данных, и внешний, поддерживающий представления базы данных “с точки зрения” приложений. На каждом архитектурном уровне предполагалось использование той или иной модели данных. Кроме того, на внешнем (прикладном, пользовательском) уровне таких моделей может быть несколько. Модели, а также схемы, специфицируемые на их основе, называются, соответственно, внешней, концептуальной и внутренней.

Как очевидно конечной целью проектирования является построение конкретной базы данных, в той или иной степени воплощающей представление проектировщика о предметной области и задачах, решаемых пользователями с использованием созданной базы. Рассматривая базу данных как конкретную реализацию модели , мы по существу устанавливаем порядок процесса, отделяя этап определения принципов (то, какой база должна быть) от этапа воплощения этих принципов при реализации базы данных в конкретной среде СУБД, ОС и языках программирования. И, как показывает практика, между реализациями баз данных и принципами их построения всегда есть расхождения. Различия являются следствием разных причин, но чаще всего - это явный или неявный отказ от некоторых принципиальных ограничений, налагаемых, например, моделью данных или базовыми (встроенными) алгоритмами обработки, в пользу частного решения, которое, по мнению проектировщика, будет более эффективно, например, для понимания или обработки данных.

Важность отделения проектирования на абстрактном уровне от физической реализации состоит в том что, объявляя принципы, мы конструктивно ограничиваем область применения. Во-первых, размерность и сложность задачи должна быть сокращена до такого уровня, чтобы реализация стала возможной в данных конкретных условиях – ресурсах среды, профессионализме проектировщика, подготовленности пользователя и т.д. Во-вторых, поскольку база данных по определению предназначена для многофункционального использования различными пользователями, и в тоже время - для обслуживания запросов, не предвиденных при проектировании, такое явное объявление принципов позволит не вводить в заблуждение пользователя и не создавать приложения для решения задач, которые в силу своего принципиального отличия от тех, которые рассматривались при проектировании, обусловят неэффективную обработку данных . В-третьих, проектирование – это процесс своеобразного согласования точек зрения двух основных субъектов: пользователя и проектировщика базы данных. Для пользователя характерны требования высокой степени общности и широты представления (и не громоздкость детальных описаний), позволяющих ему получить достаточно сведений без затраты значительных временных или интеллектуальных ресурсов. Для администратора, выполняющего проектирование и оптимизацию системы баз данных, необходима высокая степень детализации и формализации, обеспечивающих обоснованность технических решений, а также возможность автоматизации проектирования.

7.2. Типология моделей

Основные отличия любых методов представления информации заключаются в том, каким способом фиксируется семантика предметной области. Но, следует особо отметить, что для всех уровней и для любого метода представления предметной области (но для нас важно, что в контексте создания и использования машинных баз данных ) в основе отображения (т.е., собственно формирования представления) лежит кодирование понятий и отношений между понятиями. Многоуровневая система моделей представления информации иллюстрируется слайдами 2, 3, 4 (Типология моделей) .

Ключевым этапом при разработке любой информационной системы является проведение системного анализа: формализация предметной области и представление системы как совокупности компонент. Системный анализ позволяет, с одной стороны лучше понять «что надо делать» и «кому надо делать» (аналитику, разработчику, руководителю, пользователю), а с другой - отслеживать во времени изменения рассматриваемой модели и обновлять проект.

Декомпозиция, как основа системного анализа, может быть функциональной (построение иерархий функций) или объектной.

Однако в большинстве систем, если говорить, например, о базах данных, типы данных являются более статичным элементом, чем способы их обработки. Поэтому получили интенсивное развитие такие методы системного анализа, как диаграммы массивов данных (Data Flow Diagram). Развитие реляционных баз данных в свою очередь стимулировало развитие методик построения моделей данных, и в частности, ER -диаграмм (Entity Relationship Diagram ). Но и функциональная декомпозиция и диаграммы данных дают только некоторый срез исследуемой предметной области, но не позволяют получить представление системы в целом.

Различаются и методы отображения, используемые на этапе построения даталогических моделей, отражающих способ идентификации элементов и связей, но, что особенно важно, в контексте их будущего представления в одномерном пространстве памяти вычислительной машины. Модели подразделяются на фактографические - ориентированные на представление хорошо структурированной информации, и документальные - представляющие наиболее распространенный способ отражения слабоструктурированной информации. Если в первом случае говорят о реляционной, иерархической или сетевой моделях данных, то во втором – о семантических сетях и документальных моделях. Хотя, разделение на фактографические и документальные в этой группе моделей является достаточно условным. Документ, как последовательность полей может быть представлен, в том числе, и реляционной моделью. И в этом случае выбор специализированного решения чаще всего обуславливается требованием общей эффективности.

При проектировании информационных систем свойства объектов (их характеристики) задаются атрибутами. Именно значения атрибутов позволяют выделить в предметной области как различные объекты (типы объектов), так и среди объектов одного типа – их различные экземпляры. Представление атрибутов удобнее всего моделируетсятеоретико-множественными отношениями. Отношение наглядно представляется как таблица, где каждая строка – кортеж отношения, а каждый столбец (домен) представляет множество значений атрибута. Список имен атрибутов отношения образует схему отношения, а совокупность схем отношений, ис­пользуемых для представления БД, в свою очередь образует схему базы данных.

Представление схем БД в виде схем отношений упрощает процедуру проектирования БД. Этим объясняется создание си стем, в которых проектирование БД ведется в терминах реляционной модели данных, а работа с БД поддерживается СУБД одного из описанных в данном пособии типов.

Модель данных должна, так или иначе, дать основу для описания данных и манипулирования данными, а также дать средства анализа и синтеза структур данных. Любая модель, построенная более или менее аккуратно с точки зрения математики, сама создает объекты для исследования и начинает жить как бы параллельно с практикой.

Реляционная модель дан ных в качестве основы отображения непосредственно использует понятие отношения. Она ближе всего находится к так называемой концептуальной модели предметной среды и часто лежит в основе последней.

В отличие от теоретико-графовых моделей в реляционной модели связи между отношениями реализуются неявным образом, для чего используются ключи отношений . Например, отношения иерархического типа реализуется механизмом первичных / внешних ключей, когда в подчиненном отношении должен присутствовать набор атрибутов, связывающих это отношение с основным. Такой набор атрибутов в основном отношении будет называться первичным ключом, а в подчиненном – вторичным.

Прогресс в области разработки языков программирования, связанный, в первую очередь с типизацией данных и появлением объектно-ориентированных языков, позволил подойти к анализу сложных систем с точки зрения иерархических представлений - классам объектов со свойствами инкапсуляции, наследования и полиморфизма, схемы которых отображают не только данные и их взаимосвязи, но и методы обработки данных.

В этом смысле объектно-ориентированный подход является гибридным методом и позволяет получить более естественную формализацию системы в целом. В итоге это позволяет снизить существующий барьер между аналитиками и разработчиками (проектировщиками и программистами), повысить надежность системы и упростить сопровождение, в частности, интеграцию с другими системами.

7.3. Этапы проектирования и объекты моделирования

Проектирование базы данных - это упорядоченный формализованный процесс создания системы взаимосвязанных описаний, т.е. таких моделей предметной области, которые связывают (фиксируют) хранимые в базе данные с объектами предметной области, описываемыми этими данными. Прикладное назначение таких описаний состоит в том, чтобы пользователь, практически не имеющий представления об организации данных в БД (физическом размещении в памяти данных и механизмах их поиска), обращая запрос к базе, имел бы практическую возможность получить адекватную информацию о состоянии объекта предметной области. (Слайд 5 - Стадии и объекты)

Проектирование начинается с анализа предметной области и выявления функциональных и других требований к проектируемой системе. Подробнее этот процесс будет рассмотрен ниже, а здесь отметим, что проектирование обычно выполняется человеком (группой людей) – системным аналитиком (а на практике чаще администратором базы данных), которым может быть как специально выделенный сотрудник, так и будущий пользователь базы данных, достаточно хорошо знакомый с машинной обработкой данных.

Объединяя отдельные представления о содержимом базы данных, полученные в результате опроса пользователей, и свои представления о данных, которые могут потребоваться для решения практических задач, системный аналитик сначала создает обобщенное неформальное описание создаваемой базы данных. Это описание, выполненное с использованием естественного языка, математических выражений, таблиц, графов и других средств, понятных всем людям, работающим над проектированием базы данных, называют инфологической моделью.

Такая человеко-ориентированная модель практически полностью независима от физических параметров среды хранения данных, которой может быть как память человека, так и ЭВМ. Поэтому инфологическая модель не изменяется до тех пор, пока какие-то изменения в реальном мире (той его части, которая отнесена к предметной области) не потребуют изменения в модели соответствующего фрагмента описания, чтобы эта модель продолжала адекватно отражать предметную область.

Остальные модели являются машинно-ориентированными. С их помощью СУБД дает возможность программам и пользователям осуществлять доступ к хранимым данным лишь по их именам, не заботясь о физическом расположении этих данных.

Так как доступ к данным осуществляется с помощью конкретной СУБД, то модели должны быть представлены на языке описания данных этой СУБД. Такое описание, создаваемое по инфологической модели данных, называют даталогической моделью данных.

Для размещения и поиска данных на внешних запоминающих устройствах СУБД использует физическую модель данных.

Представленная трехуровневая архитектура (инфологический, даталогический и физический уровни) позволяет обеспечить независимость хранимых данных от использующих их программ. Хранимые данные могут быть переписаны на другие носители или может быть реорганизована их физическая структура, в том числе дополнена полями для новых приложений, но это повлечет лишь изменение физической и, возможно, даталогической модели данных. Главное, такие изменения физической и даталогической моделей не будут замечены пользователями системы (окажутся "прозрачными" для них). Кроме того, независимость данных обеспечивает возможность создания новых приложений для решения новых задач без разрушения существующих.

Приведенная цитата (Слайд 6 ) по-прежнему актуальна, хотя книга издана более 20 лет назад. Действительно, средства проектирования непрерывно развиваются, но и задачи, решение которых пользователь предполагает автоматизировать с помощью систем баз данных, существенно усложнились и для эффективного применения средств формализации и автоматизации необходимо понимать природу системы моделей.

С точки зрения объектов моделирования необходимо различать модели предметной области и модели базы данных. Эти модели взаимосвязаны, поскольку представляют собой образы одного и того же оригинала – некоторого множества предметов реального мира, информацию о которых мы предполагаем хранить и обрабатывать с помощью проектируемой БД. Характер взаимосвязей (и, соответственно, отличий) проявляется и в процессе проектирования системы баз данных. Модель предметной области скорее ассоциируется с неформальным уровнем семантического моделирования, а модель базы данных – с формализованным уровнем системы (и в частности, СУБД).

Разнообразие моделей связано также и с различием используемых парадигм моделирования, по существу определяющих способ представления взаимосвязи объектов на уровне структур данных . С этой точки зрения, различаются реляционные, сетевые, иерархические, объектные, объектно-реляционные, документальные и другие виды моделей. Соответственно различаются и описываемые их средствами схемы баз данных.

7.4. Подходы к проектированию базы данных

Можно выделить два основных подхода к проектированию баз данных: нисходящий и восходящий (слайд 7)

При восходящем подходе работа начинается с самого нижнего уровня атрибутов (т.е. свойств сущностей и связей), которые на основе анализа существующих между ними связей группируются в отношения, пред ставляющие типы сущностей и связи между ними. Далее будет подробно рассмотрен процесс нормализации отношений, который представляет собой вариант восходя щего подхода при проектировании баз данных. Нормализация предусматривает создание норма лизованных отношений, основанных на функциональных зависимостях между выделенными атрибутами.

Восходящий подход в наибольшей степени приемлем для проектирования простых баз данных с относительно небольшим количеством атрибутов. Однако использование этого подхода существенно усложняется при проектировании баз данных с большим количеством атрибутов, установить среди которых все суще­ ствующие функциональные зависимости затруднительно. Поскольку концептуальная и логическая модели данных для сложных баз данных могут содержать от сотен до тысяч атрибутов, очень важно выбрать подход, который помог бы упростить этап проектирования. Кроме того, на начальных стадиях формулирования требований к данным бывает труд но установить все атрибуты , которые должны быть включены в модель данных.

Более подходящей стратегией проектирования сложных баз данных является использование нисходящего подхода, который предопределяет приоритетность разработки концептуальной модели ПрО. Эта модель содержит несколько высокоуровневых сущностей и связей, которые уточняются (детализируются и расширяются) до тех пор, пока не будут выявлены все объекты, их атрибуты и связи между ними, отражающие специфику задач конкретной ПрО.

Восходящий подход часто, например, в случае сложных ПрО, представляет собой очень неудобный процесс для самого проектировщика. Более того, здесь проявляется ограниченность реляционной модели , в частности:(слайд 8)

- реляционная модель не предоставляет достаточных средств для фиксации смысла данных, т.е. семантика предметной области не фиксируется непосредственно в отношениях;

- для многих приложений трудно моделировать предметную область на основе плоских таблиц;

- хотя весь процесс проектирования происходит на основе учета зависимостей, реляционная модель не имеет средств представления (отражения семантики) этих зависимостей;

- несмотря на то, что процесс проектирования начинается с выделения некоторых существенных для приложения объектов предметной области ("сущностей") и выявления связей между этими сущностями, реляционная модель данных не предлагает какого-либо аппарата для различения сущностей и связей.

Кроме этих подходов для проектирования могут применяться другие подходы, например, подход «от общего к частному» или «смешанная стратегия проектирования». Подход «от общего к частному » напоминает нисхо дящий подход, но отличается от него тем, что вначале выявляется набор основ ных сущностей с последующим расширением круга рассматриваемых сущностей, связей и атрибутов, которые взаимодействуют с первоначально определенными сущностями. В смешанной стратегии сначала используются восходящий и нис ходящий подходы для создания разных частей модели, после чего все фрагменты собираются в единое целое.

Забегая несколько вперед, отметим взаимосвязь двух известных методов моделирования инфологического уровня - ER -диаграммы и метод нормализации, воспринимаемых зачастую как альтернативные. На самом деле нормализация с помощью хорошо формализованных методов обеспечивает декомпозицию исходных отношений (переменных) большой размерности к возможно большему набору отношений, но меньшей размерности. Эти методы не зависят от особенностей предметной области , но вследствие этого и не позволяют определить исходное отношение и, соответственно, семантику обрабатываемых данных. Для этого удобнее использовать методики, подобные ER -диаграммам - для них свойственны подходы технологии нисходящего проектирования, и которые дают представление «в целом», но именно поэтому (из-за сравнительной простоты) не позволяют провести полноценное проектирование базы.То есть, можно сказать, что метод нормализации и ER -диаграммы по существу являются взаимодополняющими.

7.5. Инфологические модели (системный анализ) предметной области

Базы данных сами по себе представляют относительную ценность. Базы данных это всегда важнейшая, но только одна из составляющих некоторой информационной системы. И надо отметить, что любая ИС, предназначенная, например, для оперативного управления предприятием или архивного хранения и поиска документов – это не только программы, данные и коммуникации, но также и люди (заказчики, пользователи, аналитики, разработчики), организационные структуры, а также цели, стимулы работы предприятия или отдельных людей. И все эти компоненты должны быть понятным как проектировщику, так и пользователю, а, кроме того, непротиворечивым образом соединены в одну систему.

Главная идея процесса такого согласования состоит в том, что его надо начинать с анализа самых главных характеристик предметной области, рассматривая самые главные содержательные аспекты. И проводить его не "мысленно" и не "на словах", а на явно изложенных описаниях (моделях) объектов предметной области, позволяющих видеть все существенные взаимосвязи. Но следует отметить, что попытки использования привычных нотаций формальных моделей (структурных, объектных или каких либо других) на этом этапе приводят к более низкому (более детальному и в тоже время ограниченному) уровню представления предметной области, чем это необходимо для общего понимания.

В общем случае существуют два подхода к определению состава и структуры предметной области.(Слайд 9 Функциональный – объектный подходы)

Функциональный подход предполагает, что проектирование начинается с анализа задач и, соответственно, функций, обеспечивающих реализацию информационных потребностей.

При объектном (предметном) подходе информационные потребности пользователей (задачи) жестко не фиксируются, а основное внимание сосредотачивается на выделении существенных объектов – предметов и связей, информация о которых может быть использована в прикладных задачах пользователя.

Условность такого деления достаточно очевидна, поэтому на практике используются компромиссные варианты, предполагающие по мере развития системы расширение как состава объектов, так и спектра прикладных задач.

Цель системного анализа предметной области как этапа проектирования – выделить предметную область как систему объектов и их взаимосвязей, определив при этом функционально-информационные требования к их последующему представлению в виде системы взаимосвязанных данных.

Главным результатом этапа системного анализа является определение парадигмы информационной (инфологической) модели: требования к средствам представления системы определяются на основании анализа уровня структурированности информации и характера восприятия ее семантики пользователем (точная/приблизительная, четкая/неопределенная).

Например, выбор атрибутивной формы представления объектов предметной области приведет, соответственно, к выбору парадигмы фактографических баз данных , а вербальной - к необходимости выбора документальных БД . В дальнейшем изложении процесс и средства проектирования мы будем рассматривать только для случая фактографических баз данных, использующих реляционную модель.

Полученный результат - концептуальная схема базы данных (в терминах семантической модели) затем преобразуется к реляционной схеме.

7.6. Даталогические модели

Задачей следующей стадии проектирования системы базы данных является выбор подходящей СУБД и отображение в ее среду (структур данных) спецификаций инфологической модели предметной области. Другими словами, модель предметной области разрабатываемой системы должна быть представлена в терминах модели данных концептуального уровня выбранной конкретной СУБД. Эту стадию называют логическим (или даталогическим) проектированием базы данных, а ее результатом является концептуальная схема базы данных, включающая определение всех информационных элементов (единиц) и связей, в том числе задание типов, характеристик и имен.

Хотя даталогическое проектирование оперирует не физическими записями, а логическими понятиями, связанными со структурой базы данных, тем не менее, особенности представления данных, правила и языки агрегирования и манипулирования данными имеют определяющее влияние. Не все виды связей, например, «многие ко многим», могут быть непосредственно отображены в логической модели.

Кроме того, может быть много вариантов отображения инфологической модели предметной области в даталогическую модель базы. Здесь следует учитывать влияние двух следующих значимых факторов, связанных с практикой разработки базы данных.

Во-первых, связи предметной области могут отображаться двумя путями, как декларативным - в логической схеме, так и процедурным – отработкой связей через программные модули, обрабатывающие (связывающие) соответствующие хранимые данные.

Во-вторых, существенным фактором может оказаться характер обработки информации. Например, частые обращения к совместно обрабатываемым данным очевидно предполагают их совместное хранение, а данные (особенно большой размерности), к которым обращаются редко, целесообразно хранить отдельно от часто используемых.

7.7. Физические модели

Стадия физического проектирования базы данных в общем случае включает:

- выбор способа организации базы данных;

- разработку спецификации внутренней схемы средствами модели данных ее внутреннего уровня;

- описание отображения концептуальной схемы во внутреннюю.

Важно заметить, что в отличие от ранних СУБД, многие современные системы не предоставляют разработчику какого-либо выбора на этой стадии. Реально к вопросам проектирования физической модели можно отнести выбор схемы размещения данных (разделение по файлам или тип RAID -массива) и определение числа и типа индексов (например, кластеризованный или некластеризованный в случае MS SQL Server ).

Способ хранения базы данных определяется механизмами СУБД автоматически “по умолчанию” на основе спецификаций концептуальной схемы базы данных, и внутренняя схема в явном виде в таких системах не используется.

Следует также отметить, что внешние схемы базы данных обычно конструируются на стадии разработки приложений.

7.8. Средства автоматизации проектирования

Формализованные знания о предметной области в общем случае могут быть представлены в виде текстовых описаний: наборов должностных инструкций, правил ведения дел и т.п. Однако текстовый способ представления модели предметной области не эффективен. Более информативным и полезным при разработке баз данных и информационных систем являются описания предметной области, выполненные при помощи специализированных графических нотаций, реализующих методики представления знаний о предметной области. Наиболее известными на сегодняшний день являются методика структурного анализа SADT (Structured Analysis and Design Technique ) и основанная на ней нотация IDEF 0, диаграммы массивов данных, методика объектно-ориентированного анализа UML (Unified Modeling Language ) и др. Любая из этих моделей описывает, с одной стороны, процессы, происходящие в предметной области, а с другой – данные, используемые этими процессами.

Наиболее полная система моделей, на которую опираются методики функционального, информационного и поведенческого моделирования ПрО, представлена в семействе стандартов IDEF (Integrated DEFinition )(слайд 10).

Методология концептуального проектирования, основанная на наглядной графической технике, предоставила в распоряжение разработчиков информационных систем строгие формализованные методы описания ИС и принимаемых технических решений. Эти модели по существу представляют собой систему соглашений, обеспечивающих взаимопонимание бизнес-аналитика, представляющего реалии предметной области, и программиста (или программного средства), создающего модель данных для отражения состояния этой ПрО. Если соглашения в точности будут реализованы в программных продуктах, основанных на этой методологии, то такая автоматизированная система, умеющая «читать» разработанные аналитиком модели, позволит контролировать синтаксис модели и в итоге сгенерировать схему данных.

Вслед за методологией концептуального проектирования появились специализированные программно-технологические средства специального класса - CASE-средства, реализующие технологию создания и сопровождения ИС.

CASE-технология представляет собой методологию проектирования ИС, а также набор инструментальных средств, позволяющих в наглядной форме моделировать предметную область, анализировать эту модель на всех этапах разработки и сопровождения ИС и разрабатывать приложения в соответствии с информационными потребностями пользователей.

CASE-средства в соответствии с их функциональной ориентацией на те или иные процессы жизненного цикла ИС можно подразделить на следующие группы (слайд 11 – СА SE ).


Применяемые формальные языки представления предметной области не позволяют описывать все отношения, которые проектировщик считает важными. С другой стороны, многие проекты (и, в частности, рассматриваемые примеры ) воспринимаются как достаточно простые, а проектные решения кажутся очевидными. Кроме того, опытный программист всегда может предложить некоторый эмпирический и, возможно, действительно эффективный способ для целевого представления и обработки нужной информации.Однако это означает отказ от единого формализма, что при увеличении количества данных и связей значительно усложняет проблемы управления базой и в частности – понимание пользователем организации и методов доступа.

Правильнее было бы говорить о неформализованности , связанной с невозможностью обоснованного однозначного выбора (из реально существующих) объектов средств, используемых для моделирования.

Следуя принципам, описанным в этой статье, можно создать базу данных, которая работает надлежащим образом и в будущем может быть адаптирована под новые требования. Мы рассмотрим основные принципы проектирования базы данных , а также способы ее оптимизации.

Процесс проектирования базы данных

Надлежащим образом структурированная база данных:

Разработка БД включает в себя следующие этапы:

  1. Анализ требований или определение цели базы данных;
  2. Организация данных в таблицах;
  3. Указание первичных ключей и анализ связей;
  4. Нормализация таблиц.

Рассмотрим каждый этап проектирования баз данных подробнее. Обратите внимание, что в этом руководстве рассматривается реляционная модель базы данных Эдгара Кодда , написанная на языке SQL (а не иерархическая, сетевая или объектная модели ).

Анализ требований: определение цели базы данных

Например, если вы создаете базу данных для публичной библиотеки, нужно продумать, каким образом и читатели, и библиотекари должны получать доступ к БД .

Вот несколько способов сбора информации перед созданием базы данных:

  • Опрос людей, которые будут ее использовать;
  • Анализ бизнес-форм, таких как счета-фактуры, расписания, опросы;
  • Рассмотрение всех существующих систем данных (включая физические и цифровые файлы ).

Начните со сбора существующих данных, которые будут включены в базу. Затем определите типы данных, которые нужно сохранить. А также объекты, которые описывают эти данные. Например:

Клиенты

  • Адрес;
  • Город, штат, почтовый индекс;
  • Адрес электронной почты.

Товары

  • Название;
  • Цена;
  • Количество в наличии;
  • Количество под заказ.

Заказы

  • Номер заказа;
  • Торговый представитель;
  • Дата;
  • Товар;
  • Количество;
  • Цена;
  • Стоимость.

При проектировании реляционной базы данных эта информация позже станет частью словаря данных, в котором описаны таблицы и поля БД . Разбейте информацию на минимально возможные части. Например, подумайте о том, чтобы разделить поле почтового адреса и штата, чтобы можно было фильтровать людей по штату, в котором они проживают.

После того, как вы определились с тем, какие данные будут включены в базу, откуда эти данные будут поступать, и как они будут использоваться, можно приступить к планированию фактической БД .

Структура базы данных: построение блоков

Следующим шагом будет визуальное представление базы данных. Для этого нужно точно знать, как структурируются реляционные БД . Внутри базы связанные данные группируются в таблицы, каждая из которых состоит из строк и столбцов.

Чтобы преобразовать списки данных в таблицы, начните с создания таблицы для каждого типа объектов, таких как товары, продажи, клиенты и заказы. Вот пример:

Каждая строка таблицы называется записью. Записи включают в себя информацию о чем-то или о ком-то, например, о конкретном клиенте. Столбцы (также называемые полями или атрибутами) содержат информацию одного типа, которая отображается для каждой записи, например, адреса всех клиентов, перечисленных в таблице.

Чтобы при проектировании модели базы данных обеспечить согласованность разных записей, назначьте соответствующий тип данных для каждого столбца. К общим типам данных относятся:

  • CHAR — конкретная длина текста;
  • VARCHAR — текст различной длины;
  • TEXT — большой объем текста;
  • INT — положительное или отрицательное целое число;
  • FLOAT , DOUBLE — числа с плавающей запятой;
  • BLOB — двоичные данные.

Некоторые СУБД также предлагают тип данных Autonumber , который автоматически генерирует уникальный номер в каждой строке.

В визуальном представлении БД каждая таблица будет представлена блоком на диаграмме. В заголовке каждого блока должно быть указано, что описывают данные в этой таблице, а ниже должны быть перечислены атрибуты:


При проектировании информационной базы данных необходимо решить, какие атрибуты будут служить в качестве первичного ключа для каждой таблицы, если таковые будут. Первичный ключ (PK ) — это уникальный идентификатор для данного объекта. С его помощью вы можете выбрать данные конкретного клиента, даже если знаете только это значение.

Атрибуты, выбранные в качестве первичных ключей, должны быть уникальными, неизменяемыми и для них не может быть задано значение NULL (они не могут быть пустыми ). По этой причине номера заказов и имена пользователей являются подходящими первичными ключами, а номера телефонов или адреса — нет. Также можно использовать в качестве первичного ключа несколько полей одновременно (это называется составным ключом ).

Когда придет время создавать фактическую БД , вы реализуете как логическую, так и физическую структуру через язык определения данных, поддерживаемый вашей СУБД .

Также необходимо оценить размер БД , чтобы убедиться, что можно получить требуемый уровень производительности и у вас достаточно места для хранения данных.

Создание связей между сущностями

Теперь, когда данные преобразованы в таблицы, нужно проанализировать связи между ними. Сложность базы данных определяется количеством элементов, взаимодействующих между двумя связанными таблицами. Определение сложности помогает убедиться, что вы разделили данные на таблицы наиболее эффективно.

Каждый объект может быть взаимосвязан с другим с помощью одного из трех типов связи:

Связь «один-к одному»

Когда существует только один экземпляр объекта A для каждого экземпляра объекта B, говорят, что между ними существует связь «один-к одному » (часто обозначается 1:1 ). Можно указать этот тип связи в ER-диаграмме линией с тире на каждом конце:


Если при проектировании и разработке баз данных у вас нет оснований разделять эти данные, связь 1:1 обычно указывает на то, что в лучше объединить эти таблицы в одну.

Но при определенных обстоятельствах целесообразнее создавать таблицы со связями 1:1 . Если есть поле с необязательными данными, например «описание», которое не заполнено для многих записей, можно переместить все описания в отдельную таблицу, исключая пустые поля и улучшая производительность базы данных.

Чтобы гарантировать, что данные соотносятся правильно, в нужно будет включить, по крайней мере, один идентичный столбец в каждой таблице. Скорее всего, это будет первичный ключ.

Связь «один-ко-многим»

Эта связи возникают, когда запись в одной таблице связана с несколькими записями в другой. Например, один клиент мог разместить много заказов, или у читателя может быть сразу несколько книг, взятых в библиотеке. Связи «один- ко-многим » (1:M ) обозначаются так называемой «меткой ноги вороны», как в этом примере:


Чтобы реализовать связь 1:M , добавьте первичный ключ из «одной » таблицы в качестве атрибута в другую таблицу. Если первичный ключ таким образом указан в другой таблице, он называется внешним ключом. Таблица со стороны связи «1 » представляет собой родительскую таблицу для дочерней таблицы на другой стороне.

Связь «многие-ко-многим»

Когда несколько объектов таблицы могут быть связаны с несколькими объектами другой. Говорят, что они имеют связь «многие-ко-многим » (M:N ). Например, в случае студентов и курсов, поскольку студент может посещать много курсов, и каждый курс могут посещать много студентов.

На ER-диаграмме эти связи отображаются с помощью следующих строк:


При проектировании структуры базы данных реализовать такого рода связи невозможно. Вместо этого нужно разбить их на две связи «один-ко-многим ».

Для этого нужно создать между этими двумя таблицами новую сущность. Если между продажами и продуктами существует связь M:N , можно назвать этот новый объект «sold_products », так как он будет содержать данные для каждой продажи. И таблица продаж, и таблица товаров будут иметь связь 1:M с sold_products . Этот вид промежуточного объекта в различных моделях называется таблицей ссылок, ассоциативным объектом или таблицей связей.

Каждая запись в таблице связей будет соответствовать двум сущностям из соседних таблиц. Например, таблица связей между студентами и курсами может выглядеть следующим образом:


Обязательно или нет?

Другим способом анализа связей является рассмотрение того, какая сторона связи должна существовать, чтобы существовала другая. Необязательная сторона может быть отмечена кружком на линии. Например, страна должна существовать для того, чтобы иметь представителя в Организации Объединенных Наций, а не наоборот:


Два объекта могут быть взаимозависимыми (один не может существовать без другого ).

Рекурсивные связи

Иногда при проектировании базы данных таблица указывает на себя саму. Например, таблица сотрудников может иметь атрибут «руководитель», который ссылается на другое лицо в этой же таблице. Это называется рекурсивными связями.

Лишние связи

Лишние связи — это те, которые выражены более одного раза. Как правило, можно удалить одну из таких связей без потери какой-либо важной информации. Например, если объект «ученики » имеет прямую связь с другим объектом, называемым «учителя », но также имеет косвенные отношения с учителями через «предметы », нужно удалить связь между «учениками » и «учителями ». Так как единственный способ, которым ученикам назначают учителей — это предметы.

Нормализация базы данных

После предварительного проектирования базы данных можно применить правила нормализации, чтобы убедиться, что таблицы структурированы правильно.

В то же время не все базы данных необходимо нормализовать. В целом, базы с обработкой транзакций в реальном времени (OLTP ), должны быть нормализованы.

Базы данных с интерактивной аналитической обработкой (OLAP ), позволяющие проще и быстрее выполнять анализ данных, могут быть более эффективными с определенной степенью денормализации. Основным критерием здесь является скорость вычислений. Каждая форма или уровень нормализации включает правила, связанные с нижними формами.

Первая форма нормализации

Первая форма нормализации (сокращенно 1NF ) гласит, что во время логического проектирования базы данных каждая ячейка в таблице может иметь только одно значение, а не список значений. Поэтому таблица, подобная той, которая приведена ниже, не соответствует 1NF :


Возможно, у вас возникнет желание обойти это ограничение, разделив данные на дополнительные столбцы. Но это также противоречит правилам: таблица с группами повторяющихся или тесно связанных атрибутов не соответствует первой форме нормализации. Например, приведенная ниже таблица не соответствует 1NF :


Вместо этого во время физического проектирования базы данных разделите данные на несколько таблиц или записей, пока каждая ячейка не будет содержать только одно значение, и дополнительных столбцов не будет. Такие данные считаются разбитыми до наименьшего полезного размера. В приведенной выше таблице можно создать дополнительную таблицу «Реквизиты продаж », которая будет соответствовать конкретным продуктам с продажами. «Продажи » будут иметь связь 1:M с «Реквизитами продаж ».

Вторая форма нормализации

Вторая форма нормализации (2NF ) предусматривает, что каждый из атрибутов должен полностью зависеть от первичного ключа. Каждый атрибут должен напрямую зависеть от всего первичного ключа, а не косвенно через другой атрибут.

Например, атрибут «возраст » зависит от «дня рождения », который, в свою очередь, зависит от «ID студента », имеет частичную функциональную зависимость. Таблица, содержащая эти атрибуты, не будет соответствовать второй форме нормализации.

Кроме этого таблица с первичным ключом, состоящим из нескольких полей, нарушает вторую форму нормализации, если одно или несколько полей не зависят от каждой части ключа.

Таким образом, таблица с этими полями не будет соответствовать второй форме нормализации, поскольку атрибут «название товара » зависит от идентификатора продукта, но не от номера заказа:

  • Номер заказа (первичный ключ );
  • ID товара (первичный ключ );
  • Название товара.

Третья форма нормализации

Третья форма нормализации (3NF ) : каждый не ключевой столбец должен быть независим от любого другого столбца. Если при проектировании реляционной базы данных изменение значения в одном не ключевом столбце вызывает изменение другого значения, эта таблица не соответствует третьей форме нормализации.

В соответствии с 3NF , нельзя хранить в таблице любые производные данные, такие как столбец «Налог », который в приведенном ниже примере, напрямую зависит от общей стоимости заказа:


В свое время были предложены дополнительные формы нормализации. В том числе форма нормализации Бойса-Кодда , четвертая-шестая формы и нормализации доменного ключа, но первые три являются наиболее распространенными.

Многомерные данные

Некоторым пользователям может потребоваться доступ к нескольким разрезам одного типа данных, особенно в базах данных OLAP. Например, им может потребоваться узнать продажи по клиенту, стране и месяцу. В этой ситуации лучше создать центральную таблицу, на которую могут ссылаться таблицы клиентов, стран и месяцев. Например:


Правила целостности данных

Также с помощью средств проектирования баз данных необходимо настроить БД с учетом возможности проверки данных на соответствие определенным правилам. Многие СУБД , такие как Microsoft Access , автоматически применяют некоторые из этих правил.

Правило целостности гласит, что первичный ключ никогда не может быть равен NULL . Если ключ состоит из нескольких столбцов, ни один из них не может быть равен NULL . В противном случае он может неоднозначно идентифицировать запись.

Правило целостности ссылок требует, чтобы каждый внешний ключ, указанный в одной таблице, сопоставлялся с одним первичным ключом в таблице, на которую он ссылается. Если первичный ключ изменяется или удаляется, эти изменения необходимо реализовать во всех объектах, на которые ссылается этот ключ в базе данных.

Правила целостности бизнес-логики обеспечивают соответствие данных определенным логическим параметрам. Например, время встречи должно быть в пределах стандартных рабочих часов.

Добавление индексов и представлений

Индекс — это отсортированная копия одного или нескольких столбцов со значениями в возрастающем или убывающем порядке. Добавление индекса позволяет быстрее находить записи. Вместо повторной сортировки для каждого запроса система может обращаться к записям в порядке, указанном индексом.

Хотя индексы ускоряют извлечение данных, они могут замедлять добавление, обновление и удаление данных, поскольку индекс нужно перестраивать всякий раз, когда изменяется запись.

Представление — это сохраненный запрос данных. Представления могут включать в себя данные из нескольких таблиц или отображать часть таблицы.

Расширенные свойства

После проектирования модели базы данных можно уточнить БД с помощью расширенных свойств, таких как справочный текст, маски ввода и правила форматирования, которые применяются к конкретной схеме, представлению или столбцу. Преимущество этого метода заключается в том, что, поскольку эти правила хранятся в самой базе, представление данных будет согласовано между несколькими программами, которые обращаются к данным.

SQL и UML

Унифицированный язык моделирования (UML ) — это еще один визуальный способ выражения сложных систем, созданных на объектно-ориентированном языке. Некоторые из концепций, упомянутых в этом руководстве, известны в UML под разными названиями. Например, объект в UML известен, как класс.

Сейчас UML используется не так часто. В наши дни он применяется академически и в общении между разработчиками программного обеспечения и их клиентами.

Системы управления базами данных

Структура проектируемой базы данных зависит от того, какую СУБД вы используете. Некоторые из наиболее распространенных:

  • Oracle DB ;
  • MySQL ;
  • Microsoft SQL Server ;
  • PostgreSQL ;
  • IBM DB2 .

Подходящую систему управления базами данных можно выбирать исходя из стоимости, установленной операционной системы, наличия различных функций и т. д.

Перевод статьи «Database Structure and Design Tutorial » дружной командой проекта

В первой статье из цикла «Данные в WordPress» я привела обзорные сведения об использовании реляционных баз данных в WordPress: какие таблицы используются, и какие данные…

Для защиты конфиденциальных данных в MySQL 5.7 появилась возможность шифрования данных с помощью движка InnoDB. В этой статье я объясню принципы шифрования баз данных,…