Архитектура взаимодействия открытых систем. Архитектура открытых систем. Модели сети.Эталонная модель OSI

6.2. АРХИТЕКТУРА КОМПЬЮТЕРНЫХ СЕТЕЙ

ЭТАЛОННЫЕ МОДЕЛИ ВЗАИМОДЕЙСТВИЯ СИСТЕМ

Модель взаимодействия открытых систем

Для определения задач, поставленных перед сложным объектом, а также для выделения главных характеристик и параметров, которыми он должен обладать, создаются общие мо­дели таких объектов. Общая модель вычислительной сети определяет характеристики сети в целом и характеристики и функции входящих в нее основных компонентов.

Архитектура вычислительной сети - описание ее общей модели.

Многообразие производителей вычислительных сетей и сетевых программных про­дуктов поставило проблему объединения сетей различных архитектур. Для ее решения МОС разработала модель архитектуры открытых систем.

Открытая система - система, взаимодействующая с другими системами в соответствии с принятыми стандартами.

Предложенная модель архитектуры открытых систем служит базой для производите­лей при разработке совместимого сетевого оборудования. Эта модель не является неким фи­зическим телом, отдельные элементы которого можно осязать. Модель представляет собой самые общие рекомендации для построения стандартов совместимых сетевых программных продуктов. Эти рекомендации должны быть реализованы как в аппаратуре, так и в про­граммных средствах вычислительных сетей.

В настоящее время модель взаимодействия открытых систем (ВОС) является наиболее популярной сетевой архитектурной моделью. Модель рассматривает общие функции, а не специальные решения, поэтому не все реальные сети абсолютно точно ей следуют. Модель взаимодействия открытых систем состоит из семи уровней (рис. 6.15).

7-й уровень - прикладной - обеспечивает поддержку прикладных процес­сов конечных пользователей. Этот уровень определяет круг прикладных задач, реализуе­мых в данной вычислительной сети. Он также содержит все необходимые элементы сервиса для прикладных программ пользователя. На прикладной уровень могут быть вынесены некоторые задачи сетевой операционной системы.

6-й уровень -представительный - определяет синтаксис данных в модели, т.е. представление данных. Он гарантирует представление данных в кодах и форма­тах, принятых в данной системе. В некоторых системах этот уровень может быть объединен с прикладным.

5-й уровень -сеансовый - реализует установление и поддержку сеанса связи между двумя абонентами через коммуникационную сеть. Он позволяет производить обмен данными в режиме, определенном прикладной программой, или предоставляет воз­можность выбора режима обмена. Сеансовый уровень поддерживает и завершает сеанс связи.

Три верхних уровня объединяются под общим названием - процесс или прикладной процесс. Эти уровни определяют функциональные особенности вычислительной сети как прикладной системы.

4-й уровень -транспортный -обеспечивает интерфейс между процесса­ми и сетью. Он устанавливает логические каналы между процессами и обеспечивает пере­дачу по этим каналам информационных пакетов, которыми обмениваются процессы. Логические каналы, устанавливаемые транспортным уровнем, называются транспортными каналами.

Пакет - группа байтов, передаваемых абонентами сети друг другу.


Рис. 6.15. Эталонная модель архитектуры открытых систем

3-й уровень - сетевой - определяет интерфейс оконечного оборудования данных пользователя с сетью коммутации пакетов. Он также отвечает за маршрутизацию пакетов в коммуникационной сети и за связь между сетями - реализует межсетевое взаи­модействие.

Рис. 6.16. Обработка сообщений уровнями модели ВОС

Примечание. В технике коммуникаций используется термин оконечное обору­дование данных. Он определяет любую аппаратуру, подключенную к каналу связи, в системе обработки данных (компьютер, терминал, специальная аппара­тура).

2-й уровень - канальный - уровень звена данных - реализует процесс передачи информации по информационному каналу. Информационный канал - логичес­кий канал, он устанавливается между двумя ЭВМ, соединенными физическим каналом. Канальный уровень обеспечивает управление потоком данных в виде кадров, в которые упаковываются информационные пакеты, обнаруживает ошибки передачи и реализует алго­ритм восстановления информации в случае обнаружения сбоев или потерь данных.

1-й уровень - физический - выполняет все необходимые процедуры в канале связи. Его основная задача - управление аппаратурой передачи данных и подклю­ченным к ней каналом связи.

При передаче информации от прикладного процесса в сеть происходит ее обработка уровнями модели взаимодействия открытых систем (рис. 6.16). Смысл этой обработки за­ключается в том, что каждый уровень добавляет к информации процесса свой заголо­вок - служебную информацию, которая необходима для адресации сообщений и для некоторых контрольных функций. Канальный уровень кроме заголовка добавляет еще и концевик - контрольную последовательность, которая используется для проверки пра­вильности приема сообщения из коммуникационной сети.

Физический уровень заголовка не добавляет. Сообщение, обрамленное заголовками и концевиком, уходит в коммуникационную сеть и поступает на абонентские ЭВМ вычисли­тельной сети. Каждая абонентская ЭВМ, принявшая сообщение, дешифрирует адреса и оп­ределяет, предназначено ли ей данное сообщение.

При этом в абонентской ЭВМ происходит обратный процесс - чтение и отсечение за­головков уровнями модели взаимодействия открытых систем. Каждый уровень реагирует только на свой заголовок. Заголовки верхних уровней нижними уровнями не воспринима­ются и не изменяются - они "прозрачны " для нижних уровней. Так, перемещаясь по уров­ням модели ВОС, информация, наконец, поступает к процессу, которому она была адресована.

Внимание! Каждый уровень модели взаимодействия открытых систем реагирует только на свой заголовок.

Примечание. На рис. 6.16 показан процесс прохождения данных через уровни
модели. Каждый уровень добавляет свой заголовок - 3.

В чем же основное достоинство семиуровневой модели ВОС? В процессе развития и совершенствования любой системы возникает потребность изменять ее отдельные компо­ненты. Иногда это вызывает необходимость изменять и другие компоненты, что существен­но усложняет и затрудняет процесс модернизации системы.

Здесь и проявляются преимущества семиуровневой модели. Если между уровнями оп­ределены однозначно интерфейсы, то изменение одного из уровней не влечет за собой не­обходимости внесения изменений в другие уровни. Таким образом, существует относительная независимость уровней друг от друга.

Необходимо сделать и еще одно замечание относительно реализации уровней модели ВОС в реальных вычислительных сетях. Функции, описываемые уровнями модели, должны быть реализованы либо в аппаратуре, либо в виде программ.

Функции физического уровня всегда реализуются в аппаратуре. Это адаптеры, муль­типлексоры передачи данных, сетевые платы и т.д.

Функции остальных уровней реализуются в виде программных модулей - драйверов.

Модель взаимодействия для ЛВС

Для того чтобы учесть требования физической передающей среды, используемой в ЛВС, была произведена некоторая модернизация семиуровневой модели взаимодействия откры­тых систем для локальных вычислительных сетей. Необходимость такой модернизации была вызвана тем, что для организации взаимодействия абонентских ЭВМ в ЛВС использу­ются специальные методы доступа к физической передающей среде. Верхние уровни моде­ли ВОС не претерпели никаких изменений, а канальный уровень был разбит на два подуровня (рис. 6.17). Подуровень LLC (Logical Link Control ) обеспечивает управление ло­гическим звеном, т.е. выполняет функции собственно канального уровня. Подуровень MAC (Media Access Control ) обеспечивает управление доступом к среде. Основные методы управ­ления доступом к физической передающей среде будут рассмотрены в подразд. 6.3.

ПРОТОКОЛЫ КОМПЬЮТЕРНОЙ СЕТИ

Понятие протокола

Как было показано ранее, при обмене информацией в сети каждый уровень модели ВОС ре­агирует на свой заголовок. Иными словами, происходит взаимодействие между одноимен­ными уровнями модели в различных абонентских ЭВМ. Такое взаимодействие должно выполняться по определенным правилам.


Рис. 6.17. Эталонная модель для локальных компьютерных сетей

Протокол - набор правил, определяющий взаимодействие двух одно­именных уровней модели взаимодействия открытых систем в различных абонентских ЭВМ.

Протокол - это не программа. Правила и последовательность выполнения действий при обмене информацией, определенные протоколом, должны быть реализованы в програм­ме. Обычно функции протоколов различных уровней реализуются в драйверах для различ­ных вычислительных сетей.

В соответствии с семиуровневой структурой модели можно говорить о необходимости существования протоколов для каждого уровня.

Концепция открытых систем предусматривает разработку стандартов для протоколов различных уровней. Легче всего поддаются стандартизации протоколы трех нижних уров­ней модели архитектуры открытых систем, так как они определяют действия и процедуры, свойственные для вычислительных сетей любого класса.

Труднее всего стандартизовать протоколы верхних уровней, особенно прикладного, из-за множественности прикладных задач и в ряде случаев их уникальности. Если по типам структур, методам доступа к физической передающей среде, используемым сетевым техно­логиям и некоторым другим особенностям можно насчитать примерно десяток различных моделей вычислительных сетей, то по их функциональному назначению пределов не суще­ствует.

Основные типы протоколов

Проще всего представить особенности сетевых протоколов на примере протоколов каналь­ного уровня, которые делятся на две основные группы: байт-ориентированные и бит-ориен­тированные.

Байт-ориентированный протокол обеспечивает передачу сообщения по ин­формационному каналу в виде последовательности байтов. Кроме информационных байтов

в канал передаются также управляющие и служебные байты. Такой тип протокола удобен для ЭВМ, так как она ориентирована на обработку данных, представленных в виде двоич­ных байтов. Для коммуникационной среды байт-ориентированный протокол менее удобен, так как разделение информационного потока в канале на байты требует использования до­полнительных сигналов, что в конечном счете снижает пропускную способность канала связи.

Наиболее известным и распространенным байт-ориентированным протоколом являет­ся протокол двоичной синхронной связи BSC (Binary Synchronous Communication ), разрабо­танный фирмой IBM . Протокол обеспечивает передачу двух типов кадров: управляющих и информационных. В управляющих кадрах передаются управляющие и служебные символы, в информационных - сообщения (отдельные пакеты, последовательность пакетов). Работа протокола BSC осуществляется в три фазы: установление соединения, поддержание сеанса передачи сообщений, разрыв соединения. Протокол требует на каждый переданный кадр посылки квитанции о результате его приема. Кадры, переданные с ошибкой, передаются по­вторно. Протокол определяет максимальное число повторных передач.

Примечание. Квитанция представляет собой управляющий кадр, в котором содер­жится подтверждение приема сообщения (положительная квитанция) или отказ от приема из-за ошибки (отрицательная квитанция).

Передача последующего кадра возможна только тогда, когда получена положительная квитанция на прием предыдущего. Это существенно ограничивает быстродействие прото­кола и предъявляет высокие требования к качеству канала связи.

Бит-ориентированный протокол предусматривает передачу информации в виде потока битов, не разделяемых на байты. Поэтому для разделения кадров используются специальные последовательности - флаги. В начале кадра ставится флаг открывающий, а в конце - флаг закрывающий.

Бит-ориентированный протокол удобен относительно коммуникационной среды, так как канал связи как раз и ориентирован на передачу последовательности битов. Для ЭВМ он не очень удобен, потому что из поступающей последовательности битов приходится вы­делять байты для последующей обработки сообщения. Впрочем, учитывая быстродействие ЭВМ, можно считать, что эта операция не окажет существенного влияния на ее производи­тельность. Потенциально бит-ориентированные протоколы являются более скоростными по сравнению с байт-ориентированными, что обусловливает их широкое распространение в со­временных вычислительных сетях.

Типичным представителем группы бит-ориентированных протоколов являются прото­кол HDLC (High - level Data Link Control - высший уровень управления каналом связи) и его подмножества. Протокол HDLC управляет информационным каналом с помощью спе­циальных управляющих кадров, в которых передаются команды. Информационные кадры нумеруются. Кроме того, протокол HDLC позволяет без получения положительной квитан­ции передавать в канал до трех - пяти кадров. Положительная квитанция, полученная, на­пример, на третий кадр, показывает, что два предыдущих приняты без ошибок и необходимо повторить передачу только четвертого и пятого кадров. Такой алгоритм работы и обеспечивает высокое быстродействие протокола.

Из протоколов верхнего уровня модели ВОС следует отметить протокол Х.400 (элек­тронная почта) и FTAM (File Transfer , Access and Management - передача файлов, доступ к файлам и управление файлами).


Стандарты протоколов вычислительных сетей

Для протоколов физического уровня стандарты определены рекомендациями МККТТ. Циф­ровая передача предусматривает использование протоколов Х.21 и Х.21- бис.

Канальный уровень определяют протокол HDLC и его подмножества, а также прото­кол Х.25/3.

Широкое распространение локальных вычислительных сетей потребовало разработки стандартов для этой области. В настоящее время для ЛВС используются стандарты, разра­ботанные Институтом инженеров по электротехнике и радиоэлектронике - ИИЭР (IEEE - Institute of Electrical and Electronics Engineers ).

Комитеты IEEE 802 разработали ряд стандартов, часть из которых принята МОС (ISO ) и другими организациями. Для ЛВС разработаны следующие стандарты:

802.1 - верхние уровни и административное управление;

802.2 - управление логическим звеном данных (LLC );

802.3 - случайный метод доступа к среде (CSMA / CD - Carrier Sense Multiple Access with Collision Detection - множественный доступ с контролем передачи и обнаруже­нием столкновений);

802.4 - маркерная шина;

802.5 - маркерное кольцо;

802.6 - городские сети.

Взаимодействие двух узлов из различных сетей схематически показано на рис. 6.18. Обмен информацией между одноименными уровнями определяется протоколами, речь о ко­торых шла выше.

Примечание. Узлы соединены с помощью канала связи. Это та среда, по кото­ рой распространяются сообщения от одного узла сети до другого. Пакеты и кадры, о которых шел разговор, в виде последовательности электрических сиг­ налов приходят из одного узла в другой. Взаимодействие одноименных уров­ ней модели показано пунктирными стрелками.

6.3. ЛОКАЛЬНЫЕ ВЫЧИСЛИТЕЛЬНЫЕ СЕТИ

ОСОБЕННОСТИ ОРГАНИЗАЦИИ ЛВС

Функциональные группы устройств в сети

Основное назначение любой компьютерной сети - предоставление информационных и вы­числительных ресурсов подключенным к ней пользователям.

С этой точки зрения локальную вычислительную сеть можно рассматривать как сово­купность серверов и рабочих станций.

Сервер - компьютер, подключенный к сети и обеспечивающий ее пользо­вателей определенными услугами.

Серверы могут осуществлять хранение данных, управление базами данных, уда­ленную обработку заданий, печать заданий и ряд других функций, потребность в которых может возникнуть у пользователей сети. Сервер - источник ресурсов сети.

Рабочая станция - персональный компьютер, подключенный к сети, через который пользователь получает доступ к ее ресурсам.

Рабочая станция сети функционирует как в сетевом, так и в локальном режи­ме. Она оснащена собственной операционной системой, обеспе­чивает пользователя всеми необходимыми инструментами для решения прикладных задач.

Особое внимание следует уделить одному из типов серверов - файловому серверу (File Server ). В распространенной терминологии для него принято сокращенное название - файл-сервер.

Файл-сервер хранит данные пользователей сети и обеспечивает им доступ к этим дан­ным. Это компьютер с большой емкостью оперативной памяти, жесткими дисками большой емкости и дополнительными накопителями на магнитной ленте (стриммерами).

Он работает под управлением специальной операционной системы, которая обеспечи­вает одновременный доступ пользователей сети к расположенным на нем данным.

Файл-сервер выполняет следующие функции: хранение данных, архивирование дан­ных, синхронизацию изменений данных различными пользователями, передачу данных.

Для многих задач использование одного файл-сервера оказывается недостаточным. Тогда в сеть могут включаться несколько серверов. Возможно также применение в качестве файл-серверов мини-ЭВМ.

Управление взаимодействием устройств в сети

Информационные системы, построенные на базе компьютерных сетей, обеспечивают реше­ние следующих задач: хранение данных, обработка данных, организация доступа пользова­телей к данным, передача данных и результатов обработки данных пользователям.

В системах централизованной обработки эти функции выполняла центральная ЭВМ (Mainframe , Host ).

Компьютерные сети реализуют распределенную обработку данных. Обработка дан­ных в этом случае распределена между двумя объектами: клиентом и сервером.

Клиент - задача, рабочая станция или пользователь компьютерной сети.

В процессе обработки данных клиент может сформировать запрос на сервер для вы­полнения сложных процедур, чтение файла, поиск информации в базе данных и т. д.

Сервер, определенный ранее, выполняет запрос, поступивший от клиента. Результаты выполнения запроса передаются клиенту. Сервер обеспечивает хранение данных общего пользования, организует доступ к этим данным и передает данные клиенту.

Клиент обрабатывает полученные данные и представляет результаты обработки в виде, удобном для пользователя. В принципе обработка данных может быть выполнена и на сервере. Для подобных систем приняты термины - системы клиент-сервер или ар­хитектура клиент-сервер.

Архитектура клиент-сервер может использоваться как в одноранговых локальных вы­числительных сетях, так и в сети с выделенным сервером.

Одноранговая сеть. В такой сети нет единого центра управления взаимодействием рабочих станций и нет единого устройства для хранения данных. Сетевая операционная система распределена по всем рабочим станциям. Каждая станция сети может выполнять функции как клиента, так и сервера. Она может обслуживать запросы от других рабочих станций и направлять свои запросы на обслуживание в сеть.

Пользователю сети доступны все устройства, подключенные к другим станциям (диски, принтеры).

Достоинства одноранговых сетей: низкая стоимость и высокая надежность.

Недостатки одноранговых сетей:

зависимость эффективности работы сети от количества станций;

сложность управления сетью;

сложность обеспечения защиты информации;

трудности обновления и изменения программного обеспечения станций. Наибольшей популярностью пользуются одноранговые сети на базе сетевых операци­онных систем LANtastic , NetWare Lite .

Сеть с выделенным сервером. В сети с выделенным сервером один из компьютеров выполняет функции хранения данных, предназначенных для использования всеми рабочи­ми станциями, управления взаимодействием между рабочими станциями и ряд сервисных функций.

Такой компьютер обычно называют сервером сети. На нем устанавливается сетевая операционная система, к нему подключаются все разделяемые внешние устройства - жест­кие диски, принтеры и модемы.

Взаимодействие между рабочими станциями в сети, как правило, осуществляется через сервер. Логическая организация такой сети может быть представлена топологией звезда. Роль центрального устройства выполняет сервер. В сетях с централизованным уп­равлением существует возможность обмена информацией между рабочими станциями, минуя файл-сервер. Для этого можно использовать программу NetLink . После запуска про­граммы на двух рабочих станциях можно передавать файлы с диска одной станции на диск другой (аналогично операции копирования файлов из одного каталога в другой с помощью программы Norton Commander ).

Достоинства сети с выделенным сервером:

надежная система защиты информации;

высокое быстродействие;

отсутствие ограничений на число рабочих станций;

простота управления по сравнению с одноранговыми сетями.

Недостатки сети:

высокая стоимость из-за выделения одного компьютера под сервер;

зависимость быстродействия и надежности сети от сервера;

меньшая гибкость по сравнению с одноранговой сетью.

Сети с выделенным сервером являются наиболее распространенными у пользователей компьютерных сетей. Сетевые операционные системы для таких сетей - LANServer (IBM ), Windows NT Server версий 3.51 и 4.0 и NetWare (Novell ).

ТИПОВЫЕ ТОПОЛОГИИ И МЕТОДЫ ДОСТУПА ЛВС

Физическая передающая среда ЛВС

Физическая среда обеспечивает перенос информации между абонентами вычислительной сети. Как уже упоминалось, физическая передающая среда ЛВС представлена тремя типами кабелей: витая пара проводов, коаксиальный кабель, оптоволоконный кабель.

Витая пара состоит из двух изолированных проводов, свитых между собой (рис. 6.19). Скручивание проводов уменьшает влияние внешних электромагнитных полей на передаваемые сигналы. Самый простой вариант витой пары - телефонный кабель. Витые пары имеют различные характеристики, определяемые размерами, изоляцией и шагом скручивания. Дешевизна этого вида передающей среды делает ее достаточно попу­лярной для ЛВС.

Рис. 6.19. Витая пара проводов

Основной недостаток витой пары - плохая помехозащищенность и низкая скорость передачи информации - 0,25 - 1 Мбит/с. Технологические усовершенствования позволяют повысить скорость передачи и помехозащищенность (экранированная витая пара), но при этом возрастает стоимость этого типа передающей среды.

Коаксиальный кабель (рис. 6.20) по сравнению с витой парой обладает более высокой механической прочностью, помехозащищенностью и обеспечивает скорость пере­дачи информации до 10-50 Мбит/с. Для промышленного использования выпускаются два типа коаксиальных кабелей: толстый и тонкий. Толстый кабель более прочен и передает сигналы нужной амплитуды на большее расстояние, чем тонкий. В то же время/гонкий ка­бель значительно дешевле. Коаксиальный кабель так же, как и витая пара, является одним из популярных типов передающей среды для ЛВС.

Рис. 6.20. Коаксиальный кабель

Рис. 6.21. Оптоволоконный кабель

Оптоволоконный кабель -идеальная передающая среда (рис. 6.21). Он не подвержен действию электромагнитных полей и сам практически не имеет излучения. Пос­леднее свойство позволяет использовать его в сетях, требующих повышенной секретности информации.

Скорость передачи информации по оптоволоконному кабелю более 50 Мбит/с. По сравнению с предыдущими типами передающей среды он более дорог, менее технологичен в эксплуатации.

ЛВС, выпускаемые различными фирмами, либо рассчитаны на один из типов пере­дающей среды, либо могут быть реализованы в различных вариантах, на базе различных передающих сред.

Основные топологии ЛВС

Вычислительные машины, входящие в состав ЛВС, могут быть расположены самым слу­чайным образом на территории, где создается вычислительная сеть. Следует заметить, что для способа обращения к передающей среде и методов управления сетью небезразлично, как расположены абонентские ЭВМ. Поэтому имеет смысл говорить о топологии ЛВС.

Топология ЛВС - это усредненная геометрическая схема соединений узлов сети.

Топологии вычислительных сетей могут быть самыми различными, но для локальных вычислительных сетей типичными являются всего три: кольцевая, шинная, звездообразная.

Иногда для упрощения используют термины - кольцо, шина и звезда. Не следует ду­мать, что рассматриваемые типы топологий представляют собой идеальное кольцо, идеаль­ную прямую или звезду.

Любую компьютерную сеть можно рассматривать как совокупность узлов.

Узел - любое устройство, непосредственно подключенное к передающей среде сети.

Топология усредняет схему соединений узлов сети. Так, и эллипс, и замкнутая кривая, и замкнутая ломаная линия относятся к кольцевой топологии, а незамкнутая ломаная линия - к шинной.

Кольцевая топология предусматривает соединение узлов сети замкнутой кри­вой - кабелем передающей среды (рис. 6.22). Выход одного узла сети соединяется со вхо­дом другого. Информация по кольцу передается от узла к узлу. Каждый промежуточный узел между передатчиком и приемником ретранслирует посланное сообщение. Принимаю­щий узел распознает и получает только адресованные ему сообщения.

Рис. 6.22. Сеть кольцевой топологии

Кольцевая топология является идеальной для сетей, занимающих сравнительно не­большое пространство. В ней отсутствует центральный узел, что повышает надежность сети. Ретрансляция информации позволяет использовать в качестве передающей среды любые типы кабелей.

Последовательная дисциплина обслуживания узлов такой сети снижает ее быстродей­ствие, а выход из строя одного из узлов нарушает целостность кольца и требует принятия специальных мер для сохранения тракта передачи информации.

Шинная топология - одна из наиболее простых (рис. 6.23). Она связана с исполь­зованием в качестве передающей среды коаксиального кабеля. Данные от передающего узла сети распространяются по шине в обе стороны. Промежуточные узлы не транслируют поступающих сообщений. Информация поступает на все узлы, но принимает сообщение только тот, которому оно адресовано. Дисциплина обслуживания параллельная.

Рис. 6.23. Сеть шинной топологии

Это обеспечивает высокое быстродействие ЛВС с шинной топологией. Сеть легко на­ращивать и конфигурировать, а также адаптировать к различным системам. Сеть шинной топологии устойчива к возможным неисправностям отдельных узлов.

Сети шинной топологии наиболее распространены в настоящее время. Следует отме­тить, что они имеют малую протяженность и не позволяют использовать различные типы кабеля в пределах одной сети.

Звездообразная топология (рис. 6.24) базируется на концепции центрального узла, к которому подключаются периферийные узлы. Каждый периферийный узел имеет свою отдельную линию связи с центральным узлом. Вся информация передается через центральный узел, который ретранслирует, переключает и маршрутизирует информацион­ные потоки в сети


Рис. 6.24. Сеть звездообразной топологии

Звездообразная топология значительно упрощает взаимодействие узлов ЛВС друг с другом, позволяет использовать более простые сетевые адаптеры. В то же время работоспо­собность ЛВС со звездообразной топологией целиком зависит от центрального узла.

В реальных вычислительных сетях могут использоваться более сложные топологии, представляющие в некоторых случаях сочетания рассмотренных.

Выбор той или иной топологии определяется областью применения ЛВС, географи­ческим расположением ее узлов и размерностью сети в целом,.

Методы доступа к передающей среде

Передающая среда является общим ресурсом для всех узлов сети. Чтобы получить возмож­ность доступа к этому ресурсу из узла сети, необходимы специальные механизмы - мето­ды доступа.

Метод доступа к передающей среде - метод, обеспечивающий выпол­нение совокупности правил, по которым узлы сети получают доступ к ресурсу.

Существуют два основных класса методов доступа: детерминированные, недетерми­нированные.

При детерминированных методах доступа передающая среда распределяется между узлами с помощью специального механизма управления, гарантирующего передачу данных узла в течение некоторого, достаточно малого интервала времени.

Наиболее распространенными детерминированными методами доступа являются метод опроса и метод передачи права. Метод опроса рассматривался ранее. Он использует­ся преимущественно в сетях звездообразной топологии.

Метод передачи права применяется в сетях с кольцевой топологией. Он основан на передаче по сети специального сообщения - маркера.

Маркер - служебное сообщение определенного формата, в которое або-ненты сети могут помещать свои информационные пакеты.

Маркер циркулирует по кольцу, и любой узел, имеющий данные для передачи, поме­щает их в свободный маркер, устанавливает признак занятости маркера и передает его по кольцу. Узел, которому было адресовано сообщение, принимает его, устанавливает признак подтверждения приема информации и отправляет маркер в кольцо.

Передающий узел, получив подтверждение, освобождает маркер и отправляет его в сеть. Существуют методы доступа, использующие несколько маркеров.

Недетерминированные - случайные методы доступа предусматривают кон­куренцию всех узлов сети за право передачи. Возможны одновременные попытки передачи со стороны нескольких узлов, в результате чего возникают коллизии.

Наиболее распространенным недетерминированным методом доступа является мно­жественный метод доступа с контролем несущей частоты и обнаружением коллизий (CSMA / CD ). В сущности, это описанный ранее режим соперничества. Контроль несущей частоты заключается в том, что узел, желающий передать сообщение, "прослушивает" пере­дающую среду, ожидая ее освобождения. Если среда свободна, узел начинает передачу.

Следует отметить, что топология сети, метод доступа к передающей среде и метод передачи тесным образом связаны друг с другом. Определяющим компонентом является топология сети.

Назначение ЛВС

Локальные вычислительные сети за последнее пятилетие получили широкое распростране­ние в самых различных областях науки, техники и производства.

Особенно широко ЛВС применяются при разработке коллективных проектов, на­пример сложных программных комплексов. На базе ЛВС можно создавать системы ав­томатизированного проектирования. Это позволяет реализовывать новые технологии проектирования изделий машиностроения, радиоэлектроники и вычислительной техники. В условиях развития рыночной экономики появляется возможность создавать конкурентоспо­собную продукцию, быстро модернизировать ее, обеспечивая реализацию экономической стратегии предприятия.

ЛВС позволяют также реализовывать новые информационные технологии в системах организационно-экономического управления.

В учебных лабораториях университетов ЛВС позволяют повысить качество обучения и внедрять современные интеллектуальные технологии обучения.

ОБЪЕДИНЕНИЕ ЛВС

Причины объединения ЛВС

Созданная на определенном этапе развития системы ЛВС с течением времени перестает удовлетворять потребности всех пользователей, и тогда встает проблема расширения ее функциональных возможностей. Может возникнуть необходимость объединения внутри фирмы различных ЛВС, появившихся в различных ее отделах и филиалах в разное время, хотя бы для организации обмена данными с другими системами. Проблема расширения конфигурации сети может быть решена как в пределах ограниченного пространства, так и с выходом во внешнюю среду.

Стремление получить выход на определенные информационные ресурсы может потре­бовать подключения ЛВС к сетям более высокого уровня.

В самом простом варианте объединение ЛВС необходимо для расширения сети в целом, но технические возможности существующей сети исчерпаны, новых абонентов под­ключить к ней нельзя. Можно только создать еще одну ЛВС и объединить ее с уже сущест­вующей, воспользовавшись одним из ниже перечисленных способов.

Способы объединения ЛВС

Мост. Самый простой вариант объединения ЛВС - объединение одинаковых сетей в пре­делах ограниченного пространства. Физическая передающая среда накладывает ограниче­ния на длину сетевого кабеля. В пределах допустимой длины строится отрезок сети - сетевой сегмент. Для объединения сетевых сегментов используются мосты.

Мост - устройство, соединяющее две сети, использующие одинаковые методы передачи данных.

Сети, которые объединяет мост, должны иметь одинаковые сетевые уровни модели взаимодействия открытых систем, нижние уровни могут иметь некоторые отличия.

Для сети персональных компьютеров мост - отдельная ЭВМ со специальным про­граммным обеспечением и дополнительной аппаратурой. Мост может соединять сети разных топологий, но работающие под управлением однотипных сетевых операционных систем.

Мосты могут быть локальными и удаленными.

Локальные мосты соединяют сети, расположенные на ограниченной территории в пределах уже существующей системы.

Удаленные мосты соединяют сети, разнесенные территориально, с использовани­ем внешних каналов связи и модемов.

Локальные мосты, в свою очередь, разделяются на внутренние и внешние.

Внутренние мосты обычно располагаются на одной из ЭВМ данной сети и совме­щают функцию моста с функцией абонентской ЭВМ. Расширение функций осуществляется путем установки дополнительной сетевой платы.

Внешние мосты предусматривают использование для выполнения своих функций отдельной ЭВМ со специальным программным обеспечением.

Маршрутизатор (роутер). Сеть сложной конфигурации, представляющая собой со­единение нескольких сетей, нуждается в специальном устройстве. Задача этого устройст­ва - отправить сообщение адресату в нужную сеть. Называется такое устройство маршр тизатором.

Маршрутизатор, или роутер, - устройство, соединяющее сети разного типа, но использующее одну операционную систему.

Маршрутизатор выполняет свои функции на сетевом уровне, поэтому он зависит от протоколов обмена данными, но не зависит от типа сети. С помощью двух адресов - адре­са сети и адреса узла маршрутизатор однозначно выбирает определенную станцию сети.

Пример 6.7. Необходимо установить связь с абонентом телефонной сети, находящим­ся в другом городе. Сначала набирается адрес телефонной сети этого города - код города. Затем - адрес узла этой сети - телефонный номер абонента. Функции ма­ршрутизатора выполняет аппаратура АТС.

Маршрутизатор также может выбрать наилучший путь для передачи сообщения або­ненту сети, фильтрует информацию, проходящую через него, направляя в одну из сетей только ту информацию, которая ей адресована.

Кроме того, маршрутизатор обеспечивает балансировку нагрузки в сети, перенаправ­ляя потоки сообщений по свободным каналам связи.

Шлюз. Для объединения ЛВС совершенно различных типов, работающих по сущест­венно отличающимся друг от друга протоколам, предусмотрены специальные устройства - шлюзы.

Шлюз - устройство, позволяющее организовать обмен данными между двумя сетями, использующими различные протоколы взаимодействия.

Шлюз осуществляет свои функции на уровнях выше сетевого. Он не зависит от ис­пользуемой передающей среды, но зависит от используемых протоколов обмена данными. Обычно шлюз выполняет преобразование между двумя протоколами.

С помощью шлюзов можно подключить локальную вычислительную сеть к главному компьютеру, а также локальную сеть подключить к глобальной.

Пример 6.8. Необходимо объединить локальные сети, находящиеся в разных городах. Эту задачу можно решить с помощью глобальной сети передачи данных. Такой сетью является сеть коммутации пакетов на базе протокола Х.25. С помощью шлюза локаль­ная вычислительная сеть подключается к сети X .2 S . Шлюз выполняет необходимые преобразования протоколов и обеспечивает обмен данными между сетями.

Мосты, маршрутизаторы и даже шлюзы конструктивно выполняются в виде плат, ко­торые устанавливаются в компьютерах. Функции свои они могут выполнять как в режиме полного выделения функций, так и в режиме совмещения их с функциями рабочей станции вычислительной сети.

Модели сети.Эталонная модель OSI

Общая модель вычислительной сети определяет характеристики сети в целом и характеристики и функции, входящих в неё основных компонентов.

Архитектура вычислительной сети – это описание её общей модели. Многообразие производителей вычислительных сетей и сетевых программных продуктов поставило проблему объединения сетей различных архитектур.

В начале 1980 гг. Международная Организация по Стандартизации (ISO) признала необходимость в создания модели сети, которая могла бы помочь поставщикам создавать реализации взаимодействующих сетей. Эту потребность удовлетворяет выпущенная в 1984 г. Эталонная модель OSI быстро стала основной архитектурной моделью для передачи межкомпьютерных сообщений. Часто ее называют моделью архитектуры открытых систем

Открытая система – это система, взаимодействующая с другими системами в соответствии с принятыми стандартами. Модель взаимодействия открытых систем служит базой для производителей при разработке совместимого сетевого оборудования.

Перемещение информации между компьютерами различных схем является чрезвычайно сложной задачей.

Эта модель устанавливает способы передачи данных по сети, определяет стандартные протоколы, используемые сетевым и программным обеспечением. Модель представляет собой самые общие рекомендации для построения совместимых программных продуктов. Эти рекомендации должны быть реализованы как в аппаратуре, так и в программных средствах вычислительных сетей.

Модель взаимодействия открытых систем определяет процедуры передачи данных между системами,которые открыты друг другу, благодаря совместному использованию ими соответствующих стандартов, хотя сами системы могут быть созданы на различных технических средствах. В настоящее время модель взаимодействия открытых систем является наиболее популярной сетевой архитектурной моделью. Она рассматривает общие функции, а не специальные решения, поэтому не все реальные сети абсолютно точно ей следуют. Модель взаимодействия открытых систем состоит из семи уровней. На каждом уровне выполняются определённые сетевые функции. Нижние уровни (1 и 2) определяют физическую среду передачи данных и сопутствующей задачи (такие, как передачи битов данных через плату сетевого адаптера и кабель). Самые верхние уровни определяют, каким способом осуществляется доступ приложений к услугам связи. Чем выше уровень, тем более сложную задачу он решает. Перед подачей в сеть данные разбиваются на пакеты.

Пакет - это единица информации, передаваемая между устройствами сети как единое целое. На передающей стороне пакет проходит последовательно через все уровни системы сверху вниз. Затем он передаётся по сетевому кабелю на компьютер – получатель и опять проходит все уровни в обратном порядке.

12. Уровни модели osi . Иерархическая связь.

Эталонная модель OSI делит проблему перемещения информации между компьютерами через среду сети на семь менее крупных, и следовательно, более легко разрешимых проблем. Каждая из этих семи проблем выбрана потому, что она относительно автономна, и следовательно, ее легче решить без чрезмерной опоры на внешнюю информацию. Каждая из семи областей проблемы решалась с помощью одного из уровней модели. Большинство устройств сети реализует все семь уровней. Однако в режиме потока информации некоторые реализации сети пропускают один или более уровней.

Два самых низших уровня OSI реализуются аппаратным и программным обеспечением; остальные пять высших уровней, как правило, реализуются программным обеспечением. Справочная модель OSI описывает, каким образом информация проделывает путь через среду сети (например, провода) от одной прикладной программы (например, программы обработки крупноформатных таблиц) до другой прикладной программы, находящейся в другом компьютере. Т.к. информация, которая должна быть отослана, проходит вниз через уровни системы, по мере этого продвижения она становится все меньше похожей на человеческий язык и все больше похожей на ту информацию, которую понимают компьютеры, а именно "единицы" и "нули".

Уровни модели OSI (в направлении снизу вверх) и их общие функции можно рассмотреть следующим образом:

Рассмотрим, как в модели SI происходит обмен данными между пользователями, находящимися на разных континентах.

1.На прикладном уровне с помощью специальных приложений пользователь создает документ (сообщение, рисунок и т. п.).

Прикладной уровень - это самый близкий к пользователю уровень OSI. Он отличается от других уровней тем, что не обеспечивает услуг ни одному из других уровней OSI; однако он обеспечивает ими прикладные процессы, лежащие за пределами масштаба модели OSI. Примерами таких прикладных процессов могут служить программы обработки крупномасштабных таблиц, программы обработки слов, программы банковских терминалов и т.д. Прикладной уровень идентифицирует и устанавливает наличие предполагаемых партнеров для связи, синхронизирует совместно работающие прикладные программы, а также устанавливает соглашение по процедурам устранения ошибок и управления целостностью информации. Прикладной уровень также определяет, имеется ли в наличии достаточно ресурсов для предполагаемой связи.

2.На уровне представления операционная система его компьютера фиксирует, где находятся созданные данные (в оперативной памяти, в файле на жестком диске и т. п.), и обеспечивает взаимодействие со следующим уровнем.

Представительный уровень отвечает за то, чтобы информация, посылаемая из прикладного уровня одной системы, была читаемой для прикладного уровня другой системы. При необходимости представительный уровень осуществляет трансляцию между множеством форматов представления информации путем использования общего формата представления информации. Представительный уровень занят не только форматом и представлением фактических данных пользователя, но также структурами данных, которые используют программы. Поэтому кроме трансформации формата фактических данных (если она необходима), представительный уровень согласует синтаксис передачи данных для прикладного уровня.

3.На сеансовом уровне компьютер пользователя взаимодействует с локальной или глобальной сетью. Протоколы этого уровня проверяют права пользователя на «выход в эфир» и передают документ к протоколам транспортного уровня.

Как указывает его название, сеансовый уровень устанавливает, управляет и завершает сеансы взаимодействия между прикладными задачами. Сеансы состоят из диалога между двумя или более объектами представления (как вы помните, сеансовый уровень обеспечивает своими услугами представительный уровень). Сеансовый уровень синхронизирует диалог между объектами представительного уровня и управляет обменом информации между ними. В дополнение к основной регуляции диалогов (сеансов) сеансовый уровень предоставляет средства для отправки информации, класса услуг и уведомления в исключительных ситуациях о проблемах сеансового, представительного и прикладного уровней. Сеансовый уровень - это комплексный уровень, который обеспечивает возможность соединения и выбор маршрута между двумя конечными системами, подключенными к разным "подсетям", которые могут находиться в разных географических пунктах. В данном случае "подсеть" - это по сути независимый сетевой кабель (иногда называемый сегментом). Т.к. две конечные системы, желающие организовать связь, может разделять значительное географическое расстояние и множество подсетей, сетевой уровень является доменом маршрутизации. Протоколы маршрутизации выбирают оптимальные маршруты через последовательность соединенных между собой подсетей. Традиционные протоколы сетевого уровня передают информацию вдоль этих маршрутов.

4. .На транспортном уровне документ преобразуется в ту форму, в которой положено передавать данные в используемой сети. Например, он может нарезаться на небольшие пакеты стандартного размера.

Транспортный уровень Граница между сеансовым и транспортным уровнями может быть представлена как граница между протоколами прикладного уровня и протоколами низших уровней. В то время как прикладной, представительный и сеансовый уровни заняты прикладными вопросами, четыре низших уровня решают проблемы транспортировки данных. Транспортный уровень пытается обеспечить услуги по транспортировке данных, которые избавляют высшие слои от необходимости вникать в ее детали. В частности, заботой транспортного уровня является решение таких вопросов, как выполнение надежной транспортировки данных через объединенную сеть. Предоставляя надежные услуги, транспортный уровень обеспечивает механизмы для установки, поддержания и упорядоченного завершения действия виртуальных каналов, систем обнаружения и устранения неисправностей транспортировки и управления информационным потоком (с целью предотвращения переполнения системы данными из другой системы).

5. Сетевой уровень определяет маршрут движения данных в сети. Так, например если на транспортном уровне данные были «нарезаны» на пакеты, то на сетевом уровне каждый пакет должен получить адрес, по которому он должен быть доставлен независимо от прочих пакетов.

Сетевой уровень - это комплексный уровень, который обеспечивает возможность соединения и выбор маршрута между двумя конечными системами, подключенными к разным "подсетям", которые могут находиться в разных географических пунктах. В данном случае "подсеть" - это по сути независимый сетевой кабель (иногда называемый сегментом). Т.к. две конечные системы, желающие организовать связь, может разделять значительное географическое расстояние и множество подсетей, сетевой уровень является доменом маршрутизации. Протоколы маршрутизации выбирают оптимальные маршруты через последовательность соединенных между собой подсетей. Традиционные протоколы сетевого уровня передают информацию вдоль этих маршрутов.

6. Канальный уровень. Уровень соединения необходим для того, чтобы промодулировать сигналы, циркулирующие на физическом уровне, в соответствии с данными, полученным с сетевого уровня. Например в компьютере эти функции выполняет сетевая карта или модем.

Канальный уровень (формально называемый информационно-канальным уровнем) обеспечивает надежный транзит данных через физический канал. Выполняя эту задачу, канальный уровень решает вопросы физической адресации (в противоположность сетевой или логической адресации), топологии сети, линейной дисциплины (каким образом конечной системе использовать сетевой канал), уведомления о неисправностях, упорядоченной доставки блоков данных и управления потоком информации.

7. Физический уровень. Реальная передача данных происходит на физическом уровне. Здесь нет ни документов, ни пакетов, ни даже байтов - только биты, то есть, элементарные единицы представления данных. Восстановление документа из них произойдет постепенно, при переходе с нижнего на верхний уровень на компьютер клиента.

Средства физического уровня лежат за пределами компьютера. В локальных сетях это оборудование самой сети. При удаленной связи с использованием телефонных модемов это линии телефонной связи, коммутационное оборудование телефонных станций и т. п.

Физический уровень определяет электротехнические, механические, процедурные и функциональные характеристики активации, поддержания и дезактивации физического канала между конечными системами. Спецификации физического уровня определяют такие характеристики, как уровни напряжений, синхронизацию изменения напряжений, скорость передачи физической информации, максимальные расстояния передачи информации, физические соединители и другие аналогичные характеристики.

На компьютере получателя информации происходит обратный процесс преобразования данных от битовых сигналов до документа.

Разные уровни протоколов сервера и клиента не взаимодействуют друг с другом напрямую, но они взаимодействуют через физический уровень. Постепенно переходя с верхнего уровня на нижний, данные непрерывно преобразуются, «обрастают» дополнительными данными, которые анализируются протоколами соответствующих уровней на сопредельной стороне. Это создает эффект виртуального взаимодействия уровней между собой.

Для иллюстрации сказанного рассмотрим простой пример взаимодействия двух корреспондентов с помощью обычной почты. Если они регулярно отправляют друг другу письма и, соответственно, получают их, то они могут полагать, что между ними существует соединение на пользовательском (прикладном уровне). Однако это не совсем так. Такое соединение можно назвать виртуальным. Оно было бы физическим, если бы каждый из корреспондентов лично относил другому письмо и вручал в собственные руки. В реальной жизни он бросает его в почтовый ящик и ждет ответа.

Сбором писем из общественных почтовых ящиков и доставкой корреспонденции в личные почтовые ящики занимаются местные почтовые службы. Это другой уровень модели связи, лежащий ниже. Для того чтобы наше письмо достигло адресата в другом городе, должна существовать связь между нашей местной почтовой службой и его местной почтовой службой. Однако никакой физической связью эти службы не обладают - поступившую почтовую корреспонденцию они только сортируют и передают на уровень федеральной почтовой службы.

Федеральная почтовая служба в своей работе опирается на службы очередного уровня, например на почтово-багажную службу железнодорожного ведомства. И только рассмотрев работу этой службы, мы найдем, наконец, признаки физического соединения, например железнодорожный путь, связывающий два города.

Важно обратить внимание на то, что в нашем примере образовалось несколько виртуальных соединений между аналогичными службами, находящимися в пунктах отправки и приема. Не вступая в прямой контакт, эти службы взаимодействуют между собой. На каком-то уровне письма укладываются в мешки, мешки пломбируют, к ним прикладывают сопроводительные документы, которые где-то в другом городе изучаются и проверяются на аналогичном уровне.

Ниже в таблице приводится аналогия между уровнями модели OSI и операциями служб пересылки обычной почты.

Уровень модели OSI

Аналогия

Прикладной уровень

Письмо написано на бумаге. Определено его содержание

Уровень представления

Письмо запечатано в конверт. Конверт заполнен. Наклеена марка. Клиентом соблюдены необходимые требования протокола доставки

Сеансовый уровень

Письмо опущено в почтовый ящик. Выбрана служба доставки.

Транспортный уровень

Письмо доставлено на почтамт. Оно отделено от писем, с доставкой которых местная почтовая служба справилась бы самостоятельно

Сетевой уровень

После сортировки письмо уложено в мешок. Появилась новая единица доставки - мешок

Уровень соединения

Мешки писем уложены в вагон. Появилась новая единица доставки - вагон

Физический уровень

Вагон прицеплен к локомотиву. Появилась новая единица доставки - состав. За доставку взялось другое ведомство, действующее по другим протоколам

Чтобы различные компьютеры сети могли установить связь друг с другом, они должны “разговаривать” на одном языке, то есть использовать один и тот же протокол. Протокол - это “язык”, используемый для обмена данными при работе в сети. Существует множество протоколов, каждый из них выполняет различные задачи. На разных уровнях модели OSI используются различные протоколы.

Ethernet – это протокол Уровня соединения, используемый большинством современных локальных сетей. Протокол Ethernet обеспечивает унифицированный интерфейс к сетевой среде передачи, который позволяет операционной системе использовать для приема и передачи данных несколько протоколов Сетевого уровня одновременно. Token Ring – это альтернатива «классическому» протоколу Ethernet на Уровне соединения.

Для возможности передачи информации по сетевым каналам связи необходимо уста­новить протокол обмена сообщениями (пакетами). Существует несколько таких протоколов. Наиболее широко используются следующие: NetBEUI , IPX / SPX , TCP / IP . Протоколы NETBEUI и IPX / SPX - используется в локальных сетях. Протоколы TCP / IP являются базовыми протоколами глобальной сети Интернет.

Протокол TCP / IP

Со времени своего создания в 1970-х, стек протоколов TCP/IP был развит в промышленный стандарт для протоколов передачи данных на Сетевом и Транспортном уровнях модели OSI. В дополнение, стек включает множество протоколов, работающих на самых разных уровнях OSI, от Канального уровня внизу, до Прикладного уровня наверху.

Создатели операционных систем стремятся упростить стек сетевых протоколов, чтобы сделать более понятным среднему пользователю. Например, на рабочей станции Windows установка протоколов TCP/IP выполняется с помощью выбора одного единственного условного протокола, хотя на самом деле при этом осуществляется поддержка всего семейства протоколов, из которых TCP (протокол управления передачей) и IP (Интернет-протокол) – всего лишь два представителя.

Понимание принципов работы каждого из протоколов семейства TCP/IP, а также механизмов их взаимодействия между собой для обеспечения соответствующих коммуникационных сервисов, представляется крайне важным для процессов обслуживания и устранения неисправностей TCP/IP- сетей.

Можно указать несколько причин тому, что TCP/IP стал набором протоколов, используемым большинством сетей, не последняя из которых – то, что эти протоколы применяются в Интернете. Протоколы TCP/IP были разработаны для поддержки зарождавшейся сети Интернет (в то время носившей название ARPANET), еще до появления персональных компьютеров, когда почти ничего не было слышно о возможности взаимодействия между компьютерными продуктами разных производителей. Интернет был тогда и остаётся сейчас сетью, состоящей из компьютеров различных типов, и, соответственно, требовался именно тот набор протоколов, который был бы общим для всех них. Главным элементом, отличающим TCP/IP от остальных стеков протоколов, обеспечивающих серверы Сетевого и Транспортного уровней, является собственная уникальная система адресаций. Каждому устройству сети TCP/IP присваивается IP-адрес (иногда больше, чем один), однозначно идентифицирующий это устройство для других систем..

Аннотация: Методологическое обоснование открытых систем как совокупности концепций и основанных на них эталонных моделей. Модель OSI.

2.1. Методологический базис открытых систем

Процесс стандартизации информационных технологий должен иметь методологическое основание , которое позволило бы обоснованно определять объекты, методы и инструменты стандартизации. При этом понятие информационные технологии трактуется следующим образом: " Информационные технологии включают в себя спецификацию, проектирование и разработку программно-аппаратных и телекоммуникационных систем и средств, имеющих дело с поиском и сбором информации, представлением, организацией, обработкой, безопасностью, хранением, передачей, а также обменом и управлением информацией". Такое толкование и единая методологическая база реализована в виде методологического базиса открытых систем .

Методологически базис открытых систем состоит из совокупности концепций и основанных на них эталонных моделей:

  • концептуальная основа и принципы построения открытых систем;
  • эталонная модель окружений открытых систем (Open System Environment Reference Model - OSE RM);
  • эталонная модель взаимосвязи открытых систем (Open Systems Interconnection Reference Model - OSI RM);
  • аппарат разработки и использования профилей ИТ/ИС, предназначенный для создания открытых систем в пространстве стандартизованных решений;
  • таксономия профилей;
  • концепция тестирования конформности систем ИТ исходным стандартам и профилям.

Наиболее весомыми результатами в становлении методологии базиса открытых систем сегодня являются:

  • создание системы специализированных международных организаций по целостной разработке и стандартизации открытых систем;
  • разработка эталонных моделей и соответствующих им базовых спецификаций для важнейших разделов области ИТ, что позволило сформировать концептуальный и функциональный базис пространства для создания информационных технологий и систем (ИТ/ИС);
  • разработка и широкое использование концепции профиля, предоставляющей аппарат для специфицирования и документирования сложных и многопрофильных открытых ИТ/ИС, задающих функциональности базовых спецификаций и/или профилей;
  • разработка таксономии профилей, представляющей собой классификационную систему ИТ/ИС и обеспечивающую систематическую идентификацию профилей в пространстве ИТ/ИС;
  • разработка концепции и методологии соответствия реализаций ИТ/ИС тем спецификациям, которые ими реализуются.

Методологический базис информационных технологий , основную часть которого составляют спецификации ИТ различных уровней абстракции, формируется на основе иерархического подхода, что способствует анализу его структуры с помощью некоторой многоуровневой модели.


Рис. 2.1.

Модель ориентирована на руководителей ИТ-служб и менеджеров проектов, ответственных за приобретение/разработку, внедрение, эксплуатацию и развитие информационных систем, состоящих их неоднородных программно-аппаратных и коммуникационных средств. Прикладные программы в среде OSE могут включать:

  • системы реального времени (Real Time System - RTS) и встроенные системы (Embedded System - ES);
  • системы обработки транзакций (Transaction Processing System - TPS);
  • системы управления базами данных (DataBase Management System - DBMS);
  • разнообразные системы поддержки принятия решения (Decision Support System - DSS);
  • управленческие информационные системы административного (Executive Information System - EIS) и производственного (Enterprise Resource Planning - ERP) назначения;
  • географические информационные системы (Geographic Information System - GIS);
  • другие специализированные системы, в которых могут применяться спецификации, рекомендуемые международными организациями.

С точки зрения производителей и пользователей среда OSE является достаточно универсальной функциональной инфраструктурой, регламентирующей и облегчающей разработку или приобретение, эксплуатацию и сопровождение прикладных защищенных систем, которые:

  • выполняются на любой используемой платформе поставщика или пользователя;
  • используют любую операционную систему;
  • обеспечивают доступ к базе данных и управление данными;
  • обмениваются данными и взаимодействуют через сети любых поставщиков и в локальных сетях потребителей;
  • взаимодействуют с пользователями через стандартные интерфейсы в системе общего интерфейса "пользователь - компьютер".

Таким образом, среда OSE поддерживает "переносимые, масштабируемые и взаимодействующие прикладные компьютерные программы через стандартные функциональности, интерфейсы, форматы данных, протоколы обмена и доступа".

Стандартами могут быть международные, национальные и другие общедоступные спецификации и соглашения. Эти стандарты и спецификации доступны любому разработчику, поставщику и пользователю вычислительного и коммуникационного программного обеспечения и оборудования при построении систем и средств, удовлетворяющих критериям OSE.

переносимы , если они реализованы на стандартных платформах и написаны на стандартизованных языках программирования. Они работают со стандартными интерфейсами, которые связывают их с вычислительной средой, читают и создают данные в стандартных форматах и передают их в соответствии со стандартными протоколами, выполняющимися в различных вычислительных средах.

Прикладные программы и средства OSE масштабируемы в среде различных платформ и сетевых конфигураций - от персональных компьютеров до мощных серверов, от локальных систем для распараллеленных вычислений до крупных GRID-систем. Разницу в объемах вычислительных ресурсов на любой платформе пользователь может заметить по некоторым косвенным признакам, например по скорости выполнения прикладной программы, но никогда - по отказам работы системы.

Прикладные программы и средства OSE взаимодействуют друг с другом , если они предоставляют услуги пользователю, используя стандартные протоколы, форматы обмена данными и интерфейсы систем совместной или распределенной обработки данных для целенаправленного использования информации. Процесс передачи информации с одной платформы на другую через локальную вычислительную сеть или комбинацию любых сетей (вплоть до глобальных) должен быть абсолютно прозрачен для прикладных программ и пользователей и не вызывать технических трудностей при использовании. При этом местонахождение и расположение других платформ, операционных систем, баз данных, программ и пользователей не должно иметь значения для используемого прикладного средства.

Рабочая группа 1003.0 POSIX IEEE разработала эталонную модель OSE (Open Systems Environment / Reference Model - OSE/RM). Эта модель описана на международном уровне в техническом отчете TR 14250 комитета JTC1 ( рис. 2.2).

В описании модели используется два типа элементов:

  • логические объекты , включающие в себя прикладное программное обеспечение (ППО), прикладные платформы и внешнюю функциональную среду;
  • интерфейсы , содержащие интерфейс прикладной системы и интерфейс обмена с внешней средой.

Логические объекты представлены тремя классами, интерфейсы - двумя. В контексте эталонной модели OSE прикладное программное обеспечение включает в себя непосредственно коды программ, данные, документацию, тестирующие, вспомогательные и обучающие средства ( рис. 2.3).


Рис. 2.3.

Прикладная платформа состоит из совокупности программно-аппаратных компонентов, реализующих системные услуги, которые используются ППО. Понятие прикладной платформы не включает конкретной реализации функциональных возможностей. Например, платформа может представлять собой как процессор, используемый несколькими приложениями, так и большую распределенную систему.

Внешняя среда платформ состоит из элементов, внешних по отношению к ППО и прикладной платформе (рабочие станции, внешние периферийные устройства сбора, обработки и передачи данных, объекты коммуникационной инфраструктуры, услуги других платформ, операционных систем или сетевых устройств).

Интерфейс прикладной программы (Application Program Interface - API) является интерфейсом между ППО и прикладной платформой. Основная функция API - поддержка переносимости ППО. Классификация API производится в зависимости от типа реализуемых услуг: взаимодействие в системе "пользователь - компьютер", обмен информацией между приложениями, внутренние услуги системы, коммуникационные услуги.

Интерфейс обмена с внешней средой (External Environment Interface - EEI) обеспечивает передачу информации между прикладной платформой и внешней средой, а также между прикладными программами, которые выполняются на одной платформе.


Рис. 2.4.

Эталонная модель OSE/RM реализует и регулирует взаимоотношения "поставщик - пользователь". Логические объекты прикладной платформы и внешней среды являются поставщиком услуг, ППО - пользователем. Они взаимодействуют с помощью набора API и EEI интерфейсов, определенных моделью POSIX OSE ( рис. 2.4) .

Интерфейс EEI представляет собой совокупность всех трёх интерфейсов (CSI, HCI, ISI), каждый из которых имеет характеристики, определяемые внешним устройством ( рис. 2.5):

  • интерфейс коммуникационных сервисов (Communication Service Interface - CSI) - интерфейс, который обеспечивает сервис для реализации взаимодействия с внешними системами. Реализация взаимодействия осуществляется с помощью стандартизации протоколов и форматов данных, которыми можно обмениваться по установленным протоколам
  • человеко-машинный интерфейс (Human Computer Interface - HCI) - интерфейс, через который осуществляется физическое взаимодействие пользователя и системы программного обеспечения
  • интерфейс информационных сервисов (Information Service Interface - ISI) - граница взаимодействия с внешней памятью долговременного хранения данных. Обеспечивается стандартизацией форматов и синтаксиса представления данных.


Рис. 2.5.

Прикладная платформа через оба основных интерфейса к платформе предоставляет сервисы для различных применений.

Среда OSE обеспечивает функционирование ППО, используя определенные правила, компоненты, методы сопряжения элементов системы (Plug Compatibility) и модульный подход к разработке программных и информационных систем. Достоинствами модели являются выделение внешней среды в самостоятельный элемент, имеющий определенные функции и соответствующий интерфейс, и возможность ее применения для описания систем, построенных на основе архитектуры "клиент-сервер". Относительный недостаток - еще не все требуемые спецификации представлены на уровне международных гармонизированных стандартов.

Работа сети заключается в передаче данных от одного компьютера к другому. В этом процессе можно выделить несколько отдельных задач:

· Распознать данные (выбрать данные для передачи из файловой системы);

· Разбить данные на управляемые блоки (сообщение – на пакеты);

· Добавить информацию к каждому блоку (адрес источника, адрес приемника, информацию для синхронизации и информацию для проверки ошибок);

· Поместить данные в сеть и отправить их по указанному адресу.

Сетевая операционная система при выполнении всех задач следует строгому набору процедур. Эти процедуры называются протоколами или правилами поведения. Протоколы регламентируют каждую сетевую операцию. Стандартные протоколы позволяют программному и аппаратному обеспечению различных производителей нормально взаимодействовать.

Модель OSI (Open System Interconnection reference model – эталонная модель взаимодействия открытых систем) представляет собой набор стандартных протоколов. Она создана на основе технических предложений Международного института стандартов ISO в 1984 г.

Архитектура модели

В модели OSI сетевые функции распределены между семью уровнями. Каждому уровню соответствуют различные сетевые операции, оборудование и протоколы.

Таблица 9.1.

Модель сетевой архитектуры

На каждом уровне выполняются определенные сетевые функции, которые взаимодействуют с функциями соседних уровней, вышележащего и нижележащего. Например, Транспортный уровень должен взаимодействовать только с Сеансовым и Сетевым уровнем.

Нижние уровни – Физический и Канальный определяют физическую среду передачи данных и сопутствующие задачи (такие, как передача битов данных через плату сетевого адаптера и кабель). Самые верхние уровни определяют, каким способом осуществляется доступ приложений к услугам связи. Чем выше уровень, тем более сложную задачу он решает.

Взаимодействие уровней модели OSI

Задача каждого уровня – предоставление услуг вышележащему уровню, «маскируя» детали реализации этих услуг. При этом каждый уровень на одном компьютере работает так, будто он напрямую связан с таким же уровнем на другом компьютере. Эта логическая, или виртуальная, связь между одинаковыми уровнями показана на рис.9.9. Однако в действительности связь осуществляется между смежными уровнями одного компьютера – программное обеспечение, работающее на каждом уровне, реализует определенные сетевые функции в соответствии с набором протоколов.

Обмен данными в системах связи происходит путем их перемещения с верхнего уровня на нижний, затем транспортировки и, наконец, обратным воспроизведением на компьютере клиента в результате перемещения с нижнего уровня на верхний (см. рис.9.9).

Рис.9.9 Взаимодействие уровней сетевой модели

Рассмотрим этот процесс более подробно. Пусть приложение обращается с запросом к прикладному уровню, например к файловой службе. На основании этого запроса программное обеспечение прикладного уровня формирует сообщение стандартного формата. Обычное сообщение состоит из заголовка и поля данных. Заголовок содержит служебную информацию, которую необходимо передать через сеть прикладному уровню машины-адресата, чтобы сообщить ему, какую работу надо выполнить (заголовок должен содержать информацию о месте нахождения файла и о типе операции, которую над ним надо выполнить). Прикладной уровень направляет сообщение вниз по стеку представительному уровню.

Протокол представительного уровня на основании информации, полученной из заголовка прикладного уровня, выполняет требуемые действия и добавляет к сообщению собственную служебную информацию – заголовок представительского уровня, в котором содержатся указания для протокола представительского уровня машины адресата.

Наконец, сообщение достигает физического уровня, который передает его по линиям связи машине адресата. К этому моменту сообщение «обрастает» заголовками всех уровней. Когда сообщение по сети поступает на машину адресата, оно принимается физическим уровнем и последовательно перемещается вверх с уровня на уровень. Каждый уровень анализирует и обрабатывает заголовок своего уровня, выполняет соответствующие данному уровню функции, а затем удаляет этот заголовок и передает сообщение вышележащему уровню.

Прикладной уровень

Представляет собой окно для доступа прикладных процессов к сетевым услугам. Этот уровень обеспечивает услуги, напрямую поддерживающие приложения пользователя, такие, как программное обеспечение для передачи файлов, доступа к базам данных и электронная почта. Единица данных на этом уровне – сообщение. На данном уровне действуют протоколы: FTP (File Transfer Protocol – протокол передачи файлов), HTTP (Hyper Text Transfer Protocol – протокол передачи гипертекста), SMTP (Simple Mail Transfer Protocol – протокол передачи электронной почты), Telnet (протокол эмуляции терминала) и др.

Представительский уровень

Определяет формат, используемый для обмена данными между сетевыми компьютерами. Этот уровень можно назвать переводчиком. На компьютере-отправителе данные, поступившие от Прикладного уровня, на этом уровне переводятся в общепонятный промежуточный формат. На компьютере-получателе на этом уровне происходит перевод из промежуточного формата в тот, который используется Прикладным уровнем данного компьютера. Представительский уровень отвечает за преобразование протоколов, трансляцию данных, их шифрование, смену или преобразование применяемого набора символов (кодовой таблицы), управляет сжатием данных для уменьшения передаваемых битов.

Сеансовый уровень

Данный уровень позволяет двум приложениям на разных компьютерах устанавливать, использовать и завершать соединение, называемое сеансом. Сеансовый уровень обеспечивает синхронизацию между пользовательскими задачами посредством расстановки в потоке данных контрольных точек. Таким образом, в случае сетевой ошибки, потребуется заново передавать только данные, следующие за последней контрольной точкой. На этом уровне выполняется управление диалогом между взаимодействующими процессами, т.е. регулируется, какая из сторон осуществляет передачу, когда, как долго и т.д. на практике функции этого уровня обычно объединяют с прикладным уровнем и реализуют в одном протоколе.

Транспортный уровень

На транспортном уровне сообщения, поступающие с верхних уровней, переупаковываются: длинные разбиваются на несколько пакетов, а короткие объединяются в один. Это увеличивает эффективность передачи пакетов по сети. На пути передачи пакеты могут быть искажены/утеряны, поэтому транспортный уровень обеспечивает верхним уровням (сеансовому и прикладному) передачу данных с необходимым уровнем надежности.

Модель OSI предусматривает несколько классов сервиса, предоставляемого транспортным уровнем, которые отличаются качеством услуг:

1) срочностью передачи;

2) возможностью восстановления прерванной связи;

3) возможностью обнаружения и исправления ошибок;

4) возможностью определения потери или дублирования пакетов.

На этом уровне работают два протокола UPD и TCP, которые реализуют различные режимы доставки пакетов.

Протокол UPD (User Datagram Protocol – дейтограммный протокол) используется в том случае, когда задача надежного обмена данными либо вообще не ставится, либо решается средствами более высокого уровня (системными прикладными службами или пользовательскими приложениями).

Протокол TCP (Transmission Control Protocol – протокол установления соединения) обеспечивает гарантированную доставку пакетов. Протокол устанавливает логическое соединение между комьютерами-абонентами, что позволяет ему нумеровать пакеты, подтверждать их прием квитанциями, в случае их потери организовать повторные передачи, распознавать и уничтожать дубликаты.

Сетевой уровень

Сетевой уровень служит для образования единой транспортной системы, объединяющей несколько сетей, возможно, разных технологий. Внутри локальной сети используется адресация канального уровня – mac – адресация, для передачи пакетов между сетями такая адресация не годится. Требуется новая система адресации – структурированный IP – адрес, в котором выделяются, по крайней мере, 2 части (номер сети и номер узла в данной сети). Таким образом, на сетевом уровне термин «сеть» - это совокупность рабочих станций, соединенных по типовой технологии и использующих один из протоколов канального уровня. Это совокупность компьютеров с одинаковым номером сети.

Сети соединяются между собой с помощью маршрутизаторов, которые работают с IP – адресами. Чтобы передать пакет из одной сети в другую, необходимо выполнить несколько транзитных передач через другие сети, т.е. выполнить несколько «хопов» (hop – прыжок).

Прежде чем передавать данные каждый маршрутизатор строит таблицу маршрутизации, в которой указывается, как передавать пакет до каждой сети назначения. Для этого маршрутизатор производит обмен данными с другими маршрутизаторами, таким образом, у каждого маршрутизатора в результате образуется структура связей в сети, по которой он может выбрать маршруты. При выборе маршрутов используются критерии, которые указываются в IP – заголовке пакета.

Другие задачи сетевого уровня:

1) согласование разных технологий (трансляция пакетов);

2) преобразование IP – адреса следующего маршрутизатора в mac-адрес с тем, чтобы сформировать заголовок канального уровня при выполнении хопа;

3) если пакет передается из сети с большим значением МТИ в сеть с меньшим значением (Ethernet→Token Ring), то маршрутизатор фрагментирует пакет, т.е. разбивает его на меньшие блоки.

На сетевом уровне работают, по крайней мере, два вида протоколов:

1) Сетевые протоколы, которые непосредственно продвигают пакеты в сложной сети

IP – Internet Protocol

IPX – Internet Protocol фирмы Novell

2) Протоколы маршрутизации, которые перед отправкой пакетов собирают информацию о связях в сети и строят в итоге таблицу маршрутизации, по которой и работают сетевые протоколы.

RIP – Routing Internet Protocol; OSPF, RIP

Канальный уровень

Осуществляет передачу кадров данных от Сетевого уровня к Физическому. Кадр – это логически организованная структура, в которые можно помещать данные (см рис.9.10). Канальный уровень компьютера получателя упаковывает «сырой» поток битов, поступающих от Физического уровня, в кадры данных. Данный уровень решает задачи доступа к каналу связи, обнаруживает и корректирует ошибки с помощью CRC (остаток избыточной циклической суммы), руководит повтором передачи (в случае повреждения или потери кадров), проверкой mac – адреса. Примеры протоколов, работающих на канальном уровне: Token Ring, FDDI, Ethernet, Fast Ethernet, Gigabit Ethernet, ATM которые реализуются в персональных компьютерах, коммутаторах, маршрутизаторах, сетевых адаптерах.

Рис. 9.10 Структура кадра

Физический уровень

Этот уровень осуществляет передачу неструктурированного, «сырого» потока битов по физической среде (например, сетевому кабелю). Здесь реализуются электрический, оптический, механический и функциональный интерфейсы с кабелем. Физический уровень также формирует сигналы, которые переносят данные, поступившие от вышележащих уровней. На этом уровне определяется тип сетевого кабеля и способ его соединения с платой сетевого адаптера, в частности, количество контактов в разъемах и их функции. Кроме того, здесь определяется способ передачи данных по сетевому кабелю (Ethernet и Token Ring). Физический уровень предназначен для передачи битов (нулей и единиц) от одного компьютера к другому. Содержание самих битов на данном уровне значения не имеет. Этот уровень отвечает за кодирование данных и синхронизацию битов, гарантируя, что переданная единица будет воспринята именно как единица, а не как ноль. Данный уровень устанавливает длительность каждого бита и способ перевода бита в соответствующие электрические или оптические импульсы, передаваемые по сетевому кабелю. На физическом уровне также определяют, используется ли для передачи данных симплексный, полудуплексный или дуплексный режим связи. Он содержит подробности о сетевой топологии.

Это работа в сети с так называемыми толстыми клиентами т. При этом все вычисления происходят на серверах а клиентские компьютеры только отображают полученную из сети информацию и появляется возможность работы в сети со сверхтонкими клиентами например с небольшими мобильными устройствами. Пакет – это единица информации передаваемая между устройствами сети как единое целое. Этот уровень определяет круг прикладных задач реализуемых в данной вычислительной сети обеспечивая доступ прикладных процессов к сетевым услугам.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Лекция 10. Виды программной архитектуры сетевых информационных комплексов. Архитектура открытых систем. Основы Интернета. Службы Интернета. Подключение к Интернету

Виды программной архитектуры сетевых информационных комплексов

Крупные информационные комплексы состоят из десятков и сотен отдельных программ, которые взаимодействуют в компьютерных сетях, работая в различных видах программной архитектуры:

  • автономные приложения (работа на одном компьютере);
  • приложения в файл-серверной архитектуре. В этом варианте установленные на ряде компьютеров копии одной и той же программы за данными обращаются к серверу, хранящему файлы, доступные одновременно всем пользователям. При этом на сервере инсталлирована специальная серверная версия операционной системы. Каждое изменение общедоступного файла выделяется в транзакцию – элементарную операцию по обработке данных, позволяющую снять неоднозначность распределения содержимого в конкретный момент времени. Это работа в сети с так называемыми "толстыми" клиентами, т. е. с мощными компьютерами;
  • приложения в клиент-серверной архитектуре. В ней сервер помимо простого обеспечения доступа к данным способен еще и выполнять программы, которые берут на себя определенный объем вычислений (или, в частности, передачу не всего объёма данных, а только их изменённой части), что позволяет повысить надежность системы и снять лишнюю нагрузку с клиентских компьютеров, которые в этом случае осуществляют лишь небольшой объем вычислений. Это – работа с "тонкими" клиентами;
  • приложения в многозвенной архитектуре. Недостаток предыдущих вариантов в том, что в случае выхода сервера из строя, работа системы останавливается. Поэтому иногда в систему добавляются сервер приложений (для вычислений), сервер баз данных (для обработки запросов пользователей), сервер с программой-монитором транзакций (для оптимизации обработки транзакций). Но т. к. в большинстве все эти серверы соединены последовательно (позвенно), то выход одного из звеньев если и не останавливает систему, то сильно снижает ее производительность;
  • приложения в распределенной архитектуре. Для исключения недостатков предыдущих систем создаются специальные технологии, позволяющие создавать программу в виде набора компонентов, которые можно запускать на любом из серверов, связанных в сеть. Основное преимущество при этом в том, что при выходе из строя любого из серверов специальные программы-мониторы сразу перезапускают временно пропавший компонент на другом сервере.

Доступ к возможностям любого компонента осуществляется с произвольного клиентского места. При этом все вычисления происходят на серверах, а клиентские компьютеры только отображают полученную из сети информацию, и появляется возможность работы в сети со "сверхтонкими" клиентами, например, с небольшими мобильными устройствами. Частный случай компонентского подхода - доступ к серверным приложениям из браузеров через I n ternet .

Архитектура открытых систем

Для решения проблемы совместимости различных сетей и сетевых программных продуктов Международной организацией по стандартизации ISO (International Organization for Standardization) была разработана эталонная модель взаимодействия открытых систем OSI (Open System Interconnection).

OSI определяет процедуры передачи данных между системами, которые “открыты” друг другу благодаря совместному использованию ими одних стандартов, хотя сами системы могут быть созданы на различных технических средствах. В настоящее время OSI является наиболее популярной сетевой архитектурной моделью. Модель взаимодействия открытых систем OSI состоит из семи уровней .

Верхние уровни (с 7-го по 3-й) определяют, каким способом осуществляется доступ приложений к услугам связи. Чем выше уровень, тем более сложную задачу он решает.

Нижние уровни (1-й и 2-й) определяют физическую среду передачи данных и сопутствующие задачи, такие как передача битов данных через плату сетевого адаптера и кабель связи.

Перед передачей в сеть данные разбиваются на пакеты. Пакет – это единица информации, передаваемая между устройствами сети как единое целое. На передающей стороне пакет проходит последовательно через все уровни системы сверху вниз . Затем он передается по сетевому кабелю на компьютер получателя и опять проходит через все уровни - в обратном порядке.

Самый высокий, 7-й уровень – прикладной – обеспечивает поддержку прикладных процессов пользователей. Этот уровень определяет круг прикладных задач , реализуемых в данной вычислительной сети, обеспечивая доступ прикладных процессов к сетевым услугам.

6-й уровень – представительный – определяет формат, используемый для обмена данными в сети. Данные, поступившие от прикладного уровня, переводятся в общепринятый промежуточный формат . На компьютере получателя происходит перевод из промежуточного формата в тот, который используется прикладным уровнем данного компьютера. Представительный уровень отвечает за преобразование протоколов, шифрование и трансляцию данных.

5-й уровень – сеансовый – обеспечивает взаимодействие компьютера с сетью. На этом уровне выполняется управление диалогом в сети, т. е. проверяются права пользователя на выход в эфир, регулируется, какая из сторон осуществляет передачу, когда, как долго и т. п.

4-й уровень – транспортный – преобразует документ в форму, в которой положено передавать данные в сети, обеспечивает нарезку пакетов и их доставку в той же последовательности и без ошибок.

3-й уровень – сетевой – отвечает за адресацию сообщений и перевод логических адресов в физические адреса. На этом уровне определяется маршрут движения данных в сети от компьютера отправителя к компьютеру получателя.

2-й уровень – канальный - реализует процесс передачи данных по информационному каналу, т. е. логическому каналу, который устанавливается между компьютерами, соединенными физическим каналом. Канальный уровень обеспечивает модуляцию сигналов , полученных с сетевого уровня, обеспечивая их циркуляцию на физическом уровне. На этом уровне осуществляется управление потоком данных, обнаружение ошибок и реализация алгоритма восстановления данных при обнаружении сбоев или потерь данных. Эти функции выполняет сетевая карта или модем.

1-й уровень – физический – самый нижний в модели. На этом уровне осуществляется преобразование данных в электрические или оптические импульсы, т. е. импульсно-кодовая передача неструктурированного потока битов по физической среде (например, по сетевому кабелю). Средства физического уровня лежат за пределами компьютера – это оборудование самой сети.

На компьютере получателя информации происходит процесс восстановления данных из последовательности импульсов в документ, т. е., с нижнего уровня на самый высокий (седьмой) уровень.

Таким образом, разные уровни протокола сервера и клиента взаимодействуют друг с другом не напрямую, а виртуально – через физический уровень. Постепенно переходя с верхнего уровня на нижний, данные обрастают дополнительными данными, полнота которых анализируется протоколами соответствующих уровней, что и создает эффект виртуального взаимодействия уровней между собой.

Это очень важный момент с точки зрения компьютерной безопасности. Одновременно с данными, которые клиент поставляет серверу, передается масса служебной информации, например, текущий адрес клиента, версия его ОС, права доступа к данным и т. п. Иногда передается даже идентификационный код компьютера. Этот объем служебной информации позволяет работать многим клиентам по одному и тому же физическому каналу с несколькими серверами.

Но в этом есть и свой недостаток , который используют такие разновидности вирусов, как "троянские" программы. Внедряясь в компьютер, она не производит разрушительных действий на компьютере, и поэтому легко маскируется. Но во время сеансов связи она создает виртуальные соединения для передачи сведений о компьютере, на котором установлена.

Это очень важный момент с точки зрения снижения компьютерной безопасности, т. к. одновременно с данными, которые клиент поставляет серверу, им передается масса служебной информации, например, текущий адрес клиента, версия его ОС, права доступа к данным, в том числе иногда и идентификационный код компьютера.

Основы Интернета

Internet - это объединение сетей или всемирная (глобальная) компьютерная сеть, в которой происходит непрерывная циркуляция данных. Его можно сравнить с теле- или радиоэфиром, с той лишь разницей, что в Интернете данные могут храниться. Хранение обеспечивают узлы сети (WEB -серверы ).

Начало создания Internet  в 1964 году, а вторым рождением можно считать внедрение в 1983 г. протокола TCP/IP , лежащего в основе Internet и сейчас.

Во второй половине 80-х годов произошло деление всемирной сети на домены по принципу принадлежности, например, домен com – коммерческий, развивался за счет собственных ресурсов. Затем появились национальные домены (uk – домен Великобритании, ru -домен России).

Протокол TCP/IP  это два протокола или стек протоколов, лежащих в разных уровнях:

TCP (Transmission Control Protocol )  протокол транспортного уровня , он управляет передачей данных, образуя стандартные пакеты данных;

IP (Internet Protocol )  адресный протокол, он принадлежит сетевому уровню и определяет адрес , куда происходит передача.

Адрес каждого компьютера в Internet уникален. Он записывается 4-мя байтами, т. е. 256 4 , или более чем четырьмя миллиардами (от 0.0.0.0 до 255.255.255.255),

Например, 195.38.46.11.

Однако с развитием мобильных средств связи этого скоро будет недостаточно.

Решением вопросов о том, как оптимизировать путь доставки данных, что считать "ближе" или "дальше" занимаются маршрутизаторы  специализированные компьютеры или программы, работающие на узловых серверах сети.

Пара программ Интернета, взаимодействующих между собой по стандартным правилам  протоколам называется службой . Одна из программ этой пары называется сервером, а вторая  клиентом. Таким образом, работа служб Интернета  это взаимодействие серверного оборудования и ПО и клиентского оборудования и ПО. Протоколы служб Интернета (сервер - клиент) называются прикладными протоколами.

Для передачи файлов в Internet используются прикладными протоколы:

  • HTTP (Hypertext Transfer Protocol –протокол передачи гипертекста) – протокол, регламентирующий процесс пересылки документов HTML по сети Inte r net , где HTML – Hypertext Markup Language – гипертекстовый язык разметки. Например: http :// www ....
  • FTP (File Transfer Protocol ), специальный прикладной протокол, регламентирующий процесс пересылки непосредственно файлов, например, файлов программ, архивов и т. п. с одного компьютера на другой в сети Internet . Он более низкоуровневый, не требует загрузки HTML -документов. Соответственно, чтобы получить соединение, необходимо на компьютере иметь программу FTP-клиент и установить связь с сервером, предоставляющим услуги FTP (FTP-сервером).

При использовании протокола FTP адрес выглядит как:

ftp :/// address , где addre ss – адрес папки или файла, например,

ftp :/// c :/Мои документы/Титульный лист. doc

Службы Интернета

  1. Служба передачи файлов (FTP ), обеспечивающая прием и передачу файлов, составляет значительный процент от всего объема Интернет-услуг. Она имеет свои серверы в мировой сети, где хранятся архивы данных. Протокол FTP работает одновременно с двумя TCP -соединениями между сервером и клиентом: по одному идет передача данных, а второе соединение используется как управляющее.
  2. Служба имен доменов (DNS – Domain Name System ) занимается переводом цифровых имен компьютеров в доменные имена (буквенные), например, имя сетевого компьютера может выглядеть и как 195.28.132.97, а в доменном выражении, как www . echo . msk . ru . Доменное имя запоминается легко, в него, как правило, вложено какое-то смысловое содержание. Для автоматической работы в сети Inte r net оно преобразуется в связанный с ним четырехбайтный цифровой IP -адрес.
  3. Служба WWW (World Wide Web) – единое информационное пространство, состоящее из сотен миллионов взаимосвязанных электронных документов, хранящихся на Web-серверах. Это служба поиска и просмотра гипертекстовых документов, включающих в себя графику, звук и видео.

WWW – самая популярная из служб Интернета. Её часто отождествляют с самим Интернетом, но это лишь одна из его многочисленных служб.

Отдельные документы называются Web-страницами.

Группы тематически объединенных Web-страниц называют Web-узлами или сайтами . Для поиска информации (сайтов) в сети Internet в нашей стране и за рубежом используется ряд информационно-поисковых систем. Из отечественных наиболее известны поисковые системы: Yandex, Google, Mail, Rambler, а из зарубежных: – Google, Yahoo!, Bing, Alexa и др.

Поиск информации в сети Internet этими системами производится по запросам.

Простейшие запросы состоят из одного или нескольких слов на русском или английском языках, либо на другом языке, на котором записаны искомые документы.

Результатом поиска в сети Internet являются списки названий и адресов гипертекстов, отвечающих заданным запросам.

Указанные поисковые системы еженедельно просматривают все серверы в сети Internet и индексируют все найденные гипертексты, запоминая их адреса и встречающиеся в них ключевые слова и словосочетания. В результате по запросам может быть найдена любая информация, представленная в сети Internet.

Физический Web-сервер может содержать множество Web-узлов (сайтов) каждый из которых является каталогом Web-страниц на жестком диске сервера.

Web-страницы используют для отображения гипертекста и отличаются от обычных текстовых документов тем, что они оформлены без привязки к конкретному материальному носителю (например, к печатному листу, имеющему конкретную высоту и ширину). Оформление Web-страниц осуществляется непосредственно во время их воспроизведения на экране компьютера клиента в соответствии с настройками программы, выполняющей просмотр.

Гипертекст (HTML) – совокупность страниц с текстами, картинками и ссылками на другие страницы. Ссылки могут относиться как к страницам текущего сайта, так и к страницам любого другого сайта, хранящегося в данном компьютере либо даже на другом сервере, зарегистрированном в сети Internet.

Программы для просмотра Web-страниц называются браузерами (Internet Explorer, Google Chrome, Opera, Mozilla Firefox, Safari, Yandex и т. п). Браузер обеспечивает отображение документа на экране, руководствуясь командами, которые автор вложил в его текст. Такие команды называются тегами. От обычного текста они отличаются тем, что заключены в угловые скобки. Большинство тегов используется парами: тег открывающий и тег закрывающий.Закрывающий тег начинается с прямого слэша (/).

Пример фразы гипертекста:

< CENTER > Этот текст должен выравниваться по центру экрана . Правила записи тегов содержатся в спецификации языка разметки гипертекста HTML .

Таким образом, Web -документ – это текст, размеченный тегами HTML .

При отображении HTML -документа на экране теги не показываются, и виден только текст, составляющий документ. Однако оформление этого текста (выравнивание, цвет и размер шрифта и т. п.) выполняются в соответствии с внедренными тегами.

Наиболее важной функцией Web-страниц, реализуемой с помощью тегов, являются гипертекстовые ссылки. С любым фрагментом текста или рисунком можно связать с помощью гиперссылки любой другой Web -документ. Его вызов осуществляется однократным щелчком левой кнопкой на тексте или рисунке, имеющем гиперссылку.

Адрес любого файла в Интернете определяется унифицированным показателем ресурса – URL (Uniform resource locator). Он состоит из 3-х частей:

  • указание службы, обеспечивающей доступ к данному ресурсу (обычно это имя прикладного протокола, соответствующего данной службе). Например, для службы WWW прикладным является протокол HTTP. После имени протокола ставится двоеточие и два знака "прямой слеш" (//): http://www....;
  • указание доменного имени компьютера (сервера), на котором хранится данный ресурс:

http://www.microsoft.com /rus...;

  • указание полного пути доступа к файлу на данном компьютере (сервере),

http://www.microsoft.com/rus/Документы/Новые/Книга.7z,

где http://www.microsoft.com/rus (адрес русскоязычной части сайта (Web-узла Microsoft).

При наборе URL важно соблюдать регистр.

  1. Служба IRC (Internet Relay Chat – сетевой переключаемый разговор) предназначена для прямого общения нескольких человек в режиме реального времени. Иногда ее называют чат-конференциями или просто чатом . Особенность чата в том, что общение происходит только в пределах одного канала, в работе которого принимает участие ограниченный круг участников. Каждый пользователь может создать свой собственный канал и пригласить в него участников беседы или присоединиться к одному из открытых в данный момент каналов.
    1. Служба ICQ (поиск сетевого IP-адреса компьютера, подключенного к Интернету в данный момент). IP-адрес компьютера может быть как постоянным, так и временным.

Большинство пользователей используют динамический временный IP-адрес, действующий только на время сеанса. В различных сеансах динамический IP-адрес может быть заранее неизвестно каким.

После регистрации на сервере службы ICQ пользователь получает персональный идентификационный номер UIN (Universal Internet Number), который он сообщает партнерам по контактам. Зная UIN партнера, можно отправить ему сообщение через сервер службы, не зная его текущего IP-адреса. После установления контакта связь происходит в режиме, аналогичном сервису IRC.

  1. Служба электронной почты (E-mail), которая обеспечивается почтовыми серверами Интернета.

Почтовым сервером может быть как компьютер, так и программа. При этом узловой сервер Интернета может выполнять функции нескольких серверов (вариант распределённой архитектуры), обеспечивая работу различных служб.

Почтовые серверы получают сообщения от сообщения от клиентов и передают их по цепочке к почтовым серверам адресатов, где накапливаются. Передача данных с почтового сервера адресата происходит автоматически в момент установления соединения с адресатом. В Windows для этого может использоваться программа Microsoft Outlook.

Подключение к Интернету

Для подсоединения к Интернету необходимо:

  • физически подключить PC к одному из узлов WEB с помощью модема или сетевой карты. В настоящее время сетевая карта стала настолько доступной, что её интегрируют в системную плату. Если карты нет, то придется воспользоваться внешним PCI адаптером. Сетевая карта должна соответствовать стандарту Realtek 10/100;
  • получить IP-адрес на постоянной или временной основе;
  • установить и настроить программное обеспечение по пути: "Пуск" – "Панель управления" – "Сеть и Интернет" – "Подключение к сети" и далее следовать указаниям Мастера установки.

Поставщиками интернет-услуг являются сервис-провайдеры.

PAGE 7

Другие похожие работы, которые могут вас заинтересовать.вшм>

13766. 94.07 KB
Для ее достижения необходимо выполнить следующие задачи: изучить историю развития Сети и ее нынешнее состояние в целом; оценить соответствие Интернетресурсов понятию источник информационного обеспечения научных исследований; исследовать пути совершенствования поиска в Сети со стороны исследователей и выделить основное направление возможного преображения Всемирной паутины разрабатываемое учеными. Практическая значимость работы заключается в освещении путей более качественного поиска в Сети и основного направления ее развития....
20402. Различные виды систем: основы существования 57.08 KB
Организации представляют собой группу наиболее старых общественных образований на Земле. Организационная система - это определённая совокупность внутренне взаимосвязанных частей организации формирующая некую целостность. Хотя организации распадаются на отдельные части или составные элементы они сами являются подсистемами в рамках более крупной системы.
4166. Эталонная модель взаимодействия открытых систем 77.5 KB
Эталонная модель OSI стала основной архитектурной моделью для систем передачи сообщений. При рассмотрении конкретных прикладных телекоммуникационных систем производится сравнение их архитектуры с моделью OSI/ISO. Эта модель является наилучшим средством для изучения современной технологии связи.
8262. Понятие об информационных системах и автоматизации информационных процессов. Возможности настольных издательских систем: создание, организация и основные способы преобразования (вёрстки) текста 36.19 KB
Системы значительно отличаются между собой как по составу так и по главным целям. Система Элементы системы Главная цель системы Фирма Люди оборудование материалы здания и др. Информационные системы обеспечивают сбор хранение обработку поиск выдачу информации необходимой в процессе принятия решений задач из любой области. В основе любой информационной системы лежит структурированный набор данных структура данных.
15973. Техническое обслуживание и ремонт компьютерных систем и комплексов 569.38 KB
Вначале практики проходил инструктаж по технике безопасности. После прохождения инструктажа, проходило ознакомление с деятельностью данного предприятия и изучение его работы, а также закрепление и углубление полученных знаний в ходе учебных занятий.
8033. ИНФОРМАЦИОННЫЕ РЕСУРСЫ КОРПОРАТИВНЫХ ИНФОРМАЦИОННЫХ СИСТЕМ 111.06 KB
Источники информации в информационной системе. Весь процесс производства с точки зрения информатики представляет собой непрерывный процесс порождения обработки изменения хранения и распространения информации. Современное предприятие можно рассматривать как эффективный информационный центр источниками информации которого являются внешняя и внутренняя деловая среда.
20231. Рассмотрение сущности автоматизированных информационных систем 205.41 KB
Информационная система - это система, обеспечивающая уполномоченный персонал данными или информацией, имеющими отношение к организации. Информационная система управления, в общем случае, состоит из четырех подсистем: системы обработки транзакций, системы управленческих отчетов, офисной информационной системы и системы поддержки принятия решений, включая информационную систему руководителя, экспертную систему и искусственный интеллект.
17304. Использование информационных технологий и систем при проведении выборов в РФ 271.03 KB
Выборы являются формой реализации и защиты гражданами собственных экономических и социальных интересов. Поэтому угрозы чрезвычайных ситуаций в избирательном процессе являются угрозами политической и социальной стабильности общества, а следовательно – угрозами национальной безопасности России.
7414. ИСПОЛЬЗОВАНИЕ ИНФОРМАЦИОННЫХ СИСТЕМ В УПРАВЛЕНИИ МЕЖДУНАРОДНЫМ БИЗНЕСОМ 1.03 MB
Изучить методические принципы организации современных информационных систем в международном бизнесе. Представить принципы формирования структуры и функциональных возможностей информационной системы управления бизнесом. Показать возможности развития интегрированной информационной системы управления международной компанией...
20540. Проектирование информационных систем “Ломбард” в Microsoft Access 540.68 KB
В пакете программ MSOffice есть очень удобная и, в то же время, функциональная программа – MSAccess. Она позволяет создавать базу данных в виде взаимосвязанных таблиц, извлекать информацию из этих таблиц в виде запросов и отчетов. Кроме того, программа позволяет создавать пользовательский интерфейс для ввода и изменения информации в таблицах – для этого есть формы.