Устройство преобразует переменный ток постоянный. Преобразовательные устройства в системах электроснабжения. Обозначение тока и применение его в быту

Хотя, как мы уже указывали, в технике применяется преимущественно переменный ток, однако в ряде случаев бывает необходимо иметь постоянный ток. Такой ток необходим, например, для питания радиоприемных и радиопередающих устройств, телевизоров, для зарядки аккумуляторов, для электролитического получения металлов, для приведения в действие двигателей трамваев, троллейбусов и электропоездов и для многих других целей. Поэтому очень важное техническое значение имеют устройства, позволяющие превращать переменный ток в постоянный, или, как принято говорить, выпрямлять его.

В основе действия всех устройств такого рода – выпрямителей – лежит применение так называемых электрических вентилей, т. е. приборов, которые пропускают ток в одном направлении и не пропускают его в противоположном направлении. С одним из таких вентилей мы уже знакомы. Это – двухэлектродная лампа с накаленным катодом (§ 106). Если мы включим такую лампу в сеть переменного тока последовательно с нагрузкой, для питания которой нам нужен постоянный ток (рис. 315), то ток будет проходить через цепь только в тот полупериод, когда накаленная нить будет катодом, а холодная пластинка – анодом. В следующий полупериод, когда холодная пластинка служит катодом, а раскаленная нить – анодом, ток проходить не может, потому что испускаемые нитью электроны не будут притягиваться полем к пластинке, а, наоборот, будут отталкиваться обратно к нити. Поэтому ток в нагрузке будет прямым, т. е. направление его меняться не будет. Форма такого пульсирующего прямого тока показана на рис. 316. Эта схема выпрямления переменного тока носит название однополупериодной.

Рис. 315. Схема однополупериодного выпрямителя

Рис. 316. Форма тока при однополупериодном выпрямлении

Чтобы сгладить колебания силы тока в цепи, применяют более сложную, двухполупериодную, схему выпрямления, показанную на рис. 317. Здесь сетевое напряжение подводят к первичной обмотке трансформатора, а середину вторичной обмотки соединяют с отдельным зажимом. Ясно, что в течение одного полупериода зажим имеет относительно средней точки более высокий потенциал, т. е. является по отношению к ней плюсом, а точка – минусом. В течение следующего полупериода, наоборот, плюсом по отношению к средней точке будет точка , а минусом – точка .

Рис. 317. Схема двухполупериодного выпрямителя

Крайние точки трансформатора и присоединяют к анодам двух выпрямительных ламп, катоды которых соединены между собой и накаливаются отдельной батареей или отдельной понижающей обмоткой на трансформаторе. Нагрузка, как это видно из рис. 317, включается между средней точкой трансформатора и катодами обеих выпрямительных ламп. В течение того полупериода, когда точка положительна по отношению к точке , а точка – отрицательна, ток проходит только через первую лампу, а вторая заперта, т. е. не пропускает тока. В течение следующего полупериода лампы меняются ролями: первая лампа заперта, и ток проходит только через вторую. Направления этих токов отмечены на рис. 317 стрелками. Мы видим, что через нагрузку ток проходит в течение обоих полупериодов в одном и том же направлении. Форма этого тока показана на рис. 318 штриховой линией.

Рис. 318. Форма тока при двухполупериодном выпрямлении

Чтобы еще больше сгладить пульсации выпрямленного тока, применяют так называемые фильтры. Простейшим фильтром является конденсатор достаточно большой емкости, включенный параллельно нагрузке. Этот конденсатор, показанный штриховой линией на рис. 315, заряжается в тот полупериод, когда через выпрямительную лампу проходит ток, и разряжается через приемник энергии в течение следующего полупериода, поддерживая в нем, таким образом, ток в течение всего периода.

Еще более совершенным является фильтр, состоящий из катушки с железным сердечником, обладающей большой индуктивностью, и двух конденсаторов. Катушка включается последовательно с приемником энергии, а конденсаторы – параллельно ему: один – перед катушкой, другой после нее (рис. 317). Э. д. с. самоиндукции в катушке противодействует изменениям тока. Она ослабляет его во время нарастания и поддерживает во время убывания. Форма сглаженного тока показана на рис. 318 сплошной ломаной линией.

Двухэлектродные вакуумные выпрямительные лампы с накаленными катодами называют кенотронами (§ 106). Они получили очень широкое распространение в радиоприемниках, телевизорах и других радиоустройствах.

Кенотроны могут пропускать через себя лишь сравнительно слабые токи, до нескольких десятков миллиампер. В тех случаях, когда нужно выпрямлять большие токи (до 50 А), вместо кенотронов применяют так называемые газотроны (рис. 319). Это тоже двухэлектродная лампа с накаленным катодом и металлическим или угольным анодом, но в отличие от кенотрона, внутри которого воздух по возможности полностью откачан, колба газотрона заполнена парами ртути или инертным газом. Электроны, вылетающие из накаленного катода, на своем пути к аноду ионизуют при соударениях атомы ртути. Появляющиеся при этом положительные ионы способствуют увеличению эмиссии с катода, так что ток через газотрон может быть значительно больше, чем через кенотрон.

Рис. 319. Газотрон: а) внешний вид; б) условное обозначение

Наконец, в тех случаях, когда требуется выпрямить токи очень больших мощностей (до 200 А при напряжении до 50 кВ), в качестве вентилей применяют так называемые ртутные выпрямители. Они представляют собой большие стеклянные или металлические колбы (рис. 320), в которых происходит дуговой разряд в парах ртути между катодом 1 (жидкая ртуть) и графитовыми электродами 2 и 3, впаянными в боковые отростки. Дополнительные электроды 4 и 5 включены в устройство, обеспечивающее работу выпрямителя при малых нагрузках. Ртуть в дополнительном отростке 6 служит для зажигания дуги. Дуга в колбе может гореть только тогда, когда жидкая ртуть является катодом. При этом на поверхности ртути образуется ярко светящееся пятно, представляющее собой нагретый участок ртути. С этого участка происходит усиленное испарение ртути, пары которой при высоком давлении заполняют всю колбу. Это же пятно является и источником электронов, которые движутся под действием электрического поля к тому из электродов 2 и 3, который в данное время положителен по отношению к ртути и другому аноду.

Рис. 320. Устройство ртутного выпрямителя

Такой выпрямитель включается по схеме двухполупериодного выпрямления, и дуга горит в течение одного полупериода между катодом 1 и анодом 2, а в течение другого – между катодом 1 и анодом 3. При этом в нагрузке ток идет все время в одном и том же направлении. Такими ртутными выпрямителями оборудованы, в частности, почти все подстанции, питающие электрические железные дороги, трамваи и троллейбусы.

Наряду с описанными электронными или газоразрядными выпрямителями в последнее время получили более широкое распространение твердые или полупроводниковые выпрямители, о которых было сказано в гл. IX. Их включают в выпрямительные устройства по тем же схемам одно- и двухполупериодиого выпрямления, как газотроны или кенотроны.

На чертежах полупроводниковые вентили принято обозначать условным знаком, изображенным на рис. 321. Направление острия указывает направление пропускания тока. Иными словами, устройство, обозначенное этим знаком, пропускает ток только тогда, когда электрод, изображенный треугольником, является анодом (плюсом), а электрод, изображаемый пластинкой, – катодом (минусом).

Рис. 321. Условное обозначение полупроводниковых электрических вентилей

Преобразователем напряжения называется устройство, которое изменяет вольтаж цепи. Это электронный прибор, который используется для изменения величины входного напряжения устройства. Преобразователи напряжениямогут повышать или понижать входное напряжение, в том числе менять величину и частоту первоначального напряжения.

Необходимость применения данного устройства преимущественно возникает в случаях, когда необходимо использовать какой-либо электрический прибор в местах, где невозможно использовать имеющиеся стандарты или возможности электроснабжения. Преобразователи могут использоваться в виде отдельного устройства либо входить в состав систем бесперебойного питания и источников электрической энергии. Они широко применяются во многих областях промышленности, в быту и других отраслях.

Устройство

Для преобразования одного уровня напряжения в иное часто используют импульсные преобразователи напряжения с применением индуктивных накопителей энергии. Согласно этому известно три типа схем преобразователей:

  • Инвертирующие.
  • Повышающие.
  • Понижающие.

Общими для указанных видов преобразователей являются пять элементов:

  • Ключевой коммутирующий элемент.
  • Источник питания.
  • Индуктивный накопитель энергии (дроссель, катушка индуктивности).
  • Конденсатор фильтра, который включен параллельно сопротивлению нагрузки.
  • Блокировочный диод.

Включение указанных пяти элементов в разных сочетаниях дает возможность создать любой из перечисленных типов импульсных преобразователей.

Регулирование уровня выходящего напряжения преобразователя обеспечивается изменением ширины импульсов, которые управляют работой ключевого коммутирующего элемента. Стабилизация выходного напряжения создается методом обратной связи: изменение выходного напряжения создает автоматическое изменение ширины импульсов.

Типичным представителем преобразователя напряжения также является трансформатор. Он преобразует переменное напряжение одного значения в переменное напряжение иного значения. Данное свойство трансформатора широко применяется в радиоэлектронике и электротехнике.

Устройство трансформатора включает следующие элементы:

  • Магнитопровод.
  • Первичная и вторичная обмотка.
  • Каркас для обмоток.
  • Изоляция.
  • Система охлаждения.
  • Иные элементы (для доступа к выводам обмоток, монтажа, защиты трансформатора и так далее).

Напряжение, которое будет выдавать трансформатор на вторичной обмотке, будет зависеть от витков, которые имеются на первичной и вторичной обмотке.

Существуют и иные виды преобразователей напряжения, которые имеют иную конструкцию. Их устройство в большинстве случаев выполнено на полупроводниковых элементах, так как они обеспечивают значительный коэффициент полезного действия.

Принцип действия

Преобразователь напряжение вырабатывает напряжение питания необходимой величины из иного питающего напряжения, к примеру, для питания определенной аппаратуры от аккумулятора. Одним из главных требований, которые предъявляются к преобразователю, является обеспечение максимального коэффициента полезного действия.

Преобразование переменного напряжения легко можно выполнить при помощи трансформатора, вследствие чего подобные преобразователи постоянного напряжения часто создаются на базе промежуточного преобразования постоянного напряжения в переменное.

  • Мощный генератор переменного напряжения, который питается от источника исходного постоянного напряжения, соединяется с первичной обмоткой трансформатора.
  • Переменное напряжение необходимой величины снимается с вторичной обмотки, которое потом выпрямляется.
  • В случае необходимости постоянное выходное напряжение выпрямителя стабилизируется при помощи стабилизатора, который включен на выходе выпрямителя, либо с помощью управления параметрами переменного напряжения, которое вырабатывается генератором.
  • Для получения высокого кпд в преобразователях напряжения используются генераторы, которые работают в ключевом режиме и вырабатывают напряжение с использованием логических схем.
  • Выходные транзисторы генератора, которые коммутируют напряжение на первичной обмотке, переходят из закрытого состояния (ток не течет через транзистор) в состояние насыщения, где на транзисторе падает напряжение.
  • В преобразователях напряжения высоковольтных источников питания в большинстве случаев применяется эдс самоиндукции, которая создается на индуктивности в случаях резкого прерывания тока. В качестве прерывателя тока работает транзистор, а первичная обмотка повышающего трансформатора выступает индуктивностью. Выходное напряжение создается на вторичной обмотке и выпрямляется. Подобные схемы способны вырабатывать напряжение до нескольких десятков кВ. Их часто применяют для питания электронно-лучевых трубок, кинескопов и так далее. При этом обеспечивается кпд выше 80%.

В иды

Преобразователи можно классифицировать по ряду направлений.

Преобразователи напряжения постоянного тока:

  • Регуляторы напряжения.
  • Преобразователи уровня напряжения.
  • Линейный стабилизатор напряжения.

Преобразователи переменного тока в постоянный:

  • Импульсные стабилизаторы напряжения.
  • Блоки питания.
  • Выпрямители.

Преобразователи постоянного тока в переменный:

  • Инверторы.

Преобразователи переменного напряжения:

  • Трансформаторы переменной частоты.
  • Преобразователи частоты и формы напряжения.
  • Регуляторы напряжения.
  • Преобразователи напряжения.
  • Трансформаторы разного рода.

Преобразователи напряжения в электронике в соответствии с конструкцией также делятся на следующие типы:

  • На пьезоэлектрических трансформаторах.
  • Автогенераторные.
  • Трансформаторные с импульсным возбуждением.
  • Импульсные источники питания.
  • Импульсные преобразователи.
  • Мультиплексорные.
  • С коммутируемыми конденсаторами.
  • Бестрансформаторные конденсаторные.

Особенности

  • При отсутствии ограничений по объему и массе, а также при высоком значении питающего напряжения преобразователи рационально использовать на тиристорах.
  • Полупроводниковые преобразователи на тиристорах и транзисторах могу быть регулируемыми и нерегулируемыми. При этом регулируемые преобразователи могут применяться как стабилизаторы переменного и постоянного напряжения.
  • По способу возбуждения колебаний в устройстве могут быть схемы с независимым возбуждением и самовозбуждением. Схемы с независимым возбуждением выполняются из усилителя мощности и задающего генератора. Импульсы с выхода генератора направляются на вход усилителя мощности, что позволяет управлять им. Схемы с самовозбуждением – это импульсные автогенераторы.

Применение

  • Для распределения и передачи электрической энергии. На электростанциях генераторы переменного тока обычно вырабатывается энергия напряжением 6-24 кВ. Для передачи энергии на дальние расстояния выгодно использовать большее напряжение. Вследствие этого на каждой электростанции ставят трансформаторы, повышающие напряжение.
  • Для различных технологических целей: электротермических установок (электропечные трансформаторы), сварки (сварочные трансформаторы) и так далее.
  • Для питания различных цепей;

Автоматики в телемеханике, устройств связи, электробытовых приборов;
радио- и телевизионной аппаратуры.

Для разделения электрических цепей данных устройств, в том числе согласования напряжений и так далее. Трансформаторы, применяемые в данных устройствах, в большинстве случаев имеют малую мощность и невысокое напряжение.

  • Преобразователи напряжения практически всех типов широко применяются в быту. Блоки питания многих бытовых приборов, сложных электронных устройств, инверторные блоки широко используются для обеспечения требуемого напряжения и обеспечения автономного энергоснабжения. К примеру, это может быть инвертор, который может быть использован для аварийного или резервного источника питания бытовых приборов (телевизор, электроинструмент, кухонная техника и так далее), потребляющих переменный ток напряжением 220 Вольт.
  • Наиболее дорогими и востребованными в медицине, энергетике, военной сфере, науке и промышленности являются преобразователи, которые имеют выходное переменное напряжение с чистой формой синусоиды. Подобная форма пригодна для работы устройств и приборов, которые имеют повышенную чувствительность к сигналу. К ним можно отнести измерительную и медицинскую аппаратуру, электрические насосы, газовые котлы и холодильники, то есть оборудование, в составе которых имеются электромоторы. Преобразователи часто необходимы и для продления времени службы оборудования.

Достоинства и недостатки

К достоинствам преобразователей напряжения можно отнести:

  • Обеспечение контроля входного и выходного режима тока. Эти устройства трансформируют переменный ток в постоянный, служат в качестве распределителей напряжения постоянного тока и трансформаторов. Поэтому их часто можно встретить в производстве и быту.
  • Конструкция большинства современных преобразователей напряжения имеет возможность переключения между разным входным и выходным напряжением, в том числе предполагает выполнение подстройки выходного напряжения. Это позволяет подбирать преобразователь напряжения под конкретный прибор или подключаемую нагрузку.
  • Компактность и легкость бытовых преобразователей напряжения, к примеру, автомобильных преобразователей. Они миниатюрны и не занимают много места.
  • Экономичность. КПД преобразователей напряжения достигает 90%, благодаря чему существенно экономится энергия.
  • Удобство и универсальность. Преобразователи позволяют подключать быстро и легко любой электроприбор.
  • Возможность передачи электроэнергии на дальние расстояния благодаря повышению напряжения и так далее.
  • Обеспечение надежной работы критических узлов: охранных систем, освещения, насосов, котлов отопления, научного и военного оборудования и так далее.

К недостаткам преобразователей напряжения можно отнести:

  • Восприимчивость преобразователей напряжения к повышенной влажности (кроме преобразователей, специально созданных для работы на водном транспорте).
  • Занимают некоторое место.
  • Сравнительно высокая цена.

— устройство, преобразовывающее переменный ток одного в переменный ток другого напряжения. Он состоит из катушек (или обмоток), которые наматываются на каркас с помощью изолированного провода. Размещены катушки на магнитопроводе из пластин специальной стали. Вряд ли можно найти электронное устройство, где не использовался бы электрический трансформатор. Он является также одной из основных составляющих в системе подачи электроэнергии на расстояние. В основу работы трансформатора положено открытие Фарадеем в 1831 году электромагнитной индукции. Правда, главное свойство трансформатора — преобразование токов и напряжений откроют значительно позже.

Французским изобретателем Г. Румкорфом была создана в 1852 году индукционная катушка — прообраз первого трансформатора. С помощью катушки он получил колебания тока высокого напряжения. Для превращения постоянного тока, не поддающегося трансформации, в переменный, изобретатель включил прерыватель последовательно с первичной катушкой. При замыкании во вторичной обмотке напряжение выше первичного в таком соотношении, в каком было количество витков во вторичной обмотке по отношению к первичной. При размыкании тока первичной обмотки возникало еще большее напряжение во вторичной. Чем быстрее размыкание, тем больше его величина. В роли прерывателя была пружинная пластинка. Она размыкала цепь, притянутая сердечником катушки. На частоту прерываний влияла масса и упругость пружины, напряжение батареи. Практическое применение индукционные катушки получили лишь в 70-х годах.

Датой рождения трансформатора принято считать 30 ноября 1876 года. В этот день русскому ученому П. Н. Яблочкову вручили патент на трансформатор с разомкнутым сердечником катушки. Сердечником был стержень, на который были намотаны обмотки. Столкнувшись с проблемой «дробления» электричества, Яблочков предложил решить проблему с помощью индукционных катушек. При таком соединении в цепь включались последовательно первичные обмотки катушек, работавшие в режиме трансформатора, и выдавали необходимое напряжение на выходе. Во вторичную обмотку включали одну, две и более свечей. При потухании одной лампы цепь не разрывалась и другие свечи продолжали гореть. В 1882 году изобретатели Голяр и Гиббс запатентовали трансформатор, используемый также и для преобразования напряжения. Вскоре было отмечено, что можно повысить КПД и уменьшить потери энергии, насадив на единый сердечник вторичную и первичную катушки.

Трансформатор с замкнутым сердечником был впервые создан братьями Гопкинсонами в 1884 году. Сердечник набирался из стальных полос или проволок, которые разделялись изоляционным материалом. Это помогало уменьшить потери энергии. На сердечник поочередно размещали катушки высшего напряжения и низшего. В 1885 году электротехник Дери запатентовал параллельный способ включения трансформаторов в цепь. Это стало началом массового выпуска трансформаторов однофазного тока. Благодаря изобретенному Свинберном в конце 80-х способу масляного охлаждения трансформатора возросла надежность обмоток.

Русским ученым Доливо-Добровольским в 1889 году была предложена система трехфазного переменного тока и был изобретен первый трехфазный трансформатор. Конструкция трехфазного трансформатора с расположенными в одной плоскости параллельными стержнями оказалась довольно удачной и сохранилась без существенных изменений до наших дней. Трансформаторы находят сегодня широчайшее использование в быту и промышленности. Силовые электрические трансформаторы передают переменный ток на огромные расстояния по линиям электропередач. Существуют трансформаторы-карлики, которые применяют в телевизорах, радиоприемниках, телефонных аппаратах, магнитофонах и т.д.

Электрическая энергия вырабатывается на электростанциях и распределяется главным образом в виде переменного тока промышленной частоты. Однако большое количество в промышленности требует для своего питания другие виды электроэнергии.

Чаще всего требуется:

  • (электрохимические и электролизные ванны, электропривод постоянного тока, электрический транспорт и подъемные устройства, электросварочные агрегаты);
  • непромышленной частоты ( , регулируемый привод переменного тока).

В связи с этим возникает необходимость а преобразовании переменного тока в постоянный (выпрямленный) ток, или в преобразовании переменного тока одной частоты в переменный ток другой частоты. В системах передачи электрической энергии, в тиристорном электроприводе постоянного тока, возникает потребность в преобразовании постоянного тока в переменный (инвертирование тока) в месте потребления.

Данные примеры охватывают не все случаи, когда требуется преобразовывать электрическую энергию одного вида в другой. Более трети всей вырабатываемой электроэнергии преобразуется в другой вид энергии, поэтому технический прогресс во многом связан с успешным развитием преобразовательных устройств (преобразовательной техники).

Классификация устройств преобразовательной техники

Удельный вес устройств преобразовательной техники в энергетическом балансе страны занимает значительное место. Преимущества полупроводниковых преобразователей , по сравнению с другими видами преобразователей, неоспоримы. Основные преимущества заключаются в следующем:

Полупроводниковые преобразователи обладают высокими регулировочными и энергетическими показателями;

Имеют малые габариты и массу;

Просты и надежны в эксплуатации;

Обеспечивают бесконтактную коммутацию токов в силовых цепях.

Благодаря указанным преимуществам полупроводниковые преобразователи получили широкое применение: цветной металлургии, химической промышленности, на железнодорожном и городском транспорте, в черной металлургии, машиностроении, энергетике и других отраслях.

Дадим определения основных видов преобразовательных устройств .

Выпрямитель – это устройство для преобразования переменного напряжения в постоянное напряжение (U~ → U=).

Инвертором называют устройство для преобразования постоянного напряжения в переменное напряжение (U= → U~).

Преобразователь частоты служит для преобразования переменного напряжения одной частоты в переменное напряжение другой частоты (Uf1 → Uf2).

Преобразователь переменного напряжения (регулятор) предназначен для изменения (регулирования) подводимого к нагрузке напряжения, т.е. преобразует переменное напряжение одной величины в переменное напряжение другой величины (U1~ → U2~).

Здесь названы наиболее широко применяемые типы устройств преобразовательной техники . Имеется ряд преобразовательных устройств, предназначенных для преобразования (регулирования) величины постоянного тока, числа фаз преобразователя, формы кривой напряжения и др.

Краткая характеристика элементной базы преобразовательных устройств

Все преобразовательные устройства , разработанные для разных целей, имеют общий принцип работы, который основан на периодическом включении и выключении электрических вентилей. В настоящее время в качестве электрических вентилей применяются полупроводниковые приборы. Наибольшее применение получили диоды, , симисторы и , работающие в ключевом режиме.

1. – это двухэлектродные элементы электрической цепи, обладающие односторонней проводимостью. Проводимость диода зависит от полярности приложенного напряжения. Условно диоды разделяют на диоды малой мощности (допускаемый средний ток Iа доп ≤ 1А), диоды средней мощности (Iа доп = 1 - 10А) и диоды большой мощности (Iа доп 10А). По назначению диоды делятся на низкочастотные (fдоп 500 Гц) и высокочастотные (fдоп > 500 Гц).

Основными параметрами выпрямительных диодов являются наибольшее среднее значение выпрямленного тока , Iа доп, А, и наибольшее обратное напряжение , Ubmax, В, которое может быть приложено к диоду в течение длительного времени без опасности нарушения его работы.

В преобразователях средней и большой мощности применяются мощные (лавинные) диоды. Эти диоды имеют некоторые специфические особенности, поскольку работают при больших токах и высоких обратных напряжениях, что приводит к выделению значительной мощности в р-n – переходе. Поэтому здесь должны предусматриваться эффективные способы охлаждения.

Другая особенность мощных диодов – необходимость их защиты от кратковременных перенапряжений, возникающих при резких сбросах нагрузки, коммутационных и .

Защита силового диода от перенапряжений заключается в переводе возможного электрического пробоя р-n – перехода с поверхностных участков в объемные. В этом случае пробой носит лавинный характер, а диоды называют лавинными. Такие диоды способны пропускать достаточно большой обратный ток без перегрева локальных участков.

При разработке схем преобразовательных устройств может возникнуть необходимость получить выпрямленный ток, превышающий предельно допустимое значение одного диода. В этом случае применяют параллельное включение однотипных диодов с принятием мер по выравниванию прямых токов приборов, входящих в группу. Для увеличения суммарного допустимого обратного напряжения используют последовательное соединение диодов. При этом также предусматривают меры, исключающие неравномерное распределение обратного напряжения.

Основной характеристикой полупроводниковых диодов является вольт-амперная характеристика (ВАХ). Полупроводниковая структура и условное обозначение диода показано на рис 1, а,б. Обратная ветвь вольт-амперной характеристики диода – на рис. 1, в (кривая 1 – ВАХ лавинного диода, кривая 2 – ВАХ обычного дио-да).

Рис. 1 - Условное обозначение и обратная ветвь вольт-амперной характеристики диода.

– это четырехслойный полупроводниковый прибор, обладающий двумя устойчивыми состояниями: состоянием с низкой проводимостью (тиристор закрыт) и состоянием с высокой проводимостью (тиристор открыт). Переход из одного устойчивого состояния в другое обусловлен действием внешних факторов. Наиболее часто для отпирания тиристора на него воздействуют напряжением (током) или светом (фототиристоры).

Различают диодные тиристоры (динисторы) и триодные тиристоры , имеющие управляющий электрод. Последние делятся на однооперационные и двухоперационные.

В однооперационных тиристорах по цепи управляющего электрода осуществляется только операция отпирания тиристора. Тиристор переходит в открытое состояние при положительном анодном напряжении и наличии управляющего импульса на электроде управления. Следовательно, основной отличительной особенностью тиристора является возможность произвольной задержки момента его отпирания при наличии на нем прямого напряжения. Запирание однооперационного тиристора, (а также динистора) производится изменением полярности напряжения анод – катод.

Двухоперационные тиристоры допускают по цепи управления и отпирание и запирание тиристора. Запирание осуществляется подачей импульса управления обратной полярности на электрод управления.

Следует учесть, что промышленность выпускает однооперационные тиристоры на допустимые токи тысячи ампер и допустимые напряжения единицы киловольт. Существующие же двухоперационные тиристоры имеют значительно меньшие допустимые токи, чем однооперационные (единицы и десятки ампер), и меньшие допустимые напряжения. Такие тиристоры используются в релейной аппаратуре и в маломощных преобразовательных устройствах.

На рис. 2 приведены условное обозначение тиристора, схема полупроводниковой структуры и вольт-амперная характеристика тиристора. Буквами А, К, УЭ соответственно обозначены выводы анода, катода и управляющего элемента тиристора.

Основными параметрами, определяющими выбор тиристора и его работу в схеме преобразователя, являются: допустимый прямой ток, Iа доп, А; допустимое прямое напряжение в закрытом состоянии, Uа max, В, допустимое обратное напряжение, Ubmax, В.

Максимальное прямое напряжение на тиристоре с учетом вариантов работы преобразовательной схемы не должно превышать рекомендованного рабочего напряжения.

Рис. 2 –

Важным параметром является ток удержания тиристора в открытом состоянии , Iуд, А, – минимальный прямой ток, при более низких значениях которого тиристор выключается; параметр, необходимый для расчета минимально допустимой нагрузки преобразователя.

Другие виды преобразовательных устройств

Симисторы (симметричные тиристоры) проводят ток в обоих направлениях. Полупроводниковая структура симистора содержит пять слоев полупроводников и имеет более сложную конфигурацию по сравнению с тиристором. С помощью комбинации р- и n -слоев создают полупроводниковую структуру, в которой при разной полярности напряжения выполняются условия, соответствующие прямой ветви вольт-амперной характеристики тиристора.

Работающие в ключевом режиме. В отличие от двухоперационного тиристора в базовой цепи транзистора необходимо поддерживать сигнал управления на всем этапе проводящего состояния ключа. С помощью биполярного транзистора можно реализовать полностью управляемый ключ.

к.т.н. Коляда Л. И.

Преобразователь переменного тока в постоянный — это устройство, преобразующее энергию переменного тока в постоянный. Это устройство нелинейное, поэтому спектр напряжения на его выходе отличается от входного. В иностранной литературе подобные устройства называются преобразователями AC/DC (переменный/постоянный ток). На рисунке 1 приведено условно-графическое обозначение преобразователя AC/DC. На его входе и выходе приведены осциллограммы и спектрограммы напряжения.


Рисунок 1. Условно-графическое обозначение выпрямителя

В состав преобразователя переменного напряжения в постоянное входят как выпрямитель, так и фильтр, подавляющий нежелательные составляющие выходного напряжения. Задача фильтра, подключаемого к выходу выпрямителя, выделить только постоянную составляющую U 0 (полезный эффект выпрямления) и подавить все остальные составляющие спектра напряжения U d (пульсации). Это действие часто называется "сглаживанием" выходного напряжения. Поэтому такой фильтр называется сглаживающим. Его выполняют в виде ФНЧ (обычно LC-фильтра) с полосой пропускания Δf f c .

Если выпрямитель, входящий в состав преобразователя AC/DC, в процессе работы использует одну полуволну напряжения переменного тока, то он называется однотактным или однополупериодным, а если обе полуволны — то двухтактным или двухполупериодным. На рисунке 2 приведена упрощенная схема однотактного преобразователя переменного напряжения в постоянное.


Рисунок 2. Эквивалентная схема однотактного преобразователя переменного тока в постоянный

На данном рисунке ключ К синхронно с частотой источника U1 подключает нагрузку к источнику. На нагрузке получается пульсирующее напряжение с частотой ω c . За период частоты входного колебания через нагрузку и источник проходит только один импульс тока. Частота первой гармоники тока (и напряжения пульсаций на нагрузке) равна частоте сети ω c . Постоянная составляющая тока нагрузки в данной схеме протекает через источник входного напряжения. Если в его составе присутствует трансформатор, то это приведет к его подмагничиванию и ухудшению массогабаритных параметров. Если напряжениесети на входе однополупериодного выпрямителя гармоническое U 1 = U m sinω c t , то временные диаграммы напряжения на входе и выходе данной схемы будут выглядеть так, как показано на рисунке 3.


Рисунок 3. Временные диаграммы напряжения на входе и выходе однополупериодного преобразователя

Как видно из данного рисунка уровень постоянной составляющей тока на выходе схемы однотактного преобразователя AC/DC достаточно мал. Поэтому чаще применяется двухтактная схема. Схема двухтактного преобразователя переменного напряжения в постоянное приведена на рисунке 4.


Рисунок 4. Эквивалентная схема двухтактного преобразователя переменного тока в постоянный

В данной схеме ключи К1 и К2 подключают нагрузку на время одной полуволны (Т/2) два раза за период. Поэтому за период изменения напряжения сети через нагрузку и источник проходят два импульса тока, причем благодаря переключению ток через нагрузку протекает в одном направлении. Постоянная составляющая тока нагрузки не протекает через первичный источник и не влияет на его работу. Частота импульсов тока и напряжения на нагрузке U H в два раза выше частоты сети ω c , что позволяет уменьшить габариты сглаживающего фильтра. Все перечисленные факторы позволяет значительно улучшить массу и габариты преобразователя переменного тока в постоянный. Временные диаграммы напряжений и токов на входе и выходе двухтактного преобразователя переменного тока в постоянный приведены на рисунке 5.


Рисунок 5. Временные диаграммы напряжений и токов на входе и выходе двухполупериодного преобразователя

В качестве ключей в схемах преобразователей переменного тока в постоянный используются неуправляемые и управляемые вентили, в качестве которых используются диоды, тиристоры, биполярные и полевые транзисторы. Наиболее широко применяются неуправляемые вентили, в качестве которых используются мощные полупроводниковые диоды.

Следует отметить, что современные AC/DC преобразователи строятся по более сложной схеме. В них сначала производится выпрямление и фильтрация входного колебания, затем генерация высокой частоты, напряжение которой трансформируется в нужное на выходе, а затем снова выпрямление и фильтрация всех нежелательных спектральных составляющих. Это позволяет значительно уменьшить габариты преобразователя и повысить его к.п.д. Часто они выполняются в виде малогабаритного неразъемного блока.



Рисунок 6. Внешний вид AC/DC преобразователя

Литература:

  1. Сажнёв А.М., Рогулина Л.Г., Абрамов С.С. “Электропитание устройств и систем связи”: Учебное пособие/ ГОУ ВПО СибГУТИ. Новосибирск, 2008г. – 112 с.
  2. Алиев И.И. Электротехнический справочник. – 4-е изд. испр. – М.: ИП Радио Софт, 2006. – 384с.
  3. Гейтенко Е.Н. Источники вторичного электропитания. Схемотехника и расчёт. Учебное пособие. – М., 2008. – 448 с.
  4. Электропитание устройств и систем телекоммуникаций: Учебное пособие для вузов / В.М.Бушуев, В.А. Деминский, Л.Ф. Захаров и др. – М.,2009. – 384 с.
  5. Денисов А.И., Зволинский В.М., Руденко Ю.В. Вентильные преобразователи в системах точной стабилизации. – К.: Наукова думка, 1997. – 250 с.