Simulink ввод время установления сигнала. И.В.Черных. "Simulink: Инструмент моделирования динамических систем"

Введение

Настоящие методическое пособие предназначено для изучения раздела «Автоматика» междисциплинарного комплекса МДК 03.01., дисциплин «Основы автоматика», «Системы автоматического управления»

В пособии рассматриваются методы цифрового моделирования систем автоматического управления и программные средства для их проведения, рассматриваются способы построения математических моделей.

В первой части инструкции (Часть 1) приведен способ описания систем дифференциальными уравнениями. В следующей части (Часть 2) инструкции будет представлен способ описания систем как совокупности множества передаточных функций.

Для иллюстрации примера использована версия 7.11 программы MATLAB.

Работа с другими версиями MATLAB аналогична, за исключением вида «окон».

Мы постарались максимально упростить инструкцию и в доступной форме показать как можно пользоваться Simulink

Часть 1. Общие сведения о системе Simulink

Программа Simulink является приложением к пакету MATLAB.

При моделировании с использованием Simulink реализуется принцип визуального программирования, в соответствии с которым, пользователь на экране из библиотеки стандартных блоков создает модель устройства и осуществляет расчеты. При этом, в отличие от классических способов моделирования, пользователю не нужно досконально изучать язык программирования и численные методы математики, а достаточно общих знаний требующихся при работе на компьютере и, естественно, знаний той предметной области, в которой он работает.

Основным понятием системы моделирования Simulink является сигнал. По умолчанию, сигналы – это скалярные безразмерные переменные, связывающие компоненты модели. Однако, существуют и специальные сигналы, например электрические, гидравлические, механические и т.д., которые определенным образом описывают конкретное физическое влияние одних элементов моделируемой системы на другие. Компоненты модели – это элементы библиотеки Simulink или другие модели, которые осуществляют изменения сигналов (например, интегрирование, усиление, сложение двух сигналов и т.д.).

Simulink является достаточно самостоятельным инструментом и при работе с ним совсем не требуется знать сам MATLAB и остальные его приложения. С другой стороны доступ к функциям MATLAB и другим его инструментам остается открытым и их можно использовать в Simulink. Часть входящих в состав пакетов имеет инструменты, встраиваемые в Simulink (например, LTI-Viewer приложения Control System Toolbox – пакета для разработки систем управления).

Имеются также дополнительные библиотеки блоков для разных областей применения (например, Power System Blockset – моделирование электротехнических устройств, Digital Signal Processing Blockset – набор блоков для разработки цифровых устройств и т.д).

При работе с Simulink пользователь имеет возможность модернизировать библиотечные блоки, создавать свои собственные, а также составлять новые библиотеки блоков.

При моделировании пользователь может выбирать метод решения дифференциальных уравнений, а также способ изменения модельного времени

(с фиксированным или переменным шагом). В ходе моделирования имеется возможность следить за процессами, происходящими в системе. Для этого используются специальные устройства наблюдения, входящие в состав библиотеки Simulink. Результаты моделирования могут быть представлены в виде графиков или таблиц.

Преимущество Simulink заключается также в том, что он позволяет пополнять библиотеки блоков с помощью подпрограмм написанных как на языке MATLAB, так и на языках С++, Fortran и Ada.

Для запуска программы необходимо предварительно запустить пакет MATLAB. Основное окно пакета MATLAB показано на рисунке 1. Там же показана подсказка, появляющаяся в окне при наведении указателя мыши на ярлык Simulink в панели инструментов.

После открытия основного окна программы MATLAB нужно запустить программу Simulink. Это можно сделать одним из трех способов:

Рисунок 1- Основное окно программы MATLAB

∙ Нажать кнопку (Simulink) на панели инструментов командного окна MATLAB.

∙ В командной строке главного окна MATLAB напечатать Simulink и нажать клавишу Enter на клавиатуре.

∙ Выполнить команду Open... в меню File и открыть файл модели (mdl - файл).

Последний вариант удобно использовать для запуска уже готовой и отлаженной модели, когда требуется лишь провести расчеты и ненужно добавлять новые блоки в модель. Использование первого и второго способов приводит к открытию окна библиотеки Simulink (рисунок 2).

Рисунок 2- Окно библиотеки Simulink.

Цифрами обозначены: 1 –строка поиска компонентов, 2 – дерево библиотек Simulink, 3 –содержимое библиотеки (разделы или компоненты библиотеки)

На рисунке 2 выделена основная библиотека Simulink (в левой части окна) и показаны ее разделы (в правой части окна). Библиотека Simulink в MATLAB 2010 содержит следующие основные разделы:

0. Commonly Used Blocks – часто используемые компоненты из различных разделов основной библиотеки Simulink.

1. Continuous – компоненты для моделирования систем в непрерывном времени.

2. Discontinuities – компоненты для моделирования негладких и разрывных нелинейных функций.

3. Discrete – компоненты для моделирования систем в дискретном времени.

4. Logic and Bit Operations – компоненты для моделирования ло-

гических (двоичных) операций.

5. Lookup Tables – компоненты для моделирования функциональных и табличных зависимостей.

6. Math Operations – компоненты для моделирования математических операций.

7. Model Verification – компоненты для тестирования и верификации поведения моделей.

8. Model-Wide Utilities – вспомогательные компоненты для документирования и линеаризации моделей.

9. Ports & Subsystems – блоки построения иерархических моделей и подсистем.

10. Signal Attributes – компоненты для преобразования типов сигналов в моделях.

11. Signal Routing – компоненты для коммутации и объединения/разъединения сигналов.

12. Sinks – компоненты для отображения и сохранения сигналов.

13. Sources – источники сигналов и воздействий.

14. User-Defined Functions – компоненты для создания пользовательских функций, реализованных на языке MATLAB.

Список разделов библиотеки Simulink представлен в виде дерева, и правила работы с ним являются общими для списков такого вида:

∙ Пиктограмма свернутого узла дерева содержит символ+, а пиктограмма развернутого содержит символ −.

∙ Для того чтобы развернуть или свернуть узел дерева, достаточно щелкнуть на его пиктограмме левой клавишей мыши.

При выборе соответствующего раздела библиотеки в правой части окна отображается его содержимое (рисунок 3).

Рисунок 3- Компоненты библиотеки Simulink / Continuous.

Пример построения модели в Simulink

В качестве примера использования Simulink для моделирования систем рассмотрим отопление в жилом индивидуальном доме. Пусть для простоты, дом состоит из всего лишь одного помещения, в котором установлено отопление суммарной тепловой мощностью 𝑃 . Температура внутри этого дома 𝑇 𝑖 градусов, температура за окном – 𝑇 𝑜 градусов. Нас интересует каким образом изменяется температура 𝑇 𝑖 при изменении мощности 𝑃 (рисунок 4).

Рисунок 4- Модель отапливаемого помещения по входу-выходу.

Прежде чем составлять модель, рассмотрим интуитивно некоторые ее свойства. Во-первых, вполне очевидно, что если включить отопление, то сначала температура будет расти, а потом стабилизируется – наступит тепловое равновесие между подводимым теплом и рассеиваемым на улицу через щели в окнах, вентиляцию и т.д. Если печку выключить, то температура будет падать и в конце-концов дома будет также холодно, как и на улице. Существенными

параметрами модели является:

∙ температура за окном 𝑇 𝑜 – чем меньше она, тем больше тепла

уходит из дома и тем больше нужна мощность нагревателя, чтобы достичь заданной температуры внутри 𝑇 𝑖 ;

∙ качество теплоизоляции – чем хуже теплоизоляция, тем больше тепла выходит наружу;

∙ масса воздуха внутри дома – чем больше воздуха, тем дольше его нужно нагревать до заданной температуры и тем дольше будет остывать дом при отключении отопления.

В теплотехнике существуют множество моделей, с разной степенью точности моделирующие процессы нагревания и охлаждения тел. Далее мы рассмотрим самый простой из них. Для этого необходимо ввести понятие количества теплоты – энергии, необходимой для изменения термодинамического состояния тела (например, температуры). Из курса физики хорошо известно, что для того, чтобы нагреть тело массой 𝑚 и теплоемкостью 𝑐 от температуры 𝑇 1 до 𝑇 2 необходимо затратить количество теплоты 𝑄 , равное

𝑄 = 𝑐𝑚 (𝑇 2 − 𝑇 1)

Количество теплоты 𝑄 𝑖 , которое поступает от нагревателя мощностью 𝑃 за время 𝜏 – это просто интеграл по времени:

𝑄 𝑖 (𝜏 ) =

Для того, чтобы понять сколько тепла ушло на улицу, необходимо воспользоваться понятием теплового потока 𝑄 0 (t) – количество теплоты, проходящей через поверхность за единицу времени. Если считать, что теплопроводность внутри двух соприкасающихся сред больше, чем теплопроводность между ними, то тепловой поток пропорционален разности их температур:

𝑄 0 (t)= -k(T i (t)–T 0 )

𝑄 0 (𝜏 ) = (T i (t)–T 0 )dt

Запишем уравнение теплового баланса:

𝑄 = 𝑄 𝑖 + 𝑄 𝑜

продифференцировав обе части по времени, можно записать дифференциальное уравнение, связывающее динамику изменения температуры 𝑇 𝑖 (𝑡 ) от мощности нагревателя:

𝑐𝑚 = 𝑘 (𝑇 𝑜 − 𝑇 𝑖 (𝑡 )) + 𝑃 (𝑡 )

Обозначив коэффициент 𝑐𝑚 = a и разделив переменные для интегрирования, можно записать:

Последнее выражение – есть простейшая модель процесса теплообмена при отоплении помещения. Рассмотрим как осуществить моделирование этой системы с помощью Simulink.

Для создания модели в среде Simulink необходимо последовательно выполнить ряд действий.

Для начала необходимо создать новый файл модели с помощью команды File / New / Model, или используя кнопку на панели инструментов (здесь и далее, с помощью символа /, указаны пункты меню программы, которые необходимо последовательно выбрать для выполнения указанного действия). Вновь созданное окно модели показано на рисунке 5.

Рисунок 5- Пустое окно модели.

Далее расположим компоненты библиотеки Simulink в окне модели. Для этого необходимо открыть соответствующий раздел библиотеки (например, Sources – Источники). Далее, указав курсором на требуемый блок и, нажав на левую клавишу мыши, перетащить блок в созданное окно модели. Клавишу мыши нужно держать нажатой.

Рассматривая дифференциальное уравнение модели, можно составить следующий список компонентов, которые изменяют сигналы модели:

∙ в модель необходимо ввести параметр 𝑇 𝑜 , который в начале будет

константой – используем компонент библиотеки Simulink /Commonly Used Blocks / Constant или Simulink / Sources / Constant (это один и тот же компонент);

∙ чтобы получить разность температур 𝑇 𝑜 − 𝑇 𝑖 (𝑡 ) необходимо использовать сумматор (в режиме вычитателя) – компонент библиотеки Simulink / Commonly Used Blocks / Sum или Simulink /

Math Operations / Sum (также один и тот же компонент);

∙ для того, чтобы вычислить произведение разности температур на коэффициент 𝑘 ・ (𝑇 𝑜 − 𝑇 𝑖 (𝑡 )), необходимо использовать блок

усилитель, поскольку такое произведение равнозначно усилению сигнала разности в 𝑘 раз ставим компонент библиотеки Simulink/ Commonly Used Blocks / Gain или Simulink / Math Operations/ Gain;

∙ чтобы получить сумму мощностей 𝑘 (𝑇𝑜 − 𝑇𝑖 (𝑡 )) + 𝑃 (𝑡 ) под интегралом необходимо использовать сумматор – компонент библиотеки Simulink / Commonly Used Blocks / Sum или Simulink /Math Operations / Sum;

∙ чтобы получить количество теплоты из суммы мощностей с помощью интегрирования

𝑇 𝑖 (𝑡 )= (𝑘 (𝑇 𝑜 − 𝑇 𝑖 (𝑡 )) + 𝑃 (𝑡 )) dt

необходимо использовать интегратор – компонент библиотеки Simulink / Commonly Used Blocks / Integrator или Simulink / Continuous / Integrator;

∙ для формирования сигнала внутренней температуры 𝑇 𝑖 (𝑡 ) из интеграла мощности необходимо использовать блок усилитель, домножающий значение интеграла на 1/ 𝑎 – компонент библиотеки

Simulink / Commonly Used Blocks / Gain или Simulink / Math Operations / Gain;

Кроме того, нам необходимо визуализировать зависимость 𝑇 𝑖 (𝑡 ), для этого мы используем осциллограф – компонент библиотеки Simulink / Commonly Used Blocks / Scope или Simulink / Sinks / Scope. А также мы задаем зависимость мощности от времени 𝑃 (𝑡 ) как единичный ступенчатый сигнал с помощью компонента библиотеки Simulink /Sources / Step.

Рисунок 6- Окно модели, содержащее необходимые блоки

На рисунке 6 показано окно модели, содержащее установленные блоки.

Для удаления блока необходимо выбрать блок (указать курсором на его изображение и нажать левую клавишу мыши), а затем нажать клавишу Delete на клавиатуре.

Для изменения размеров блока требуется выбрать блок, установить курсор в один из углов блока и, нажав левую клавишу мыши, изменить размер блока (курсор при этом превратится в двухстороннюю стрелку).

Рисунок 7- Блок, моделирующий интегратор и окно редактирования параметров блока

Следующий шаг – настройка параметров каждого блока. Для этого необходимо дважды щелкнуть левой клавишей мыши, указав курсором на изображение блока. Откроется окно редактирования параметров данного блока. При задании численных параметров следует иметь в виду, что в качестве десятичного разделителя должна использоваться точка, а не запятая. После внесения изменений нужно закрыть окно кнопкой OK. На рисунке 7 в качестве примера показаны блок, моделирующий интегратор и окно редактирования параметров данного блока.

В рассматриваемой модели необходимо установить следующие параметры блоков:

∙ блок Integrator: параметр Initial condition = 20 – интегрирование осуществляется с начальной температуры в помещении 20 градусов;

∙ блок Sum1 (нижний из двух сумматоров): List of signs = |+- – превращает сумматор в вычитатель;

Параметры 𝑎 и 𝑘 модели пока не будем задавать, положив 𝑎 = 1 и 𝑘 = 1. После установки на схеме всех блоков из требуемых библиотек нужно выполнить соединение элементов схемы с помощью сигналов.

Для соединения блоков необходимо указать курсором на выход блока, а затем, нажать и, не отпуская левую клавишу мыши, провести линию к входу другого блока. После чего отпустить клавишу. В случае правильного соединения изображение стрелки на входе блока изменяет цвет. Для создания точки разветвления в соединительной линии нужно подвести курсор к предполагаемому узлу и, нажав правую клавишу мыши, протянуть линию. Для удаления линии требуется выбрать линию (так же, как это выполняется для блока), а затем нажать клавишу Delete на клавиатуре.

С целью удобства понимания модели, можно задать имена не только блокам, но и сигналам. Для этого необходимо дважды щелкнуть по сигналу и ввести имя. Обозначим сигналы, соответствующие переменным 𝑃 , 𝑇 𝑜 , 𝑇 𝑖 , P, T o и T i .

Схема модели, в которой выполнены все соединения между блоками и их настройка, показана на рисунке 8.

Рисунок 8- Окончательная схема модели.

После составления модели необходимо сохранить ее в виде файла на диске, выбрав пункт меню File/Save As... в окне схемы и указа папку и имя файла. При последующем редактировании схемы можно пользоваться пунктом меню File/Save. При повторных запусках программы Simulink загрузка схемы осуществляется с помощью меню File/Open... в окне обозревателя библиотеки или из основного окна MATLAB.

Запуск моделирования выполняется с помощью выбора пункта меню Simulation/Start или нажатием кнопки с треугольником (воспроизведение) на панели инструментов. Рядом в поле ввода указана продолжительность моделирования системы, по умолчанию моделирование останавливается при достижении модельного времени 𝑡 𝑠𝑡𝑜𝑝 = 10. Процесс расчета можно завершить досрочно, выбрав пункт меню Simulation/Stop или кнопку с квадратом (стоп). Расчет также можно остановить (Simulation/Pause) и затем продолжить (Simulation/Continue).

Запустим моделирование. После окончания, дважды щелкнем на блок осциллографа (Scope). На нем должна отображается зависимость 𝑇 𝑖 (𝑡 )

(рисунок 9). Если графика не видно, то необходимо щелкнуть правой кнопкой по черной зоне и выбрать из меню Autoscale, что приведет к автоматическому масштабированию осей графика.

Рисунок 9- Результат моделирования при 𝑃 = 1.

Видно, что температура внутри падает от 20 градусов до температуры, которая выше уличной 𝑇 𝑜 = 1, моделируемой блоком Constant.

Таким образом сказывается действие нагревателя.

Установим в параметрах блока Step, моделирующего зависимость 𝑃 (𝑡 ), большую мощность нагрева. Блок Step выдает на своем выходе константное значение, задаваемое его параметром Final value, и происходит это во время, задаваемое параметром Step time. До этого момента значение на выходе компонента Step равно 0. Установив параметр Final value = 10, запустим моделирование еще раз. Получим зависимость 𝑇 𝑖 (𝑡 ), показанную на рисунке 10.

Рисунок 10- Результат моделирования при 𝑃 = 10.

Отчетливо видно, что температура падает до включения нагревателя при 𝑡 = 1, после чего растет до достижения постоянного значения, соответствующего термодинамическому равновесию между теплом, подводимым нагревателем и отводимым наружу.

Литература

1. А. Борисевич, Теория автоматического управления: элементарное введение

с применением MATLAB , Изд. МГУ, 2011г.

2. А. Ф. Дащенко, В. Х. Кириллов, Л. В. Коломиец, В. Ф. Оробей

MATLAB В ИНЖЕНЕРНЫХ И НАУЧНЫХ РАСЧЕТАХ

Одесса «Астропринт» 2003

3. В. П. Дьяконов MATLAB 7.*/R2006/R2007 Самоучитель

Москва, ДМК, 2008


Solver (Расчет) - Установка параметров расчета модели. Workspace I/O (Ввод/вывод данных в рабочую область) - Установка параметров обмена данными с рабочей областью MATLAB. Diagnostics (Диагностика) - Выбор параметров диагности- ческого режима. Advanced (Дополнительно) - Установка дополнительных параметров. Установка параметров расчета модели выполняется с помо- щью элементов управления, размещенных на вкладке Solver. Эти элементы разделены на три группы (рисунок 7.1): Simulation time (Интервал моделирования или, иными словами, время расчета), Solver options (Параметры расчета), Output options (Параметры вывода). 7.1 Установка параметров расчета модели 7.1.1 Simulation time (Интервал моделирования или время расчета) Время расчета задается указанием начального (Start time) и конечного (Stop time) значений времени расчета. Начальное время, как правило, задается равным нулю. Величина конечного времени задается пользователем исходя из условий решаемой задачи. 7.1.2 Solver options (Параметры расчета) При выборе параметров расчета необходимо указать способ моделирования (Type) и метод расчета нового состояния системы. Для параметра Type доступны два варианта - c фиксированным (Fixed-step) или с переменным (Variable-step) шагом. Как правило, Variable-step используется для моделирования непрерывных систем, a Fixed-step - для дискретных. Список методов расчета нового состояния системы содержит несколько вариантов. Первый вариант (discrete) используется для расчета дискретных систем. Остальные методы используются для расчета непрерывных систем. Эти методы различны для переменного (Variable-step) и для фиксированного (Fixed-step) шага времени, но, по сути, представляют собой процедуры решения систем дифферен- циальных уравнений. Подробное описание каждого из методов расче- 30 та состояний системы приведено во встроенной справочной системе MATLAB. Ниже двух раскрывающихся списков Type находится об- ласть, содержимое которой меняется зависимости от выбранного спо- соба изменения модельного времени. При выборе Fixed-step в данной области появляется текстовое поле Fixed-step size (величина фикси- рованного шага) позволяющее указывать величину шага моделирова- ния (рисунок 7.2). Рисунок 7.2.Вкладка Solver при выборе фиксированного шага расчета Величина шага моделирования по умолчанию устанавливает- ся системой автоматически (auto). Требуемая величина шага может быть введена вместо значения auto либо в форме числа, либо в виде вычисляемого выражения (то же самое относится и ко всем парамет- рам устанавливаемым системой автоматически). 31 При выборе Fixed-step необходимо также задать режим рас- чета (Mode). Для параметра Mode доступны три вариан- та:MultiTasking (Многозадачный) – необходимо использовать, если в модели присутствуют параллельно работающие подсистемы, и ре- зультат работы модели зависит от временных параметров этих под- систем. Режим позволяет выявить несоответствие скорости и дис- кретности сигналов, пересылаемых блоками друг другу. SingleTasking (Однозадачный) - используется для тех моде- лей, в которых недостаточно строгая синхронизация работы от- дельных составляющих не влияет на конечный результат модели- рования. Auto (Автоматический выбор режима) - позволяет Simulink автоматически устанавливать режим MultiTasking для тех моде- лей, в которых используются блоки с различными скоростями пе- редачи сигналов и режим SingleTasking для моделей, в которых содержатся блоки, оперирующие одинаковыми скоростями. При выборе Variable-step в области появляются поля для ус- тановки трех параметров: Мах step size - максимальный шаг расчета. По умолчанию он устанавливается автоматически (auto) и его значение в этом слу- чае равно (SfopTime - StartTime)/50. Довольно часто это значе- ние оказывается слишком большим, и наблюдаемые графики представляют собой ломаные (а не плавные) линии. В этом случае величину максимального шага расчета необходимо задавать яв- ным образом. Мin step size - минимальный шаг расчета. Initial step size - начальное значение шага моделирования. При моделировании непрерывных систем с использованием переменного шага необходимо указать точность вычислений: относи- тельную (Relative tolerance) и абсолютную (Absolute tolerance). По умолчанию они равны соответственно 10-3 и auto. 7.1.3 Output options (Параметры вывода) В нижней части вкладки Solver задаются настройки парамет- ров вывода выходных сигналов моделируемой системы (Output options). Для данного параметра возможен выбор одного из трех ва- риантов: Refine output (Скорректированный вывод) – позволяет изме- нять дискретность регистрации модельного времени и тех сигна- лов, которые сохраняются в рабочей области MATLAB с помо- 32 щью блока То Workspace. Установка величины дискретности вы- полняется в строке редактирования Refine factor, расположенной справа. По умолчанию зна чение Refine factor равно 1, это озна- чает, что регистрация производится с шагом Dt = 1 (то есть для каждого значения модельного времени:). Если задать Refine factor равеным 2, это означает, что будет регистрироваться каж- дое второе значение сигналов, 3 - каждое третье т. д. Параметр Refine factor может принимать только целые положительные зна- чения Produce additional output (Дополнительный вывод) - обес- печивает дополнительную регистрацию параметров модели в за- данные моменты времени; их значения вводятся в строке редак- тирования (в этом случае она называется Output times) в виде списка, заключенного в квадратные скобки. При использовании этого варианта базовый шаг регистрации (Dt) равен 1. Значения времени в списке Output times могут быть дробными числами и иметь любую точность. Produce specified output only (Формиро- вать только заданный вывод) - устанавливает вывод параметров модели только в заданные моменты времени, которые указывают- ся в поле Output times (Моменты времени вывода). 7.2 Установка параметров обмена с рабочей областью Элементы, позволяющие управлять вводом и выводом в ра- бочую область MATLAB промежуточных данных и результатов мо- делирования, расположены на вкладке Workspace I/O (рисунок 7.3). Элементы вкладки разделены на 3 поля: Load from workspace (Загрузить из рабочей области). Если флажок Input (Входные данные) установлен, то в расположенном справа текстовом поле можно ввести формат данных, которые бу- дут считываться из рабочей области MATLAB. Установка флажка Initial State (Начальное состояние) позволяет ввести в связанном с ним текстовом поле имя переменной, содержащей параметры начального состояния модели. Данные, указанные в полях Input и Initial State, передаются в исполняемую модель посредством од- ного или более блоков In (из раздела библиотеки Sources). 33 Save to workspace (Записать в рабочую область) – Позволяет установить режим вывода значений сигналов в рабочую область MATLAB и задать их имена. Save options (Параметры записи) – Задает количество строк при передаче переменных в рабочую область. Если флажок Limit rows to last установлен, то в поле ввода можно указать количест- во передаваемых строк (отсчет строк производится от момента завершения расчета). Если флажок не установлен, то передаются все данные. Параметр Decimation (Исключение) Рисунок 7.3. Вкладка Workspace I/O диалогового окна установки па- раметров моделирования задает шаг записи переменных в рабочую область (аналогично параметру Refine factor вкладки Solver). Параметр Format (фор- мат данных) задает формат передаваемых в рабочую область дан- ных. Доступные форматы Array (Массив), Structure (Структура), 34 Structure With Time (Структура с дополнительным полем – “время”). 7.3 Установка параметров диагностирования модели Вкладка Diagnostics (рисунок 7.4) позволяет изменять пере- чень диагностических сообщений, выводимых Simulink в командном окне MATLAB, а также устанавливать дополнительные параметры диагностики модели. Сообщения об ошибках или проблемных ситуациях, обнару- женных Simulink в ходе моделирования и требующих вмешательства разработчика выводятся в командном окне MATLAB. Исходный пе- речень таких ситуаций и вид реакции на них приведен в списке на вкладке Diagnostics. Разработчик может указать вид реакции на каж- дое из них, используя группу переключателей в поле Action (они ста- новятся доступны, если в списке выбрано одно из событий): None - игнорировать, Warning -- выдать предупреждение и продолжить модели- рование, Error - выдать сообщение об ошибке и остановить сеанс моделирования. Выбранный вид реакции отображается в списке рядом с на- именованием события. 7.4 Выполнение расчета Запуск расчета выполняется с помощью выбора пункта меню Simulation/Start. или инструмента на панели инструментов. Про- цесс расчета можно завершить досрочно, выбрав пункт меню Simulation/Stop или инструмент. Расчет также можно остановить (Simulation/Pause) и затем продолжить (Simulation/Continue). 35 Рисунок 7.4. Вкладка Diagnostics окна установки параметров модели- рования 8 Завершение работы Для завершения работы необходимо сохранить модель в фай- ле, закрыть окно модели, окно обозревателя библиотек, а также ос- новное окно пакета MATLAB. 36 9 Библиотека блоков Simulink 9.1 Sources - источники сигналов 9.1.1 Источник постоянного сигнала Constant Назначение: Задает постоянный по уровню сигнал. Параметры: 1. Constant value - Постоянная величина. 2. Interpret vector parameters as 1-D – Интерпретировать вектор параметров как одномерный (при установленном флажке). Дан- ный параметр встречается у большинства блоков библиотеки Simulink. В дальнейшем он рассматриваться не будет. Значение константы может быть действительным или ком- плексным числом, вычисляемым выражением, вектором или матри- цей. Рисунок 9.1.1 иллюстрирует применение этого источника и измерение его выходного сигнала с помощью цифрового индикатора Display. 9.1.2 Источник синусоидального сигнала Sine Wave Назначение: Формирует синусоидальный сигнал с заданной частотой, амплитудой, фазой и смещением. Для формирования выходного сигнала блоком могут исполь- зоваться два алгоритма. Вид алгоритма определяется параметром Sine Type (способ формирования сигнала): Time-based – По текущему времени. Sample-based – По величине шага модельного времени. Формирование выходного сигнала по текущему значению времени для непрерывных систем Выходной сигнал источника в этом режиме соответствует выражению: y = Amplitude* sin(frequency* time + phase) + bias. 37 Рисунок 9.1.1. Источник постоянного воздействия Constant Параметры: 1. Amplitude - Амплитуда. 2. Bias – Постоянная составляющая сигнала. 3. Frequency (rads/sec) - Частота (рад/с). 4. Phase (rads) - Начальная фаза (рад). 5. Sample time – Шаг модельного времени. Используется для согласования работы источника и других компонентов модели во времени. Параметр может принимать следующие значения: 0 (по умолчанию) – используется при моделировании непрерыв- ных систем. > 0 (положительное значение) – задается при моделировании дис- кретных систем. В этом случае шаг модельного времени можно интерпретировать как шаг квантования по времени выходного сигнала. 38 -1 – шаг модельного времени устанавливается таким же, как и в предшествующем блоке, т.е. блоке, откуда приходит сигнал в данный блок. Этот параметр может задаваться для большинства блоков библио- теки Simulink. В дальнейшем он рассматриваться не будет. При расчетах для очень больших значений времени точность расчета выходных значений сигнала падает вследствие значительной ошибки округления. Формирование выходного сигнала по текущему значению времени для дискретных систем Алгоритм определения значения выходного сигнала источни- ка для каждого последующего шага расчета определяется выражени- ем (в матричной форме): ⎡sin(t + Δt) ⎤ ⎡ cos(Δt) sin(Δt) ⎤ ⎡sin(t) ⎤ ⎢cos(t + Δt)⎥ = ⎢ − sin(Δt) cos(Δt)⎥ ⎢cos(t)⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦ где Δ t – постоянная величина, равная значению Sample time. В данном режиме ошибка округления для больших значений времени также уменьшает точность расчета. Формирование выходного сигнала по величине модельного времени и количеству расчетных шагов на один период Выходной сигнал источника в этом режиме соответствует выражению: y= Amplitude* sin[(k + Number of offset samples) / Samples per period] + bias где k – номер текущего шага расчета. Параметры: 1. Amplitude - Амплитуда. 2. Bias – Постоянная составляющая сигнала. 3. Samples per period – Количество расчетных шагов на один период синусоидального сигнала: Samples per period = 2p / (frequency* Sample time) 4. Number of offset samples – Начальная фаза сигнала. Задается количеством шагов модельного времени: 39

ВВЕДЕНИЕ В SIMULINK

MATLAB (Matrix Laboratory) – это пакет прикладных программ, предназначенный для решения задач технических вычислений.

Рисунок 1.1 – Логотип MATLAB, выведенный на экран при помощи команды logo

Как язык программирования MATLAB был разработан в конце 1970-х годов Кливом Моулером в университете Нью-Мексико. MATLAB – это высокоуровневый интерпретируемый язык программирования, отличительной особенностью которого является оперирование с векторами и матрицами. На сегодняшний день насчитывается более одного миллиона пользователей

Simulink – это система имитационного блочного моделирования динамических систем, являющаяся подсистемой MATLAB. Средства моделирования Simulink основываются на программных средствах MATLAB, но позволяют обойтись без использования в явном виде языка MATLAB и создавать модели из стандартных блоков в графическом виде. При необходимости дополнительные блоки могут быть написаны пользователем как на языке MATLAB, так и на других языках (С, VHDL и др.). Визуальное представление дает возможность значительно упростить процесс создания модели, поиска ошибок, модификации модели другими пользователями, что в целом позволяет добиваться результатов гораздо быстрее, чем при использовании языка MATLAB в чистом виде. Кроме того, пользователю предоставляется возможность автоматической генерации кода на языках С, VHDL, Verilog по созданной модели, что позволяет переносить модель системы сразу после отладки на кристалл (микроконтроллеры, ПЛИС). Со многими другими возможностями MATLAB и Simulink можно познакомиться на сайте компании TheMathWorks (http://www.mathworks.com/).

1.1 Запуск Simulink

Запустив графический интерфейс MATLAB, выполните команду simulink или запустите Simulink при помощи кнопки на верхней панели (рис. 1.2).

Рисунок 1.2 – Запуск Simulink из MATLAB

При запуске Simulink откроется окно Simulink Library Browser (каталог библиотеки Simulink). В левой панели окна приведен список библиотек Simulink (рис. 1.3). Правая панель содержит три вкладки: Library (Содержание библиотеки),Search Results (Результаты поиска),Most Frequently Used Blocks

(Наиболее часто используемые блоки).

Во вкладке Library отображаются элементы библиотеки, выбранной в левой панели окна. В дальнейшем эти элементы могут быть использованы для создания новой модели.

Для ускоренного поиска нужного блока необходимо использовать поисковую систему (Enter search term ). Результаты поиска отображаются во второй вкладке правой панели (Search Results ).

В процессе работы в Simulink формируется набор наиболее часто используемых блоков, который будет отображаться в третьей вкладке правой панели (Most Frequently Used Blocks ).

Рисунок 1.3 – Каталог библиотеки Simulink

Главное меню окна каталога библиотеки Simulink содержит следующие элементы:

File (Файл) – работа с файлами моделей Simulink:

New (Новый) – создание нового файла модели (Model ) или библиотеки (Library );

Open (Открыть) – открыть ранее созданный файл;

Close (Закрыть) – закрыть окно каталога библиотеки Simulink;Preferences (Настройки по умолчанию) – общие настройки Simulink (параметры шрифтов, настройки отображения графического интерфейса пользователя, начальные настройки вновь создаваемых проектов и другие).

Edit (Редактирование) – добавление в модель выделенного блока (Add Selected Block to a New Model ), поиск блока в библиотеке (Find ).

View (Вид) – настройки отображения элементов библиотеки (размер шрифта, вид значков элементов и др.).

Help (Помощь) – справочная система MATLAB Simulink.

Необходимо отметить, что MATLAB имеет очень хорошую встроенную систему документации, которая постоянно совершенствуется и дополняется новой информацией. Знание технического английского языка и чтение документации MATLAB – это лучший способ разобраться во всем многообразии функций и блоков.

Рисунок 1.4 – Описание элемента стандартной библиотеки Simulink

При двойном нажатии левой кнопкой мыши по интересующему блоку открывается окно параметров, в котором приведено краткое описание блока и перечислены его параметры (рис. 1.4). На данном этапе параметры блока доступны только для чтения. После перемещения блока в модель появится возможность их изменения. При необходимости можно воспользоваться кнопкой Help для открытия подробного описания блока в системе документации

1.2 Создание модели

Для создания новой модели выполните команду главного меню File ,

New ,Model (рис. 1.5) или нажмитеCtrl+N .

Рисунок 1.5 – Создание новой модели

По команде откроется новое безымянное окно (Untitled ) модели (рис.

Рисунок 1.6 – Пустое окно новой модели Simulink

Прежде чем приступать к созданию модели, необходимо настроить параметры моделирования. Выполните команду главного меню Simulation ,Configuration Parameters (Моделирование, Параметры конфигурации) или на-

жмите Ctrl+E .

Рисунок 1.7 – Параметры конфигурации

Процесс настройки заключается в задании параметров решающего мо-

дуля (Solver ):

Simulation time (Время моделирования) – задается временной интервал моделирования в секундах. Левая граница по умолчанию равна нулю, правая может принимать любое значение, в том числе и бесконечность (inf ). В случае, если начальное и конечное значения совпадают, будет выполнен только один шаг моделирования.

Solver Options (Параметры решающего модуля) – параметры модуля, реализующего один из методов численного интегрирования обыкновенных дифференциальных уравнений. Выделяются два типа (Type ) решающих модулей: с фиксированным шагом моделирования (Fixed-step ) и с переменным шагом моделирования (Variable-step ). Выбор второго варианта позволяет системе адаптивно изменять временной шаг моделирования в процессе работы. При этом можно задать величины минимального и максимального шага мо-

делирования, а также начального шага моделирования в секундах (Max step size, Min step size иInitial step size ). При необходимости можно задать относительную и абсолютную погрешности численного метода решения дифферен-

циальных уравнений (Relative tolerance иAbsolute tolerance ). В выпадающем спискеSolver имеется возможность задать тип решающего модуля для моделирования аналоговых систем (ode … ) или выбрать решающий модуль для моделирования дискретных систем (Discrete (no continuous state) ).

На первое время рекомендуется оставить параметры конфигурации по умолчанию, изменяя лишь правую границу времени моделирования. При необходимости можно более подробно ознакомиться с параметрами конфигурации в справочной системе MATLAB Simulink.

Рисунок 1.7 – Результаты поиска по слову «Scope»

Сохраните настройки системы и перейдите к окну библиотеки Simulink. Введите в строке поиска (Enter search term )Scope (осциллограф) и нажмите клавишуEnter. Во вкладкеFound: ‘Scope’ отражаются результаты поиска, сгруппированные по библиотекам (рис. 1.7). В базовой библиотекеSimulink блокScope найден дважды: в разделеCommonly Used Blocks (наиболее часто используемые блоки) иSinks (средства анализа сигналов). Разумеется, это один и тот же блок осциллографа. В списке найденных блоков также присут-

ствует часто используемый блок Spectrum Scope (Анализатор спектра), находящийся в библиотеке цифровой обработки сигналов (Digital Signal Processing ).

Добавить выбранный блок в модель можно несколькими способами: перетащив его на лист модели или выбрав пункт Add To Untitled контекстного меню, нажав правой кнопкой мыши на блоке. Аналогичным образом добавьте блокSine Wave из разделаSources (Источники сигнала).

Соединение блоков между собой может осуществляться двумя способами. Ручной способ: наведя курсор мыши на выход источника сигнала, зажмите левую кнопку мыши и проведите линию до входа осциллографа. Автоматический способ: выделив блок источника сигнала однократным нажатием левой кнопки мыши, зажмите кнопку Ctrl и нажмите левой кнопкой мыши на второй блок, соединение будет выполнено автоматически.

Для настройки параметров генератора синусоидального сигнала двойным щелчком мыши откройте окно параметров блока (рис. 1.9.).

Рисунок 1.9 – Настройка параметров блока Sine Wave

Установите значение параметра Sine type Sample based (Метод формирования сигнала – Дискретное представление). ПараметрSample time определяет период дискретизации сигнала, для примера установим его равным одной секунде. Таким образом, при 10 выборках на один период синусоиды (Samples per period ) и при периоде дискретизации в 1 секунду, период гармонического колебания составит 10 секунд.

Запустите процесс моделирования Simulation, Start (Ctrl+T ) на временном промежутке 0…10 сек. Двойным щелчком мыши откройте окно осциллографа (рис. 1.10).

Рисунок 1.10 – Пример моделирования источника дискретного синусоидального сигнала

Как видно на рисунке 1.10, осциллограмма сигнала соответствует заданным параметрам гармонического колебания в настройках блока Sine Wave . При необходимости можно увеличить участок с требуемым фрагментом сигнала при помощи кнопок управления окнаScope . КнопкаAutoscale позволяет автоматически подобрать масштаб по двум осям для отображения всего накопленного сигнала. При помощи кнопокZoom X – axis иZoom Y – axis имеется возможность изменения масштаба только по одной из координат. В настройках блокаScope можно задать количество входов осциллографа (Number of axis ), параметры децимации входного сигнала (Decimation , прореживание выборок), настройки объема буфера хранения информации (History, Limit data points to last ) и другие.

1.3 Библиотеки Simulink

Формирование сигналов в Simulink осуществляется при помощи генераторов сигналов Sources (рис. 1.11).

Рисунок 1.11 – Библиотека источников сигнала

В библиотеку входят следующие блоки:

Band-Limited White Noise – генератор нормального белого шума с равномерной финитной спектральной плотностью мощности и заданным временем корреляции для аналоговых систем;

Chirp signal – генератор синусоидального колебания с линейно возрастающей мгновенной частотой;

Clock – формирователь аналогового сигнала текущего времени моделирования (в соответствии с шагом моделирования);

Constant – источник постоянного сигнала;

Counter Free-Running – формирователь сигнала на основе N -разрядного счетчика и со сбросом по переполнению;

Counter Limited – формирователь сигнала на основе счетчика с произвольным значением сброса;

Digital Clock – формирователь дискретного сигнала текущего времени моделирования (в соответствии с шагом моделирования);